
EMFFORCE OPS MANUAL Space Systems Product Development – Spring 2003

B Software Documentation
The software in the EMFF system can be initially grouped by its physical location: avionics
software on the avionics Tattletale, metrology software on the metrology Tattletale, and ground
station software on the EMFF laptop. The avionics Tattletale (TT8) houses software for
avionics, communication, and control; the ground station and metrology TT8 computers each
hold the majority of their own subsystems’ software. However, in this appendix all software
(SW) will be grouped by function, or subsystem: “avionics” (B.1) covers all SW on the avionics
TT8 but does not address communication or the control test module in detail; “communications”
SW (B.2) includes the communications modules on the avionics Tattletale and all ground station
SW; “metrology” includes all SW on the metrology TT8; “control” (B.4) includes specific
information on translating control test algorithms to C source code and integrating them into the
avionics software.

B.1 Avionics Software and Operating System Overview – MAS (p.1-15)
“Avionics software” is the name for the software package loaded to the avionics Tattletale
computer. The avionics software is composed of three parts: the initialization section, which
establishes vehicle- or system-wide standards (e.g. number of vehicles), mathematical constants,
hardware I/O interfaces, and global variables; the main() function, which contains the EMFF
operating system (OS); and the many separate functions, or modules, which accomplish specific
tasks relating to timing, control, communication, metrology, or computation.

B.1.1 Initialization

B.1.1.1 Version documentation
The history of the code should be documented in the top section. CODE_VER is a string
established here, available at any point in the code for printout during debugging. Under this are
notes regarding sections of the avionics code currently undergoing revision.

The version of code to which this document refers is “IT-2A test 3” – or version 3 of Integrated
Test 2A.

B.1.1.2 Constants

B.1.1.2.1 System Constants and Data Sizes
These constants are important at the entire system level. They set the identification of the local
vehicle, the number of vehicles in the system, number of stages in the operating system cycle,
buffer sizes for incoming communications and metrology data, and sizes of data-holding vectors
(e.g. PVA, MSA). Table B-1 lists system and data size constants and where they are used.

Massachusetts Institute of Technology 1 Dept of Aeronautics and Astronautics

EMFFORCE OPS MANUAL Space Systems Product Development – Spring 2003

Table B-1: Avionics System and Data Size Constants
Identifier Name/Description Used in function Default value?
VEH_ID Vehicle identification # (0, 1, or 2) MSA, comm code 0 = master
NUMBER_OF_VEHICLES Number of vehicles in system MSA, comm code 2 = test 2X
TSBUFSIZE Buffer size for TPU channel (input from

Metrology TT8)
main(): Comm and Met
channel initial’n

256 (B)

SBUFSIZE Buffer size for serial channel (comm hardware
= DR2000)

main(): comm channel
initialization (only)

256 (B)

NUM_OF_STAGES Number of stages in the main OS loop MainTimingInt() 5 for 2-vehicle ops
IR_Period Sets control pd for *simulated* IR beacon SetupIRInt() 350 (ms)
METRO_RAW_DATA_LENGTH Storage buffer for incoming met data GetMetroData() 100 (B)
NUM_MET_DATA_ELEMENTS Sets vector length for collected met data GetMetroData() 12 (elements)
NUM_PVA_ELEMENTS Sets vector length for PVA CreateLocal PVA() 9 (elements)
NUM_MSA_ELEMENTS Sets vector length for MSA CreateMSA() 13 (elements)
RW_PULSE_WIDTH Sets PWM signal width for RW actuation ControlTestcase1(),

SmallControlInterrupt()
0.010 (ms)

C_PULSE_WIDTH Sets PWM signal width for coil actuation ControlTestcase1(),
SmallControlInterrupt()

1.0 (ms)

B.1.1.2.2 Sensor and Actuator Calibration Constants
The second set of constants pertains to the hardware attached to the avionics TT8. There are
hardware-specific calibration constants supplied by the manufacturer for the gyroscope, as well
as variables reserved for calibrating input data from avionics sensors (gyro, tachometer) and
scaling output data to actuators (reaction wheel, EM coils). There is also a 10^x scalar in this
section – x_INTEGER_SCALAR, which is only used to preserve significant figures when
converting data to integer variable type. Table B.1.2 lists the sensor and actuator calibration
constants and where they are used.
Table B-2: Sensor and Actuator Calibration Constants
Identifier Name/Description Used in function Default value?
GYRO_CAL Gyro-specific calibration value SmallControlInterrupt() 2050 (SN33239), 1987 (SN32846)
GYRO_MAX A/D input calibration value SmallControlInterrupt() 4095 (mV)
GYRO_MIN A/D input calibration value SmallControlInterrupt() 0 (mV)
GYRO_ZERO_MAX Gyro-specific calibration value SmallControlInterrupt() 2055 / 1990
GYRO_ZERO_MIN Gyro-specific calibration value SmallControlInterrupt() 2047 / 1980
COIL_ONE_SENSOR_ZERO Coil current sensor cal - shift SmallControlInterrupt() 0.0 (Amps, placeholder)
COIL_TWO_SENSOR_ZERO Coil current sensor cal - shift SmallControlInterrupt() 0.0 (Amps, placeholder)
COIL_ONE_ACTUATOR_SCALAR Coil current calibration - scale SmallControlInterrupt() 0.625 (mu Amps, arbitrary)
COIL_TWO_ACTUATOR_SCALAR Coil current calibration - scale SmallControlInterrupt() 0.625 (mu Amps, arbitrary)
COIL_ONE_ACTUATOR_ZERO Coil current calibration - shift SmallControlInterrupt() 50.0 (Amps, central PWM value)
COIL_TWO_ACTUATOR_ZERO Coil current calibration - shift SmallControlInterrupt() 50.0 (Amps, central PWM value)
RW_ACTUATOR_SCALAR RWA current calibration - scale SmallControlInterrupt() 20 (no units, 2.6315789 saved?)
RW_ACTUATOR_ZERO RWA current calibration - shift SmallControlInterrupt() 50.0 (Amps)
COIL_INTEGER_SCALAR Multiplier converting float to int CreateLocalPVA() 100.0 (dimensionless)
GYRO_INTEGER_SCALAR Multiplier converting float to int CreateLocalPVA() 10000.0 if rad; 100.0 if deg (d’less)

B.1.1.3 Included Files
The EMFF uses Tattletale Model 8 (TT8) with C language capabilities. The avionics code must
include certain standard and specialized C source files to run on the TT8. Table B.1.3 lists the
standard and Tattletale includes and where they can be found in Tattletale reference documents.

Massachusetts Institute of Technology 2 Dept of Aeronautics and Astronautics

EMFFORCE OPS MANUAL Space Systems Product Development – Spring 2003

Table B-3: Included Files

File name Library Type
stdio.h Standard C
Math.h Standard C
string.h Standard C
tt8.h TattleTale Model 8
tt8lib.h TattleTale Model 8
tpu332.h TattleTale Model 8
dio332.h TattleTale Model 8
userio.h TattleTale Model 8
stdlib.h TattleTale Model 8
Time.h TattleTale Model 8

B.1.1.4 Input and Output Channels
The input and output (I/O) pins on the TT8 are explained more fully in the avionics hardware
section of this document <section 7>. However, the code labels for all I/O pins are defined at the
top of the avionics code. Table B.1.4 lists the EMFF TT8 I/O pins with their variable
designation and use.
Table B-4: I/O Channels

Identifier Name/description TT8 Pin Type and #
MET_CHAN Metrology (Tx then Rx) TPU 0
TPU_IR IR beacon timing interrupt count/detection TPU 1
TPU_TACH_DIR Tachometer direction in TPU 2
TPU_TACH Tachometer data in TPU 3
C2_CHAN Coil 2 PWM signal out TPU 4
RW_CHAN RW PWM signal out TPU 5
TPU_ML Main Loop timing interrupt count/detection TPU 6
TPU_ML2 PWM timing signal out TPU 7
C1_CHAN Coil 1 PWM signal out TPU 8
COMM_ICHAN Comm (receive) Serial 14
COMM_OCHAN Comm (transmit) Serial 13
ADCHAN_GYRO Gyro data in (OBSOLETE?) (previously TPU 0)
ACTUATOR_STOP OBSOLETE (previously TPU 8)

B.1.1.5 Function Prototypes
Each specific task of the avionics software is accomplished in a separate function, or module.
Table B.1.5 lists all function names and the purpose of each. For a complete treatment of the
avionics software modules, see section B.1.3.

Table B-5: Function Prototypes (Avionics Software Modules)
Function name Description
void SmallControlInterrupt(void) Adjusts attitude control with local feedback between

metrology data arrivals
void ControlTestcase1(float MSA[]) Executes major control algorithm
void SetupMainTimingInt(void) Sets up main loop interrupt (channel and recognition)

Massachusetts Institute of Technology 3 Dept of Aeronautics and Astronautics

EMFFORCE OPS MANUAL Space Systems Product Development – Spring 2003

void MainTimingInt(void) Handler for main timing interrupt; changes to next stage
within OS cycle

void SetupPWM(int TPU_Chan) Sets up a PWM signal on channel TPU_Chan
void DefinePWM(int TPU_Chan, float P_width, float

P_duty)
Changes attributes of an existing PWM signal

void SetupIRInt(void) Sets up IR beacon interrupt (channel and recognition)
void IRInterrupt() Handler for IR beacon interrupt; restarts OS cycle
void GetMetroData(unsigned short int metrology_data[]) Brings in new data from metrology TT8
void ClearString(char data[]) Empties a vector of characters
void GetT(char cs[]) General; retrieves a byte over TPU channel
void GetH(char data[]) General; retrieves byte over serial channel
void SendH(char cs[]) General; sends a byte over serial channel
void CreateLocalPVA(unsigned short int PVA_Local[],

unsigned short int metrology_data[])
Pulls together local metrology and gyro/coil data into
Primary Vehicle Array (PVA)

void Transmit_PVA(unsigned short int PVA_Local[], int
PacketNumber, unsigned short int
PVA_Local_Packaged)

Packages local PVA for transmission and sends over RF
channel through DR2000

void Fetch_PVA(unsigned short int PVA_Remote[],
unsigned short int PVA_Remote_Packaged)

Brings in remote PVA from RF channel through DR2000
and unpackages

void CreateMSA(float MSA[], unsigned short
PVA_Local[],unsigned short PVA_Remote)

Combines all PVA data into MSA

void FloatToInt(void) Casts a float as an int, saving X significant figures
int BitwiseFun(void) Bitwise arithmetic needed to cast float as int
void ConvertMSA(float MSA[], int result) Converts the real-number MSA to int form for transmit
void InitTACH(void) Initializes tachometer
float GetTACH(void) Polls tachometer for data

B.1.1.6 Global Variables
EMFF avionics code does use global variables. Global variables are unavoidable when
programming the TT8 using interrupts (see section B.1.2 for explanation). Table B.1.6 lists and
identifies the avionics global variables and notes the functions that use each. In the avionics
software, global variables are grouped according to the functions that use them. NOTE:
“unsigned short” implies type int.

Table B-6: Global Variables
Type Identifier Name/description Used in function(s) Initial value?
int flag_cmd N/A 1
int testbit N/A 0
int loop_counter index for OS stage count main, MainTimingInt 0
int loop_stage holds actual OS stage main, MainTimingInt 0
int loop_order [NUM_OF_STAGES] order/numbers of OS stages MainTimingInt {1,2,3,4,5}
int stage_length [NUM_OF_STAGES] vector with MainTimingInt

timeout for each OS stage
main, MainTimingInt (100,200,300,

400,500)
int int_flag interrupt flag main, MainTimingInt 1
int inner_loop_counter gyro calibration counter main 0
int gyro_new_cal gyro calibration value main, SmallControlInterrupt 0
ExcCFrame framebuf0 framebuf1 framebuf2 standard buffers InstallHandler(…) [standard]
int Packet_Number packet ID number Transmit_PVA, Fetch_PVA 48 (ASCII A)
unsigned
short

PVA_Local [NUM_PVA_ELEMENTS] Primary Vehicle Array vector
(for comm transmission)

CreateLocalPVA, CreateMSA,
Transmit_PVA, Fetch_PVA

N/A

unsigned
short

PVA_Remote [NUM_PVA_ELEMENTS] Primary Vehicle Array vector
(for comm transmission)

CreateLocalPVA, CreateMSA,
Transmit_PVA, Fetch_PVA

N/A

unsigned PVA_Local_Packaged PVA_Local formatted into Transmit_PVA, Fetch_PVA N/A

Massachusetts Institute of Technology 4 Dept of Aeronautics and Astronautics

EMFFORCE OPS MANUAL Space Systems Product Development – Spring 2003

short [NUM_PVA_ELEMENTS*2] bytes for comm trans
unsigned
short

PVA_Remote_Packaged
[NUM_PVA_ELEMENTS*2]

PVA_Remote formatted into
bytes for comm trans

Transmit_PVA, Fetch_PVA N/A

float c_rw_voltage commanded RWA voltage SmallControlInterrupt,

ControlTestcase1
0.0

float cmd_PWM RW cmmanded PWM signal SmallControlInterrupt,
ControlTestcase1

N/A

float c_current1 commanded current coil 1 SmallControlInterrupt,
ControlTestcase1

0.0

float c_current2 commanded current coil 2 SmallControlInterrupt,
ControlTestcase1

0.0

float a_current1 actual current reading coil 1 SmallControlInterrupt,
ControlTestcase1

0.0

float a_current2 actual current reading coil 2 SmallControlInterrupt,
ControlTestcase1

0.0

float c_torque commanded torque, rad/s SmallControlInterrupt 0
float theta_int theta … radians SmallControlInterrupt 0.0
float theta angle – radians SmallControlInterrupt 0.0
float(?) t_now formerly ulong SmallControlInterrupt 0
float(?) t_last formerly ulong SmallControlInterrupt 0
float(?) dt formerly ulong SmallControlInterrupt 0
float thetadot angular rate - rad/s SmallControlInterrupt 0
float desired_theta_now desired angle, Test 1B only SmallControlInterrupt 0
float desired_theta_last desired angle, Test 1B only SmallControlInterrupt 0
float old_tach smooth out tach data SmallControlInterrupt 0
int all_stop = 1 indicates all actuators off OBSOLETE 0

float num holds element of MSA CreateMSA (?) N/A
int sign neg = 1; pos = 0 FloatToInt N/A
int mantissa base, float number FloatToInt N/A
int exponent exponent, float number FloatToInt N/A

* the “unsigned short int” variable type is necessary for any variable which will be transmitted
over the RF channel – that is, which is handled by the comm subsystem. Therefore the PVA data
must be formatted such that it can be expressed in type int without losing any significant digits.
See B.1.3.14, Create_Local_PVA() for more information on this typecasting and formatting.

B.1.2 Main function and Operating System (OS)

B.1.2.1 Background and Versions
The operating system (OS) of the EMFF avionics went through several iterations before it was
actually written. We tried to design a simple system with loops and a linear progression, but
eventually learned that the tasks the OS had to accomplish were too complex to handle without
using interrupts. We also looked at event-based interrupts, which we felt were more appropriate
than timing-based interrupts, but found this to be too flaky when used on its own. So the OS that
was finally coded, in January 2003, is both timed and event-driven – the driving event is the IR
beacon from the metrology system. However, when testing before integration or without
metrology, there is another time-based interrupt set to simulate the IR. This is explained in
greater detail in the following section (B.1.1.2, OS Interrupt Timing Cycle). For a top-level
diagram of the avionics software task progression, see Figure B-1: Overall Avionics Software
Flowchart.

Massachusetts Institute of Technology 5 Dept of Aeronautics and Astronautics

EMFFORCE OPS MANUAL Space Systems Product Development – Spring 2003

Figure B-1: Overall Avionics Software Flowchart

The version of code documented in this Appendix is “IT-2A Version 3” – used throughout April
and May 2003 on the EMFF vehicle(s). There is some documentation recording the evolution of
the code through this version at the top of the C source file. Later versions (as of May 2003
there are “4” and “5”) begin the reorganization of the main code – including simplifying the
main thread and deleting extraneous sections and commands as well as streamlining modules.
The plan is for versions 4 and 5 of IT-2A to be incorporated into future tests (e.g. IT-2B, 2C,
2D).

The specific file to which all examples are referenced in this document is as follows:
Metrowerks CodeWarrior Project “Main Project Codev5 2A with MSA test.mcp”
… linked at this time to
“Main_Code_v3_IT-2A_29APR2003_TEST_modified_for_if_metro_doesnt_work.c”
(May 1, 2003. no explanation why the Project version says 5 while the code version is still 3.)

Massachusetts Institute of Technology 6 Dept of Aeronautics and Astronautics

EMFFORCE OPS MANUAL Space Systems Product Development – Spring 2003

B.1.2.2 OS Interrupt Timing Cycle (overview and design)

B.1.2.2.1 Tasks and Limiting Factors
The high-level tasks of the operating system are the following:

1. Collect data on vehicle position/motion (local data) (“Primary Vehicle Array” or PVA)
2. Communicate local data to other vehicles and gather remote data from other vehicles
3. Combine all data into Master State Array (MSA)
4. Run control algorithm on MSA data
5. Implement output from control algorithm by commanding actuators (coils and reaction

wheel)

All of the above tasks must happen in a single cycle of the OS. There are two main limiting
factors on length of the OS cycle: the frequency of updates required to run the control algorithm
successfully (high end) and the rate at which metrology can supply new data (low end). The
speed of the computer is not a limiting factor; when using interrupts, the CPU and TPU capacity
is more than sufficient to run at the speed required by control.

The speed of the communication subsystem (transmission over the RF channel among multiple
vehicles and a ground station) is also a factor, but the communication subsystem is not fully
implemented in the code documented here, so its limits are not yet certain. For more on comm,
see section 2 in this Appendix.

B.1.2.2.2 Stage Progression
The avionics software main function is broken up into stages. Theoretically, each high-level task
in the OS is addressed in one stage of the function. The time allotted to complete each stage is
determined by an “inner loop” interrupt. The timing of the interrupt is determined by the global
integer variable stage_length[NUM_OF_STAGES] – defined at the top of the code as a vector
containing the length of each OS stage in milliseconds. If any one high-level task times out, the
OS proceeds to the next stage. For example, if there is an error bringing in metrology data,
rather than waste time (causing further drift) the OS will proceed through the stages anyway, and
extrapolate the control input at the final stage using metrology data from the previous cycle.

B.1.2.2.3 Infrared Interrupt
To optimize accuracy, the five stages of the OS should run every time fresh local data is
available from the metrology subsystem. Therefore the system timing is driven by an interrupt
based on the infrared (IR) beacon flash from the metrology Tattletale (TT8), which signals a new
metrology data-gathering cycle. The input pin through which avionics TT8 receives the IR
signal from metrology TT8 is TPU channel 1.

B.1.2.2.4 Simulated IR
The avionics TT8 is also set up to run a simulated IR interrupt when the metrology subsystem is
not available or when debugging the avionics subsystem in an isolated environment. The
standard simulated IR cycle length is defined to be 350ms (#define IR_Period, see Table 1) but
may be adjusted according to need while testing.

B.1.2.2.5 Intermediate Adjustments – Small Control Loop

Massachusetts Institute of Technology 7 Dept of Aeronautics and Astronautics

EMFFORCE OPS MANUAL Space Systems Product Development – Spring 2003

Since the main loop is set to run on the order of <5Hz based on the metrology subsystem, there is
a substantial amount of time for drift to occur between arrivals of fresh metrology data. To
ensure that the system does not drift beyond the point of recovery, more frequent adjustments are
made to local vehicle control using measurements taken from the gyroscope on board each
vehicle. This “Small Control Loop” (SCL) is run on a timed interrupt approximately every 100
ms. For sequence and details of the SCL, refer to section 1.3 (Modules), under
SmallControlInterrupt().

B.1.2.2.6 Summary of Timing Design
The process developed in January 2003 approximately follows the overall timing cycle shown in
Figure B-2.

Figure B-2: Operating System Timing Cycle

For a short time at each SCL interrupt the processor executes attitude adjustments using the gyro
data. metrology data collection, RF communication, and main control execution all occur at
each IR interrupt. NOTE: In reality the period on the SCL is not exactly 100ms; therefore there
is no simultaneous interrupt at multiples of 700ms.

B.1.2.3 OS Implementation: main() Function and Interrupts
When the avionics TT8 is powered up, it runs through the avionics initialization code (B.1.1) and
then enters the OS proper in the main() function. (see Figure B-1 in section B.1.2.1). The
main() function contains initialization of all interrupts (IR, main timing, and small control
loop), hardware, pulse width modulated (PWM) signals, and data arrays.

B.1.2.3.1 OS Initialization
Figure B-3 follows the thread of operations in the main() function through this initialization
process and the entrance to the OS loop.

Massachusetts Institute of Technology 8 Dept of Aeronautics and Astronautics

EMFFORCE OPS MANUAL Space Systems Product Development – Spring 2003

Figure B-3: OS Initialization Sequence

Create and Initialize Local Variables
Aside from the global variables noted in section B.1.1.6 (Table B-6), the avionics code utilizes
many variables local to the main function. Table B-7 lists the local main() function variables
and their significance.
Table B-7: Local Variables, main() Function
Type* Identifier Name/description Initial value?
float cal_loop counter for gyro calibration loop 2
int temp_cal_var used in gyro calibration -
int i loop counter – PVA debug 0
unsigned char done exit condition for main loop 0
char data[257] debug for comm – OBSOLETE NULL
int met_stillopen test MET_CHAN close Tx - before reopen Rx 1
unsigned short int metrology_data

[NUM_MET_DATA_ELEMENTS]
vector to hold incoming metrology data {0}

unsigned short int PVA_Local
[NUM_PVA_ELEMENTS]

holds PVA data for local vehicle (1, or A) {0}

unsigned short int PVA_Remote
[NUM_PVA_ELEMENTS]

holds PVA data for remote vehicle (2, or B) {0}

unsigned short int PVA_C[NUM_PVA_ELEMENTS] holds PVA data for third vehicle - FUTURE {0}
float MSA[NUM_MSA_ELEMENTS] holds MSA information for ControlTestcase1 {0}
int result called by ConvertMSA(MSA, result) 0
long sammy holds TPU TCR 1 clock value; type long required by

TT8 function TPUGetTCR1()
-

int result1, result2 comm initialization – channel open success -

Massachusetts Institute of Technology 9 Dept of Aeronautics and Astronautics

EMFFORCE OPS MANUAL Space Systems Product Development – Spring 2003

* the “unsigned short int” variable type is necessary for any variable which will be transmitted
over the RF channel – that is, which is handled by the comm subsystem. Therefore the PVA data
must be formatted such that it can be expressed in type int without losing any significant digits.
See B.1.3.14 (Create_Local_PVA()) for more information on this typecasting and formatting.

Print ID info
When running the avionics TT8 from Motocross (loading program), it will print identification
information at the beginning of every run. It prints the title of the code (not filename), version
number as defined in the label at the top of the file, and the time/date of the last compilation.

TPU clock
The temporary variable “sammy” holds the value returned here from TPUGetTCR1(). More
information on this function can be found in the Tattletale Model 8 manual, ANSI-C version,
found online as “TT8C_Man.pdf” in \\aero-astro\CDIO3\07. Reference\4. Tattletale Manual\ .

IR Interrupt Handler
Defining the infrared interrupt includes three function calls: setting up the interrupt, installing
the interrupt handler, and enabling the interrupt. Details about how to use each of these
functions can be found in the text(s) referenced for each function.
- SetupIRInt()
 Reference: section B.1.3.6 (SetupIRInt)
 NOTE: The period of the *simulated* IR interrupt (PWM count) is set in this function.
- InstallHandler(IRInterrupt, TPU_INT_VECTOR + TPU_IR, &framebuf2)
 References: TT8C_Man.pdf, section 5 page 17 (InstallHandler)
 section B.1.3.7 (IRInterrupt)
- TPUInterruptEnable(TPU_IR)
 Reference: TT8C_Man.pdf, section 5 page 42

Set up actuator PWM outputs
The system actuators (reaction wheel and two superconducting coils) are commanded by the
control algorithm using a pulse-width modulated (PWM) signal – which is put out through the
avionics TT8. Refer to section 1.3.x (SetupPWM) for more detailed information. The PWM
signal itself is monitored by the TT8 TPU – for more information on this process, see the specific
TPU reference manual “tpupn17 – PWM Function.pdf” in
\\aero-astro\CDIO3\07. Reference\4. Tattletale Manual\App Notes\ .

Initialize RW PWM
The reaction wheel PWM signal is specifically initialized to a 50% duty cycle immediately after
the channel is set up. This is the “zero” setting for the reaction wheel. It is this opinion of this
EMFFORCER that there should also be initialization commands to re-define the PWM for each
coil – and that since we had not yet powered up the coils at this version of the test we had not
included those commands. However, please note that this is speculation.

Initialize Tachometer

Massachusetts Institute of Technology 10 Dept of Aeronautics and Astronautics

EMFFORCE OPS MANUAL Space Systems Product Development – Spring 2003

Simply calls the InitTACH() function. For more information refer to B.1.3.x (InitTACH).

Calibrate gyroscope
The gyroscope is calibrated by running a 90-rep loop that incorporates the new value into the old
values. It changes the global variable gyro_new_cal using the local variables temp_cal_var
and cal_loop. For details on the function used to access the gyro reading), refer to
TT8C_Man.pdf, section 5, page 10 (AtoDReadMilliVolts).

Define PITR timer (Small Control Loop)
The Small Control Loop (SCL) runs on an interrupt different from that which governs the Main
Timing and Infrared interrupts. The periodic interrupt timer (PITR) is an ultra-fast timer
available on the TT8 which runs separately from the main thread. Since the SCL must interrupt
with the highest frequency, it is set using this timer. The PITR is mentioned on pages 6-20 and
5-17 in TT8C_Man.pdf.

Set Up Main Timing Interrupt
The Main Loop (ML) Timing Interrupt governs the length of each stage of the OS. Functions
used to set up the
- SetupMainTimingInt()
 Reference: section B.1.3.x (SetupMainTimingInt)
 NOTE: The *counter* PWM signal is started in this function. We set a signal to fire
every millisecond through pin TPU_ML2, and tie that pin to TPU_ML – through which we count
the pulses, thereby incrementing the timer for the Main Timing and *simulated* IR interrupts.
- InstallHandler(MainTimingInt, TPU_INT_VECTOR + TPU_ML, &framebuf1)
 References: TT8C_Man.pdf, section 5 page 17 (InstallHandler)
 section B.1.3.x (MainTimingInt)
NOTE: This set-up sequence does *not* call “TPUInterruptEnable(TPU_ML)” – because
that function is called already in MainTimingInt(). The interrupt timeout length (i.e. number
of pulses counted before int_flag is set) on TPU_ML is set differently depending on which stage
the OS is in – governed by the global variable stage_length(5).

Initialize Main Timing Interrupt
After setting up the main timing interrupt, it is necessary to begin the sequence by running the
handler: MainTimingInt(). This does the following:
- increments global variable loop_counter (from 0, as it was initialized, to 1)
- sets MainTimingInt timer to stage_length[loop_counter] (stage_length[1] = 100ms)
- sets int_flag = 1 (TRUE)

When MainTimingInt() returns, the remainder of the initialization process does the
following:
- sets int_flag = 1 (TRUE) (again)
- resets loop_counter = 0 (for entrance into main loop?)

Initialize Communications I/O
Comm I/O initialization includes the following processes:

Massachusetts Institute of Technology 11 Dept of Aeronautics and Astronautics

- Open transmit channel – TSerOpen(COMM_OCHAN, …) – with error message

EMFFORCE OPS MANUAL Space Systems Product Development – Spring 2003

 Reference: TT8C_Man.pdf, section 5 page 44 (TSerOpen)
- Open receive channel - TSerOpen(COMM_ICHAN, …) – with error message
 Reference: TT8C_Man.pdf, section 5 page 44 (TSerOpen)
- Provide buffer for incoming comm data (Serial input)
 Reference: TT8C_Man.pdf, section 5 page 31 (SerSetInBuf)

Initialize Metrology I/O
Metrology I/O initialization includes the following processes:
- Open TT8-TT8 channel to *transmit* - TSerOpen(MET_CHAN, …, OUTP, …)
 Reference: TT8C_Man.pdf, section 5 page 44 (TSerOpen)
- Send initializing “start byte” to metrology TT8 – “go” command (doesn’t currently work)
 Reference: TT8C_Man.pdf, section 5 page 45 (TSerPutByte)
- Close transmit channel – with error message – TSerClose(MET_CHAN)
 Reference: TT8C_Man.pdf, section 5 page 43 (TSerClose)
- Open TT8-TT8 channel to *receive* - TSerOpen(MET_CHAN, …, INP, …)
 Reference: TT8C_Man.pdf, section 5 page 44 (TSerOpen)
- Flush metrology input channel to clear out any junk accumulated on initialization
 Reference: TT8C_Man.pdf, section 5 page 43 (TSerInFlush)

Initialize Data Arrays
This sequence ensures that the Primary Vehicle Array (PVA) data are set to 0 before they are
used in the main loop. The arrays currently initialized here are those used by the comm sequence
for vehicle 1 in a two-node network (what we have): PVA_Local, PVA_Remote,
PVA_Local_Packaged, PVA_Remote_Packaged. The “–Packaged” arrays are the original arrays
(unsigned short integer, 2 bytes per element) split into bytes for transmission to the comm
hardware (DR2000) and over the RF channel.

Start Avionics Local Timer
The PVA data requires a local timestamp in order to link data for the local vehicle (PVA_Local)
to the simultaneously collected set of data from other vehicle(s) (PVA_Remote). This is achieved
through the TT8 embedded “stopwatch” function. For more information, refer to
TT8C_Man.pdf, section 5 page 38 (StopWatchStart()).

Enter Main Loop
The next step is to enter the Main Loop – set apart by a “while” loop with exit condition of a
keystroke. The main loop is explained in detail in the following section, B.1.2.

B.1.2.3.2 OS Main Loop and Interrupts
Figure B-4 traces the flow of the OS Main Loop *without* the Small Control Loop interrupts.
The SCL runs separately on its PITR (periodic interrupt timer) at a higher frequency of interrupt.
For more information on the SCL, see its module description (B.1.3.x,
SmallControlInterrupt).

Massachusetts Institute of Technology 12 Dept of Aeronautics and Astronautics

EMFFORCE OPS MANUAL Space Systems Product Development – Spring 2003

Figure 0-4: OS Main Loop Cycle

Massachusetts Institute of Technology 13 Dept of Aeronautics and Astronautics

EMFFORCE OPS MANUAL Space Systems Product Development – Spring 2003

Enter Main Loop
The “Main Loop” cycle of the OS – containing the functions leading up to execution of the
control algorithm – is set apart inside a simple “while” loop. Until the exit condition is met
(done = 1), the OS continues to address interrupts and cycle through the stages.

Main Loop Exit Condition
The exit condition for the main loop is detection of a keyboard hit (reference TT8C_Man.pdf
section 5 page 18, kbhit()) – but this can only register while testing the avionics code through
a serial cable to a host PC running Motocross (the TT8 loading program). When testing the
avionics code as burned to FLASH memory and disconnected from the PC, the only exit is to
manually reset the TT8 by pressing its [orange] reset button or cutting power.

The Variable int_flag
The global variable int_flag (interrupt flag) triggers entry into the main() function switch/case
statement, which contains the OS stages in sequence. Int_flag is…
- INITIALIZED to 1 at the top of the avionics code
- SET to 1 in MainTimingInt, which runs both whenever the main timer (on TPU_ML)
interrupts, or when IRInterrupt runs (when there is an IR beacon flash, or the simulated-IR
timer on TPU_IR interrupts; IRInterrupt calls MainTimingInt)
- CLEARED (set to 0) in the main function, immediately after recognition that it was set.

The Variables Loop_Stage and Loop_counter
The global variable loop_stage determines which task in the OS cycle is executed next. After
clearing int_flag, the next action is to assign a value to loop_stage based on the current value of
the variable loop_counter. The global variable loop_counter holds the *index* of the current OS
stage. The range of this index is 0-4. Loop_counter is an index of two vectors:
- the current stage number (e.g. 3)

- set of stage numbers is held in the global variable vector loop_order
- range of stage numbers is 1 to 5
- stage number = loop_counter + 1

- the length of time (e.g. 150) allotted for that stage (e.g. 3) before the main timer interrupts
- set of time lengths is held in the global variable vector stage_length, in milliseconds

OS Stage 1 – Wait
In the case that the stage number is 1 (this means that loop_counter = 0), the only task of the OS
is to wait until it receives metrology data. It appears that this stage is left over from a time when
the OS cycle restart was to be triggered by the arrival of data from the metrology TT8.
Regardless, the avionics system does nothing in this case and returns to the beginning of the
main OS loop (while(!done)) to check done and int_flag again.
NOTE: If the main timer interrupts before the process is complete, an error message is printed to
the screen (when working while connected to a PC running Motocross).

OS Stage 2 – Metrology

Massachusetts Institute of Technology 14 Dept of Aeronautics and Astronautics

EMFFORCE OPS MANUAL Space Systems Product Development – Spring 2003

When the stage number is 2 (loop_counter = 1), the OS checks for metrology data. This calls the
following steps:
- Check to see if the data arrived, i.e., if there is a data byte waiting on the metrology channel
 Reference: TT8C_Man.pdf, section 5 page 42 (TSerByteAvail(MET_CHAN))
- If no data have arrived, print error to screen (only when connected to PC with Motocross)
- If data are there, bring in the data using GetMetroData(metrology_data).
 References: section B.1.3.11 (GetMetroData(metrology_data[]))
 section B.1.3.12 (GetT(data[]))
 TT8C_Man.pdf, section 5 page 43 (TSerGetByte())
- Return to beginning of main loop; check done and int_flag
NOTE: If the main timer interrupts before the process is complete, an error message is printed to
the screen (when working while connected to a PC running Motocross).

OS Stage 3 – PVA
When the stage number is 3 (loop_counter = 2), the avionics TT8 must collect a local timestamp,
local gyro and tach readings, and the metrology data collected in stage 2; then it must format this
data into unsigned short int type and enter into the PVA_Local vector. The reason for the
uniform typecasting is to prepare the data for transmission over the RF channel in the
communication process.

Reference: section B.1.3.14 (CreateLocalPVA(PVA_Local[]))
After this, follow the same procedure: return to beginning of main loop; check done and int_flag
NOTE: If the main timer interrupts before the process is complete, an error message is printed to
the screen (when working while connected to a PC running Motocross).

OS Stage 4 - Comm
When the stage number is 4 (loop_counter = 3), the avionics TT8 enters the communication
process. For the two-node network (one vehicle + ground station (GS), RF transmission from
vehicle to GS only), this is simple; there is
- one conditional statement that checks the vehicle ID (if VEH_ID == 0), and proceeds to…
- transmit or receive accordingly.
For a multi-vehicle network, the communication algorithm and code is substantially more
complex; for more comm theory and design refer to section B.2 (Communication Software).
References: section B.1.3.17 (Transmit_PVA(PVA_Local[], …))
After this, follow the same procedure: return to beginning of main loop; check done and int_flag
NOTE: If the main timer interrupts before the process is complete, an error message is printed to
the screen (when working connected to a PC running Motocross).

OS Stage 5 - MSA and Control
When the stage number is 5 (loop_counter = 4), the avionics TT8 must run two related processes
sequentially:
- create the Master State Array (MSA)
 Reference: sec B.1.3.19 (CreateMSA(MSA[], PVA_Local[], PVA_Remote[]))
- run the control test case using that MSA.
 Reference: Appendix A: Control
NOTE1: For an expanded system, the comm would handle and log an MSA transmission to the
ground station (GS) as well as the PVA transmission sequence. To prepare the MSA for this

Massachusetts Institute of Technology 15 Dept of Aeronautics and Astronautics

EMFFORCE OPS MANUAL Space Systems Product Development – Spring 2003

transmission, it must be typecast all as unsigned short int – which is accomplished through
ConvertMSA(MSA[], result). However, this code has not yet been tested on the floor.
NOTE2: If the main timer interrupts before the process is complete, an error message is printed
to the screen (when working connected to a PC running Motocross).

B.1.3 Avionics Software: Modules

B.1.3.1 SmallControlInterrupt
NOTE: ALL I/O for the Small Control Interrupt (SCL) is GLOBAL because the function is an
interrupt handler, which cannot be passed any inputs or return any values.
Global Variables - Inputs: determined in overall control calculations and only referenced here

c_speed (commanded RW speed),
c_current1, c_current2 (commanded current for coils)

Global Variables – Inputs/Outputs (modified):
 a_current1, a_current2 (actual current value in coil 1 or 2)
Other references:
 TT8 library function AtoDReadMillivolts(ADCHAN_x) (TT8C_Man.pdf section 5)
 EMFF function GetTACH() (section B.1.3.9)
 TT8 function StopWatchTime() (TT8C_Man.pdf section 5)
 Gyro calibration variables and procedures (refer to B.1.2, B.1.1)
 DefinePWM(inputs) (B.1.3.5)
 Defined channels for signal output to each actuator (RW, coil1 coil 2) (see B.1.1)
Notes:

The Small Control Loop interrupts the OS system progress approximately every 100ms
(based on the PITR timer set in the main() function) to collect data on the actuators and
compensate for drift in control due to time lag. It…

- gathers fresh gyroscope and tachometer data with the most recent (but older than
gyro/tach) desired actuation levels commanded by control.

- adjusts the PWM signal put out to the actuators, compensating for control/position drift
as well as for weakening batteries powering the coils/RW.

This function is extremely well commented. See source file
(“Main_Code_v3_IT-2A_20APR2003_TEST_modified_for_if_metro_doesnt_work.c”)

for a detailed walkthrough and step-by-step explanation of SCL calculations and commands.
The StopWatchTime function returns the time in microseconds in variable type ulong,

but we have changed it temporarily to type float for debugging
 The coil current sensors are not operational at print time for this document; code
involving commanded and actual coil current has not been adequately (at all?) tested/debugged

B.1.3.2 ControlTestCase1 <BB>
 The purpose of this section is to control the vehicle. This section is referred to as the big
control loop because it is where the overall control is calculated. It differs from the small control
loop because it updates slower and uses metrology position/attitude data in addition to local gyro
and tachometer feedback data.
 First this modules stores all the MSA data into an array. It then set up some counters,
constants, and variables. The most important of these are control_output, input_state, and gains.

Massachusetts Institute of Technology 16 Dept of Aeronautics and Astronautics

EMFFORCE OPS MANUAL Space Systems Product Development – Spring 2003

The array control_output is the output command of the controller. The array has three values for
test case 2ab. The first value is the commanded magnetic moment, mu, for coil 0 -- the coil that
starts parallel to the fixed coil, the big coil. The second value is the commanded magnetic
moment for the other coil, and the last value is the commanded torque for the reaction wheel.
The input_state array contains six values which are computed from the MSA values mentioned
above. The first value is the x distance between the vehicles, the second value is the y distance,
and the third value is theta. The last three values are the derivatives of the first three. For more
detail on this see the modeling section of Appendix A. The gains matrix is a matrix that is the
size of control_output by the size of input_state, in this case 3 by 6. These values are taken from
the Control team’s work and constitute the core of the controller for the system. For more
information see Appendix A.
 The next part of this module performs a matrix multiplication of the gains matrix and the
input_state array. The results of this multiplication is stored in control_output. The values of
control_output are then manipulated to provide commanded current to the coils -- c_current1 and
c_current2 – and commanded voltage to the reaction wheel. The conversions for c_current1 and
c_current2 are straightforward. The conversion for c_torque is a bit more tricky and is dealt with
in Appendix A.

B.1.3.3 MainTimingInt
Inputs: none
Outputs/Return: none
Global variables accessed: loop_counter, int_flag, stage_length[]
Other references: TPU_ML (main loop timing/interrupt pin),
Processes:

Increment loop_counter
Clear the interrupt on TPU_ML
Set the number of counts TPU_ML should register before next interrupt
 set number of counts = stage_length[loop_counter]
Initialize TPU_ML to begin counting again
Reset int_flag = 1
Conditional: if this process has run the last stage (loop_counter == NUM_OF_STAGES),

then the main loop has completed a full cycle before registering an IR interrupt. At this point
the TT8 should reset and begin again; instead for debugging purposes simply reset
loop_counter to 0 (to restart the OS cycle).

Notes:
Called as handler for TPU_ML timeout interrupt; *also* called from IRInterrupt (handler

for TPU_IR interrupt, which happens either from metrology IR or from simulated IR PWM).
The IR-simulation PWM signal is set up and defined at the beginning of the

MainTimingInt() module; this code should be commented out when running the avionics
with metrology connected.

B.1.3.4 SetupPWM
Inputs: int TPU_Chan
Outputs/Return: none
Global variables accessed: none
Other references: TPU function: PWM “tpupn17 - PWM Function.pdf” in TT8 App Notes

Massachusetts Institute of Technology 17 Dept of Aeronautics and Astronautics

EMFFORCE OPS MANUAL Space Systems Product Development – Spring 2003

Processes: Uses process as defined in Motorola spec sheets to set up a pulse width-modulated
function going out on channel “TPU_Chan” with given period length and duty cycle.

Notes: Refer to TT8 app notes for more information on function setup and PRAM offsets.

B.1.3.5 DefinePWM
Inputs: int TPU_Chan, float P_width (milliseconds), float P_duty (percent 0 100)
Outputs/Return: none
Global variables accessed: none
Other references: TPU function: PWM “tpupn17 - PWM Function.pdf” in TT8 App Notes
Processes:

Prints PWM change information to the screen (if hooked to PC running Motocross)
Conditional: IF NEW PWM DOWN TIME IS LESS THAN 10 ms
 set new pulse width and percent duty using TPU PWM function
 ELSE print error message!

Notes: the error message from a down time of *greater* than 10 ms is to limit the *upper* end
of the PWM signal. There is a maximum time that you can set the pulse width (0x8000 [hex]) -
duty cycle combination, and the conditional checks that.

B.1.3.6 SetupIRInt
This function sets up the infrared interrupt receiver (NOT the interrupt handler!)
Inputs: none
Outputs: none
Global variables accessed: none
Other references:

TPU_IR (pin detecting incoming interrupt)
IR_Period (defined length for simulated IR pulse)
TPU function: ITC “tpupn16 - ITC Function.pdf” in TT8 App Notes

Processes:
 Uses process as defined in Motorola spec sheets to receive an incoming pulse and register
as an interrupt. Basically: disable chan (TPU_IR) set function parameters enable chan.
Notes: Refer to TT8 app notes for more information on function setup and PRAM offsets.

B.1.3.7 IRInterrupt
This function is the handler for the incoming IR beacon interrupt.
Inputs: none
Outputs: none
Global variables accessed: loop_counter
Other references:

TPU_IR (pin detecting incoming IR or simulated IR interrupt)
TPU_ML (main loop timing/interrupt pin – timeout varies according to OS stage),
MainTimingInt(); (section B.1.3.3)
TPUSetInterrupt(channel); TT8 library function, TT8C_Man.pdf sec 5 page 40
TPU_InterruptEnable(channel); TT8 library function, TT8C_Man.pdf sec 5 page 42

Processes:
Clear IR interrupt and disable it to reset

Massachusetts Institute of Technology 18 Dept of Aeronautics and Astronautics

EMFFORCE OPS MANUAL Space Systems Product Development – Spring 2003

Reset “loop_counter” to -1. Necessary because the first action in MainTimingInt is to
increment loop_counter - since loop_counter is an index it must first refer to the “0th loop.”

Call MainTimingInt(); which begins the OS cycle at stage 1 (index 0)
Re-enable the IR interrupt

Notes: none

B.1.3.8 InitTACH
Inputs: none
Outputs: none
Global variables accessed: none
Other references:

TPU_TACH (digital I/O pin receiving signal/data from tachometer)
TPU function: FQM “tpupn03 - FQM Function.pdf” in TT8 App Notes

Processes: Uses process as defined in Motorola spec sheets to detect and translate signal coming
in over pin TPU_TACH. Defines recognition of signal, initializes and enables channel.

Notes: Refer to TT8 app notes for more information on function setup and PRAM offsets.

B.1.3.9 GetTACH
Inputs: none
Outputs: returns type float (tach reading)
Global variables accessed: old_tach (RW speed detected on previous cycle)
Local variables: float speed (speed of RW - init to 0.0); int dir (direction of RW spin)
Other references:
 TPUGetPin(channel); TT8 library fuction, TT8C_Man.pdf sec 5 page 41

TPU_TACH (digital I/O pin receiving signal/data from tachometer)
TPU_TACH_DIR (digital I/O pin receiving *direction* data from tachometer)

Processes:
 Note direction of RW (read TPU_TACH_DIR)

Read TPU_TACH and convert to RPM or rad/second
Smooth data - avg with last tach reading (old_tach)
Return new calculated RW speed as type float.

Notes: none

B.1.3.10 GetMetroData
Inputs: unsigned short int metrology_data[]
Outputs/Return: (modify metrology_data[])
Global variables accessed: metrology_data[] duplicate array in global/local; unresolved!!
Local variables: raw_data[], int loop (init to 0), numofloop
Other references: GetT() function called to pull in bytes from pin; strlen() C library function
Processes:
 Initialize raw data holding array, loop vars
 Call incoming-data function, GetT. (fills raw data array with bytes)
 Converts bytes (char-type elements) of raw data into words (short int), metrology_data[]
 Does this through a loop that combines every two elements of raw_data into one
of metrology_data; use “8-bit shift” left to hold places; then express bitwise #as decimal for int.

Massachusetts Institute of Technology 19 Dept of Aeronautics and Astronautics

EMFFORCE OPS MANUAL Space Systems Product Development – Spring 2003

Notes: Sec. B.1.3.10 describes how this modules *should* proceed. In fact, at time of print, this
version of the code has been modified to work without incoming metrology data – so instead of
using this function to call GetT and work with a data stream off the MET_CHAN TPU pin, we
set the elements of metrology_data[] to initial values and checked that these values came through
avionics/comm. correctly during initial debugging of IT-2A.

B.1.3.11 GetT
Inputs: char data[] (uses this because data coming across pin is 1 byte at a time)
Outputs: (modified raw_data)
Global variables accessed: none
Other references: TSerByteAvail and TSerGetByte (TT8C_Man.pdf, section 5)
Processes:
 Use the TT8 library functions to pull the bytes coming across the metrology-avionics
TT8 connection (MET_CHAN = TPU pin number). Fills raw data array with as many bytes as
are available. Flushes input at completion (detects no more bytes available).
Notes: This is a reusable function called currently only by GetMetroData

B.1.3.12 ClearString
Inputs: char data[]
Outputs: (modified data[])
Global variables accessed none:
Other references: C library function strlen(array[]) (return string length of array of type char)
Processes:
 Empties the string data[] - sets all elements to NULL.
Notes: This is a reusable function. Currently *should* be called by GetMetroData to prevent
excess old data from interfering with new measurements. In fact it is not used...

B.1.3.13 CreateLocalPVA
 - get a timestamp (based on the stopwatch timer started just before entering this mail
loop)
 Reference: TT8C_Man.pdf section 5 page 38 (StopWatchTime())
- read in local attitude/rate and feedback data from the gyro and tach (hardware local to avionics
board, not connected to metrology TT8).
 Reference:
- convert all variables to the same accepted format (unsigned short int, in preparation for comm
transmission); this is difficult because the timestamp access function returns an unsigned long-
type value, and the gyro-read function returns a float-type value.
- enter the timestamp, metrology data and local attitude/rate data into the PVA (PVA_Local).

B.1.3.14 SendH
Inputs: char cs[]
Outputs: (array *not* modified)
Global variables accessed: none
Other references: SerPutByte = get byte off serial line (in TT8_Man.c section 5)
Processes: Use TT8 library function SerPutByte to transmit a single byte over the *serial*
channel, the avionics output to the DR2000 communication hardware (hence send”H”).

Massachusetts Institute of Technology 20 Dept of Aeronautics and Astronautics

EMFFORCE OPS MANUAL Space Systems Product Development – Spring 2003

Notes: There is some confusion over data transmission. If you try to send more than 1 byte at a
time, it appears that anything past the first byte is lost (ie.not put on the hardware for
transmission),

B.1.3.15 GetH
Inputs: char data[]
Outputs: (modified data[])
Global variables accessed: none
Other references: SerByteAvail, SerGetByte (see SendH descriptions & sec 5 of TT8C_Man.pdf)
Processes: Checks to see if a byte is available on the serial channel; then brings it in and stores
in raw data array.
Notes: see SendH for complementary function.

B.1.3.16 Transmit_PVA
For information on this communication function, see section B.2 Communication Software.
NOTE: This replaces the baseline function SendH, which contained no comm. code.

B.1.3.17 Fetch_PVA
For information on this communication function, see section B.2 Communication Software.
NOTE: This replaces the baseline function GetH, which contained no comm. code.

B.1.3.18 CreateMSA <SJS & MAS>
Variables: float MSA[], unsigned short PVA_Local[], unsigned short PVA_Remote[].
Processes:

Converts the raw data from PVA_Local[] and PVA_Remote[] from the raw unsigned
short data to float.

Check function: ensure that the PVA distances are accurate.
Previous MSA’s velocities are taken
Multiply those by dt.
Whichever PVA distance is closer is chosen for the MSA

Notes: Table B-X lists the elements in float MSA(13):
Table B-8: Elements in the Master State Array (MSA)

MSA[i] Function

MSA[0] timestamp for MSA creation

MSA[1] x position of vehicle 0

MSA[2] x velocity of vehicle 0

MSA[3] y position of vehicle 0

MSA[4] y velocity of vehicle 0

MSA[5] angle of zero vehicle axis with respect to 0 veh axis --> frame of reference

MSA[6] vehicle 0 rate (gyro measurement)

MSA[7] x position of vehicle 1
MSA[8] x velocity of vehicle 1

Massachusetts Institute of Technology 21 Dept of Aeronautics and Astronautics

EMFFORCE OPS MANUAL Space Systems Product Development – Spring 2003

MSA[9] y position of vehicle 1

MSA[10] y velocity of vehicle 1

MSA[11] angle of 1veh axis with respect to 0 vehicle axis

MSA[12]
vehicle 1 rate (gyro measurement)

Local variables used (type float):

MSA_time,
MSA_x0,
MSA_y0,
MSA_x0dot,
MSA_y0dot,
MSA_ang01,
MSA_ang0dot,
MSA_x1,
MSA_y1,
MSA_x1dot,
MSA_y1dot,
MSA_ang10,
MSA_ang1dot,
MSA_ang00,
dt,
dx1,
dy1,
MSAdist0,
MSAdist1,
Diff_PVA_MSA0,
Diff_PVA_MSA1,
PVA_sec,
PVAmsec_raw,
PVAmsec,
PVA0_met_time,
PVA0_ang1,
PVA0_dist1,
rategyro0,
rategyro1,
PVA1_dist0,
PVA1_ang10.

Massachusetts Institute of Technology 22 Dept of Aeronautics and Astronautics

EMFFORCE OPS MANUAL Space Systems Product Development – Spring 2003

Notes:
 The digits 1 or 0 in (e.g.) PVA1_ang10 imply the angle ccw *from* one vehicle
(0 = master or central (NOT necessarily local), 1 = removed (base coordinates are non-
zero).

B.1.3.19 FloatToInt <SJS>
Inputs: none
Outputs/Return: none
Global variables accesses: none
Internal variables: int counter, flag, intvar; float var;
Processes:

Takes a float value, and converts it to a value that can be read as an int.
Determines if the value is positive or negative.
Creates the variable int intvar, which is simply the truncated value of the MSA[]

reference value.
Includes if() statements for all the different possible orders of magnitude and

breaks down the float value into mantissa and exponent.
The float value is converted into a string of sixteen bits where the first number is

the sign of the value (1 for negative, 0 positive), the next twelve for the mantissa, and
the last three for the exponent.

B.1.3.20 BitwiseFun <SJS>
Inputs: none
Outputs: none
Global variables accessed: none
Internal variables: int first_half, second_half, result;
Other references: none
Processes: Bitwise arithmetic is performed to convert the float value into a string of
sixteen bits where the first number is the sign of the value (1 for negative, 0 positive), the
next twelve for the mantissa, and the last three for the exponent.
Notes: none

B.1.3.21 ConvertMSA <SJS>
Inputs: float MSA[]; int result;
Outputs/Return: float MSA[];
Global variables accessed: none
Local variables: int IntMSA[], int i;
Other references: none
Processes: Takes each float value in MSA[] and converts it into a string of 16 bits by

calling the functions FloatToInt() followed by BitwiseFun().
Notes: none

Massachusetts Institute of Technology 23 Dept of Aeronautics and Astronautics

EMFFORCE OPS MANUAL Space Systems Product Development – Spring 2003

B.2 Communications Software (JEU)

B.2.1 Packet Structure
The DR2000 Protocol Packet definition sets the overarching construction of the
communications system packet structure. The DR2000 Protocol, shown in Table 0-A,
defines the packet header, the declaration and allocation of data bytes, and the use of
built-in error checking and correction routines. The communications team created a
virtual network layer for integration of the DR2000 technology directly into the
EMFFORCE project. This layer constructs a system specific network using secondary
headers and TDMA (Time Division Multiple Access)-like timeslots to enhance the
packet definitions hardwired into the DR2000s.

Table B-A: DR2000 Protocol Packet Definition (courtesy of the RFM DR2000 Manual)

Primary Packet Header Data Error Checking
To Address From Address Packet Number Command Length Data Frame Check 1 Frame Check 2

1 Byte 1 Byte 1 Byte 1 Byte 1 Byte n Bytes 1 Byte 1 Byte
0-255 1-255 1-255 3-239 1-255 0-255 0-255 0-255

B.2.1.1 Header
The primary packet header contains information used by the DR2000 communications
transceiver. As per DR2000 Protocol specifications, the packet header contains:

• To Address (one byte)
• From Address (one byte)
• Packet Number (one byte)
• Command (one byte)
• Length (one byte)

For reference, the node assignments for our system are as follows:

• 0x31 Node 1: GUI Ground Station
• 0x32 Node 2: Vehicle 0
• 0x33 Node 3: Vehicle 1
• 0x34 Node 4: Vehicle 2

To Address: The “To Address” tells the DR2000 transceiver which node in the
network to transmit to. The hex value of ‘0x00’ instructs the receiver to broadcast
the packet to all nodes in the network. To transmit to a single node, this value
should be set to the hex value representing that node. For example, in our system
the hex value ‘0x31’ represents node 1 (also ASCII character value ‘1’). This
value is automatically stored in the flash memory of the DR2000.

Massachusetts Institute of Technology 24 Dept of Aeronautics and Astronautics

EMFFORCE OPS MANUAL Space Systems Product Development – Spring 2003

From Address: The “From Address” tells the other nodes which node in the
network sent the packet. Once again, the value must be in hex, with the same
rules regarding the address values applying except for the broadcast value (a
“From” broadcast is meaningless). The “From Address” value also is
automatically stored in the flash memory of the DR2000.

Packet Number: The “Packet Number” header exists for two main reasons.
First, it allows the application layer in the network to keep track of packets
emanating from one source. Second, it allows the error-checking and correction
software to request a repeat of a packet if necessary (the DR2000 supposedly
makes use of an Automatic Repeat Request error-correction routine). Our system
uses packet numbers with decimal values ranging from 48 (ASCII character ‘0’)
to 57 (ASCII character ‘9’). These packet numbers recycle every ten packets.

Command: The “Command” value is currently set at 0x40. The actual function
of the “Command” has not been determined. However, it could be used to
transmit additional information about the packet (similar to a secondary header)
as long as the software is adjusted to interpret the “Command” header. This may
run into problems in the GUI since it uses a specific byte sequence to capture the
desired information.

Length: The “Length” allocates the number of bytes used for the transmitted
data. This value needs to be consistent with the flash packet size required by the
DR2000.

NOTE: The flash packet size is the data length plus 5 (for the header).

B.2.1.2 Secondary headers
Secondary headers provide the functionality of a primary packet header (Please see the
section on the packet header) but are contained within the body of the packet (data bytes).
They are often used to provide information concerning the packet in addition to what is
provided in the primary header. They are particularly useful for transmitting information
about how the data should be interpreted or decoded.

The current system has a single secondary header that is used by the GUI to decide what
information it should record. This header consists of a two-byte sequence of the ASCII
character ‘6’ (54 decimal). When coded, the secondary header appears as:

TSerPutByte(OCHAN, 54);
TSerPutByte(OCHAN, 54);

When a packet enters the serial port of the ground station laptop, the GUI looks for a
predetermined byte sequence. When that byte sequence is found, the GUI truncates the
remainder of the packet and sends the truncated version off for analysis. The secondary
header serves as that predetermined byte sequence.

Massachusetts Institute of Technology 25 Dept of Aeronautics and Astronautics

EMFFORCE OPS MANUAL Space Systems Product Development – Spring 2003

It may be possible to use the “Command” value in the packet header as a secondary
header. Be forewarned that significant problems will arise if the system becomes
unstable and the header bytes are lost (which has happened before).

If the system complexity increases, it will be possible to implement APID (APplication
IDentification) functionality by adding to the secondary header. If multiple packets need
to be transmitted per vehicle per time slot, APIDs can be used to confirm the identity of
the packets being transmitted. Furthermore, APIDs can enable implementation of a
dynamic communications system

B.2.1.3 Data
The current communications system transmits and receives the following data structures:

• Vehicle 1 Primary Vehicle Array (PVA)
• Vehicle 2 PVA
• (optional) Vehicle 3 PVA
• Ground Station Operational Commands

Each Primary Vehicle Array captures the following information:

• The local vehicle metrology data timestamp in seconds
• The local vehicle metrology data timestamp remainder in milliseconds (the rest of

the timestamp after the number of seconds is truncated)
• The distance to the first remote vehicle as measured from the local vehicle
• The angle from the line of sight between the local vehicle and the first remote

vehicle to the local “east” direction
• A timestamp to mark the creation of the local vehicle PVA in seconds
• A timestamp to mark the creation of the local vehicle PVA with the remaining

milliseconds (the rest of the timestamp after the number of seconds is truncated)
• The angular rate of the local vehicle, scaled and type-cast
• The amperage of the first electromagnetic coil of the local vehicle, scaled and

typecast
• The amperage of the second electromagnetic coil of the local vehicle, scaled and

typecast

The addition of a third vehicle into the system generates the following additions to each
PVA:

• The distance to the second remote vehicle as measured from the local vehicle
• The angle from the line of sight between the local vehicle and the second remote

vehicle to the local “east” direction

The Ground Station operational command data structure has not yet been determined.

Massachusetts Institute of Technology 26 Dept of Aeronautics and Astronautics

EMFFORCE OPS MANUAL Space Systems Product Development – Spring 2003

B.2.1.4 Error-checking and correction routines
The DR2000 employs a hardwired error-checking and correction routine known as ARQ,
or Automatic Repeat Request. If a packet arrives in error, ARQ should request from the
sending node that the offending packet be resent. The communications team has so far
been unable to determine whether this function is actually working. To utilize ARQ, the
 packet definition includes two error-checking bytes in Frame Check Sequence
(FCS) or Cyclic Redundancy Check (CRC) format (shown in Table 0-A).

B.2.2 GUI (ESS)
The GUI is simply a Graphic User Interface coded in Labview for the express purpose of
real-time monitoring, control, and data logging of the system. After initialization, the
GUI runs in an infinite loop until an error occurs or the user manually deactivates the
virtual instrument.

B.2.2.1 Initialization
The GUI performs all the necessary functions to initialize the laptop communications port
to receive data from the DR2000. This process is transparent to the user as long as the
default values are used for system constants.

B.2.2.2 String Capture
The GUI waits a user-determined length of time for bytes to accumulate on the serial
port. It then reads them in as a character string. This string is the ASCII interpretation of
the byte data stream output by the DR2000.

B.2.2.3 String Parsing
If the sample time is set properly and the DR2000 is successful in receiving good packets,
each character string will contain at least one good packet. The GUI, using the “match
pattern” virtual instrument, will examine the string until it finds the user-determined
Header Tag. Once the header tag is located, the virtual instrument takes a substring of
user-determined length from the original character string and passes it to the next
function.

• If no header tag is found, an empty string is passed.
• If multiple header tags exist (usually from multiple packets) only the first will be

passed on
• If the number of bytes to be passed exceeds the data available, the rest will be

zeros.

Ideally, one complete data packet will be passed as a character string to the next function.

Massachusetts Institute of Technology 27 Dept of Aeronautics and Astronautics

EMFFORCE OPS MANUAL Space Systems Product Development – Spring 2003

B.2.2.4 Type Conversion
The character string needs to be converted to an unsigned integer array, as this is how it
was passed over the RF link from the vehicle. The high and low bytes are interspersed by
a “for” loop and case function, creating a new array of unsigned integers.

B.2.2.5 Unit Conversion
The variables passed over the communications system RF channel each have a different
“actual” range prior to being scaled to unsigned integers. In order to see real-time data
that makes sense, the scaled unsigned integers need to be converted back to their original
data type and rescaled. This requires a conversion matrix with two columns and n rows,
where n is the length of the integer array: the first is a binary variable that determines
whether or not the variable needs to be converted to a signed variable; the second column
is the scaling factor that converts the recentered integer into an actual float value in the
appropriate units.

As of May 2003, this functionality has not been implemented.

B.2.2.6 Data Logging
The integer array is appended to the end of a spreadsheet file for later analysis.

B.2.3 Communication Procedures
The communications software consists of two main procedures that operate within the
Avionics operating system. The communications system’s responsibilities include:

• Taking in data from the other software modules within the local vehicle’s
operating system

• Encoding the data for transmission
• Transmitting the data to the other network nodes
• Receiving the data from the other network nodes
• Decoding the received data, and
• Outputting the appropriate arrays to the other software modules running within

the operating system of the remote vehicles.

These responsibilities are divided into two procedures: transmit and receive.

B.2.3.1 Transmit
The transmit function takes the local PVA array composed of 16-bit unsigned integers
and packages it into an array of 8-bit high and low bytes for transmission. The high byte
is simply the upper 8-bit chunk of the 16-bit unsigned integer shifted bitwise into byte
format while the low byte is the lower 8-bit chunk of the same 16-bit unsigned integer.

Massachusetts Institute of Technology 28 Dept of Aeronautics and Astronautics

EMFFORCE OPS MANUAL Space Systems Product Development – Spring 2003

For example, let’s suppose we have an unsigned integer of decimal value 20,000. In
binary, this unsigned integer becomes:

0100111000100000

Thus, the low byte is:

00100000

And the high byte is:

01001110

Note that the high byte is the original 16-bit value bit-wise “anded” (‘&’ in C) with
65280 decimal, or:

1111111100000000

And shifted right (‘>’ in C) by 8 bits.

The function then transmits this packaged array through the serial line connecting the
TT8 with the DR2000 transceiver.

NOTE: The nature of the serial connection means that data can only be sent as bytes,
which explains the necessity of packaging the data for transmission.

NOTE: The first bytes to be sent through the serial line to the DR2000 for each packet
must be the five header bytes. If these are not sent through the serial line, the DR2000
will not send the packet.

IMPORTANT: There must be a delay between the transmission of each byte; otherwise
there will be problems with the DR2000’s. The issue seems to be related to the DR2000
internal buffer. Apparently, the TT8 can send bytes to the DR2000 internal buffer faster
than the communications board can read them. This mismatch in throughput will cause
packet collisions. To avoid this problem, we have chosen a delay of 1 millisecond, which
seems to be sufficient to keep the communications system working reliably with a high
data throughput. The use of shorter delays has not yet been tested.

B.2.3.2 Receive
The receive function (aka ‘Fetch’) accepts the data packets from the other network nodes
by grabbing each byte as it appears in the serial line between the TT8 and the DR2000.
As a byte comes into the TT8, it is assigned as an element value in a temporary storage
array (PVA_Remote_Packaged, for example). When all of the data has been collected,
the function converts this array back into a 16-bit unsigned integer array referred to as
one of the PVA_Remote arrays or the GUI_Command array, depending on the source of

Massachusetts Institute of Technology 29 Dept of Aeronautics and Astronautics

EMFFORCE OPS MANUAL Space Systems Product Development – Spring 2003

the data. The other software modules can then retrieve these arrays as needed during the
rest of the operating cycle (see Avionics for a description of the operating system).

B.2.4 Network Structure

B.2.4.1 Node definitions
The communications network node assignments for our system are as follows:

• Node 1: GUI Ground Station
• Node 2: Vehicle 0
• Node 3: Vehicle 1
• Node 4: Vehicle 2

B.2.4.2 Communications cycle
The communications cycle is but one portion of the overall operating system cycle.
Within the communications time slot, each node has a certain amount of time in which to
transmit its data. The breakdown follows in Table 0-B:

Table B.2-B: Communications Cycle Broken Down Into Time Slots

Time slot 1 Time slot 2 Time slot 3 Time slot 4
Node 2 transmit

All others receive
Node 3 transmit

All others receive
Node 4 transmit

All others receive
Node 1 transmit

All others receive

The Ground Station (node 1) communication is considered to be the lowest priority;
hence it transmits last. Any commands sent by the ground station will be implemented in
the next operating system cycle.

Each node broadcasts its data to every other node. Each vehicle requires information
from all the other vehicles in order to make the appropriate control calculations. The
only way to achieve this information flow is for each vehicle to broadcast their PVA.
The command packets can then be directed to one or all of the vehicles. Since the current
operating system allocates a fixed amount of time for each node to transmit, it makes
sense to simply go ahead and broadcast all of the command packets, regardless of which
communications node is the intended recipient.

B.2.4.3 Bandwidth usage
The DR2000s transmit at 57,600 baud, which is 57.7 kbps equivalently. This represents
our system data rate (since only one transceiver can transmit at any given time).

Given the fixed packet size chosen for the current version of the communications system,
we know that we have:

Massachusetts Institute of Technology 30 Dept of Aeronautics and Astronautics

EMFFORCE OPS MANUAL Space Systems Product Development – Spring 2003

• 5 header bytes (40 bits)
• 32 data bytes (256 bits)
• 2 CRC bytes (16 bits)
• 78 start/stop bits (one start bit and one stop bit for each byte sent)

This gives a total of 390 effective bits for one packet.

Our current communications network transmits at most 4 packets per cycle (one
command packet, and at most 3 vehicle PVA packets). This means we transmit 1,560
bits for a cycle with maximum bandwidth usage. Given our system baud rate, we can
calculate the cycle length in milliseconds:

Cycle length =
ond

ms
bits
onds

cycle
bits

sec
1000*sec

∗ (ms)

 = (1560 bits/cycle) * (1/57600 seconds/bits) * (1000 ms / second)
 = 27.08 ms/cycle

Now we can calculate the number of communications cycles we can perform in a second:

Cycles per second =
ms

cycle
ond

ms
083333.27
1*

sec
1000 = 36.92 cycles/sec

B.2.5 DR2000 Communication

B.2.5.1 DR2000 Commands
The DR2000 has several sets of very useful commands that should be kept handy at all
times when dealing with the communications system. To use these commands, use the
Microsoft Windows application HyperTerminal or another suitable serial port program
such as Telix.

THESE COMMANDS ARE CASE-SENSITIVE.

The first set deals with commands for the local DR2000:

• To display the current DR2000 configuration

$$s

This command will cause the serial program to output configuration data that
looks like:

Massachusetts Institute of Technology 31 Dept of Aeronautics and Astronautics

EMFFORCE OPS MANUAL Space Systems Product Development – Spring 2003

• To change the “To Address” (in hex!)

$$TOADhh Valid digits: 0-f (00 – ff)

For reference, the node assignments for our system are as follows:

o 0x31 Node 1: GUI Ground Station
o 0x32 Node 2: Vehicle 0
o 0x33 Node 3: Vehicle 1
o 0x34 Node 4: Vehicle 2

REMEMBER: this value is stored in the flash memory.

• To change the “From Address” (in hex!)

$$FRADhh Valid digits: 0-9, a-f (00 – ff)

For reference, the node assignments for our system are as follows:

o 0x31 Node 1: GUI Ground Station
o 0x32 Node 2: Vehicle 0
o 0x33 Node 3: Vehicle 1
o 0x34 Node 4: Vehicle 2

REMEMBER: this value is stored in the flash memory.

• To change the “Packet Size” (in hex!)

$$SIZEhh Valid digits: 0-9, a-f (01 – ff)

REMEMBER: this value is stored in the flash memory.

The Packet Size value that is stored in the flash is set once. It is not something
that can be changed dynamically due to how the DR2000s are constructed.

Massachusetts Institute of Technology 32 Dept of Aeronautics and Astronautics

EMFFORCE OPS MANUAL Space Systems Product Development – Spring 2003

The second set deals with commands for the remote DR2000s (these commands will
affect the remote DR2000 with the same address as the “To Address” used by the local
DR2000):

• To change the “To Address” (in hex!)

$&TOADhh Valid digits: 0-f (00 – ff)

For reference, the node assignments for our system are as follows:

o 0x31 Node 1: GUI Ground Station
o 0x32 Node 2: Vehicle 0
o 0x33 Node 3: Vehicle 1
o 0x34 Node 4: Vehicle 2

REMEMBER: this value is stored in the flash memory.

To change the “From Address” (in hex!)

$&FRADhh Valid digits: 0-9, a-f (00 – ff)

For reference, the node assignments for our system are as follows:

o 0x31 Node 1: GUI Ground Station
o 0x32 Node 2: Vehicle 0
o 0x33 Node 3: Vehicle 1
o 0x34 Node 4: Vehicle 2

REMEMBER: this value is stored in the flash memory.

• To change the “Packet Size” (in hex!)

$&SIZEhh Valid digits: 0-9, a-f (01 – ff)

REMEMBER: this value is stored in the flash memory.

B.2.5.2 TT8 Serial Settings
The DR2000 connects to the TT8 via one the TT8 TPU Serial lines. The input channel
(receive) is TPU channel 14 and the output channel (transmit) is TPU channel 13.

NOTE: The serial line baud rate MUST be set at 115.2 kbps. The modified DR2000’s are
designed to match an RS232 baud rate of 115.2 kbps.

Massachusetts Institute of Technology 33 Dept of Aeronautics and Astronautics

EMFFORCE OPS MANUAL Space Systems Product Development – Spring 2003

B.3 Metrology Code Overview (OM)
The metrology code is written to handle various interrupts that are triggered by an
internal clock timer and both the IR and ultrasonic receivers. The initialization of the
code begins by defining global variables needed by the metrology system and initializing
the interrupts. After these initial steps the metrology systems goes into an infinite loop
and handles each interrupt.

B.3.1 Version documentation
The version of the code is kept tracked by the variable CODE_VER. This variable is
initialized at the beginning of the code and needs to be updated each time the code is
updated.

B.3.2 Include Files
The following table (Table B.3-A) provides a list of the included files. These files are
needed for many of the TT8 functions to be used.

Table B.3-A: Include Files

File name Library Type
Stdio.h Standard C
math.h Standard C
String.h Standard C
Tt8.h TattleTale Model 8
Tt8lib.h TattleTale Model 8
Tt8pic.h TattleTale Mode 8
tpu332.h TattleTale Model 8
dio332.h TattleTale Model 8
Userio.h TattleTale Model 8

Massachusetts Institute of Technology 34 Dept of Aeronautics and Astronautics

EMFFORCE OPS MANUAL Space Systems Product Development – Spring 2003

Stdlib.h TattleTale Model 8
time.h TattleTale Model 8

B.3.3 Input and Output Channels
The following channels (please refer to Table B.3-B) are defined for integration with the
TT8 and the metrology hardware. The table includes the variable name within the code,
along with a description and the pin number for the TT8.

Table B.3-B: Metrology I/O Channels

Identifier Name/description TT8 Pin Type and #
IR_RECV_CHAN IR receiver in TPU 0
US_RECV_CHAN1 US1 receiver in TPU 1
US_RECV_CHAN2 US2 receiver in TPU 2
US_RECV_CHAN3 US3 receiver in TPU 3
IR_XMT IR transmit TPU 4
US_XMT US transmit TPU 5
US_TIMER_CHAN Sequence timer trigger TPU 6
US_TIMER_RCV Sequence timer receive TPU 7
SendCHAN I/O to avionics TT8 TPU 8

B.3.4 Global Variables
The constants set here in Table B.3-C are used system wide. They identify what vehicle ID,
which is required to determine when in the sequence to pulse IR and US signals. They
also allow for time stamping IR and US signals for distance calculations and for time
stamping the data sent to the avionics TT8.

Table B.3-C: Global Variables

Identifier Name/Description Used in function
vehicle_ID Vehicle identifier main(),
usSeq, usStateSeq Sequence identifier handleUSTimer(),
ArmLength Length of metrology arm xylocation(),
gIRArriveTime, gUSArriveTimeVec, usArriveTimes Timestamp of IR and ultrasonic arrival

times
handleIR(),
handleUSTimer()

GcounterRate Clock Rate main(), handleUSTimer()
gIR_Usdelay Delay time between IR and US transmit handleUSTimer()
PeriodDelay Delay between timing sequences handleUSTimer()
centerDistance,centerAngle Distance and angle to other vehicle handleUSTimer(),

xylocation()
Usdistance Distance from US transmitter of second

vehicle to US receiver
handleUSTimer()

TimeStampIR IR receive timestamp handleIR(),

Massachusetts Institute of Technology 35 Dept of Aeronautics and Astronautics

EMFFORCE OPS MANUAL Space Systems Product Development – Spring 2003

B.3.5 Function Prototypes
Each task of the code is divided into a function. Each function is responsible for a
specific task and is called upon when needed. A list of the function prototypes is
included in Table B.3-D.

Table B.3-D: Function Prototypes

Function name Description
void SetupIRRcv(void) Setup IR receive interrupt
void SetupUSRcv(int CHAN) Setup ultrasonic receive interrupt
void SetupIRXmt(void) Transmit IR
void SetupUSXmt(void) Transmit ultrasonic
void handleIR(void) Handle the IR signal when interrupt is

triggered
void handleUSTimer(void) Handle the US Timer when the interrupt is

triggered
void SetupUSTimer(void) Setup the US Timer
void SetupUSTimerRcv(void) Setup the US Timer receive interrupt
double xylocation(double distanceA, double distanceB,

double distancC, int satNum)
Calculate the distance from center of
vehicle to second vehicle

B.3.6 Metrology Design Overview
The metrology system currently uses data obtained from IR and ultrasonic sensors to
calculate the relative distance and angle of each vehicle. Each vehicle is equipped with
one omni-directional ultrasonic transmitter, three omni-directional ultrasonic receiver,
four omni-directional IR transmitter arrays, and three IR receiver arrays. There are
multiple IR transmitters in case one transmitter has a limited field of view due to other
devices needed on the metrology system. Also, the power of the IR signal is limited to
each IR transmitter, by adding an array of transmitter we are able to guarantee the signal
can reach the receiver of the other vehicles. There are multiple IR receivers because the
receivers do not have a 360° field of view. The three receiver arrays allow us to cover
the full field of view required for the system to work properly. The system then uses the
position of the ultrasonic receivers and the time difference between the IR and ultrasonic
receivers to calculate the relative distance and angle.

The current design of the system uses a Tattletale 8 processor (TT8), which is capable of
handing ultrasonic and infrared transmitters and receivers. All code is written in C,
which is easily uploaded on the TT8 via a serial connection from a PC. The timing
sequence shown in Figure B.3-A was created to map out the sequence of events for the
metrology system.

Massachusetts Institute of Technology 36 Dept of Aeronautics and Astronautics

EMFFORCE OPS MANUAL Space Systems Product Development – Spring 2003

Master
IR Trans

US Trans

US Trans

Slave 2 US Trans

Slave 1

IR Rcv

IR Rcv

Time
(ms)

US Rcv

US Rcv

IR Rcv
US Rcv

0 10 30 50 705 25 45 65

US Timer

usSeq
usStateSeq

0 1 0 1 0 1 0 1

0 0 1 1 2 2 3 3

100

0

4

Figure B.3-A: Metrology System Timing

The first event begins with the master vehicle. Each vehicle is assigned master, slave 1,
or slave 2 prior to the test. This label is available to each vehicle and can be set prior to
each test over the communications port or prior to software load. The master vehicle
emits an IR pulse. Each vehicle then receives the pulse (assumed to be instantaneous
since the speed of light is much greater than the speed of sound) and causes an interrupt
to be triggered on the TT8.

The IR triggered interrupt begins a timer, usTimer, which sets the TPU pin high or low at
given times. When the TPU pin is set high, a second interrupt is triggered causing the
TT8 to do a sequence of events based on timing and vehicle ID. Two counters are used
to track the sequence of events. One counter, usSeq, oscillates between 0 and 1,
switching back and forth each time the timer interrupt is triggered. A second counter,
usStateSeq, increments by 1 each time usSeq resets to 0.

The following flow chart (Figure B.3-B) is followed once each vehicle receives the IR
signal. The first command after the IR is received is to setup the timer, usTimer, to
initiate the next interrupt in 5ms. It also initializes the counters, usSeq and usStateSeq, to
zero. Following that, it enters a loop, allowing two separate events to occur depending on
the value of usSeq.

Massachusetts Institute of Technology 37 Dept of Aeronautics and Astronautics

EMFFORCE OPS MANUAL Space Systems Product Development – Spring 2003

Start IR Rcv
 Setup US Timer

5 ms
usSeq = 0

usStateSeq = 0

1

0

usSeq
= 1

2

Yes

No

Figure B.3-B: Beginning Coding Sequence

When usSeq is zero, the following events occur (as seen in Figure B.3-C). The first check
is to determine if the vehicle is in the beginning of the sequence (usStateSeq < 3) or the
end. If usStateSeq is less than three, the vehicle then reads in the US receiver data. This
data is the time stamp of the US signal arriving to the receiver, later used to determine the
distance of the US signal. Following this, the code then checks to see if the state and
vehicle ID match. If this is the case, the vehicle prepares to transmit an US pulse,
otherwise it prepares to receive a US signal. Next, it resets the usTimer to initiates the
next interrupt 15ms later. Finally, it increments usSeq by one and restarts the loop.

If the state is greater than three, a separate group of events occur. In this case usStateSeq
and usSeq are reinitialized to zero. Next, a check occurs to see if the vehicle is the
master. If this is the case, an IR pulse is emitted. The code then restarts the loop
(including restarting the entire timing sequence).

usStateSeq =
vehicle ID0 usStateSeq° 0 Setup

US Rcv

Setup
US Xmt

Read
US Rcv

Setup
US Timer

15 ms

usSeq = 1

2

Yes

Yes
No

No

usSeq = 0 usStateSeq
 = 0 IR Xmt

usStateSeq < 3

No

Yes

VehicleID = 0
Yes

No

Figure B.3-C: Loop for usSeq = 0

When usSeq is set to one, the following events occur (as seen in Figure B.3-D). The
highest priority task in the loop is the transmission of the US signal. This event is the
first that takes place, with only a simple check to see if the vehicle is required to emit a
US signal at that instant in the sequence. After that check, a second check is made to

Massachusetts Institute of Technology 38 Dept of Aeronautics and Astronautics

EMFFORCE OPS MANUAL Space Systems Product Development – Spring 2003

identify the location within the timing sequence. If the sequence corresponds to a
usStateSeq of less than three, the US timer is reset to 5 ms, usSeq is reinitialized to zero,
and the code is looped to the beginning. If this not true, corresponding to the end of the
US transmissions, the distance is calculated and sent to the main processor. In addition,
the IR receiver is setup to receive another signal and the US timer is reset to 30 ms (to
ensure the next IR signal is sent at 100ms). Finally, usSeq is reinitialized, and the loop is
restarted.

usStateSeq =
vehicle ID1 US Xmt usStateSeq <

3

Setup
US Timer

5 ms

Setup
US Timer

30 ms

Dist Calc
Construct PVA usSeq = 0

2

No

NoYes

Yes

usStateSeq =
3

Send
Data

Setup
IRRcv

Yes

No

Figure B.3-D: Loop for usSeq = 1

B.3.7 Distance Determination Code

As a result of the transmitter and receiver code, each sensor will have a distance to each
(3 sensors x 2 vehicles = 6 distances). These distances will then help the vehicle to
determine a distance and angle from center of the vehicle sending the signal to the center
of itself. The following algorithm is then used to determine the distance and angle. This
algorithm is depicted graphically in Figure B.3-E.

Since only two sensors are needed to determine the two unknowns (distance, r, and angle,
θ) the two sensors that read the closest distance are used. By eliminating the third sensor
we are able to get an initial idea of where the signal came (reducing the signal origin to a
certain range). A temporary frame of reference is set to the two sensors, with the origin
at one sensor and the second sensor (x0,0) away. Since the distance is know to each
sensor, you can determine the coordinates of the originating signal relative to the
temporary frame. Once that coordinate is determined, the frame is then rotated and
translated so that the frame of reference is centered at the center of the vehicle. The
coordinates are the converted from Cartesian to polar so that an r and θ are known.

Start Determine 2
closes sensors

 Calculate coordinates
in sensor frame

Rotate and translate
to body frame

 Calculate distance
and angle End

Massachusetts Institute of Technology 39 Dept of Aeronautics and Astronautics

EMFFORCE OPS MANUAL Space Systems Product Development – Spring 2003

A

B C

d1
d2

x2

y

x
A C

x 2 + y 2 = d1
2

(x − x2)2 + y 2 = d2
2

x = x2
2 + d1

2 − d2
2

2x2

y = d1
2 − x 2

A

B C

Figure B.3-E: Distance Determination Sequence

B.3.8 Metrology Software: Modules
Main() The main function initializes the system to run. After printing out

information (version number and the date and time compiled), the
system runs into an infinite loop. To exit the loop, the avionics
TT8 needs to send a start byte, which is a single byte containing
the vehicle ID.

Next, the code then enables the interrupts (IR receive and the clock
timer). Following this, it sends the first IR pulse (if the vehicle is
the master vehicle). Then it enters an infinite loop and just handles
all interrupts.

SetupIRXmt() This function transmit the IR pulse. It uses the standard embedded

function QOM. QOM is defined in the TT8 users guide.

SetupUSXmt() This function prepares to transmit the ultrasonic pulse. The line of

code that is commented out, enables the channel. This is needed to
send the signal to pulse. The function uses the standard embedded
function QOM. QOM is defined in the TT8 users guide.

SetupIRRcv() This function prepares the IR receiver. The function uses the

standard embedded function ITC. ITC is defined in the TT8 users
guide. This allows the signal to trigger an interrupt (handleIR).

Massachusetts Institute of Technology 40 Dept of Aeronautics and Astronautics

EMFFORCE OPS MANUAL Space Systems Product Development – Spring 2003

SetupUSRcv() This function prepares the ultrasonic receiver. The function uses
the standard embedded function ITC. ITC is defined in the TT8
users guide.

handleIR() This function is used when the IR pulsed is received. The IR pulse

triggers an interrupt that calls handleIR(). The function
timestamps the IR pulse by calling a standard TT8 function
StopWatchTime() (this allows us to timestamp the data for use later
on in data analysis). It then initiates the timing sequence (US
timer) that will initiate the events described in the software design.
Finally it clears the IR interrupt, so that an unintended IR signal
won’t trigger the interrupt again (this is re-enabled in a later part of
the code when the next pulse is expected).

SetupUSTimer() This function initiates an timer that will send a pulse at the end of

the timer. This function uses an embedded function QOM. QOM
is defined in the TT8 users guide.

SetupUSTimerRcv() This function prepares the IR receiver. The function uses the

standard embedded function ITC. ITC is defined in the TT8 users
guide. This allows the signal to trigger an interrupt
(handleUSTimer).

handleUSTimer() This function handles most of the sequencing and calculating in the

metrology system. The function uses the variables of usSeq and
usStateSeq to keep track where the code is in the sequence of
events. The section on software design describes the order of
events.

xylocation() This function calculates the distance and angle to the center of

vehicle using the data from the three ultrasonic receivers. The
algorithm is described in the software design section.

B.3.9 Calibration Data
The data shown in Figure B.3-F was obtained to calibrate the hardware and correct for any
error in the system. The first test was a distance calibration. In this test the angle was
kept constant and the distance was varied. The graph shows the actual distance from the
transmitter and receiver and the data received from the metrology TT8. The data was
averaged and a standard error was calculated. Error bars are included to show the
deviation between all the points that were averaged.

Massachusetts Institute of Technology 41 Dept of Aeronautics and Astronautics

EMFFORCE OPS MANUAL Space Systems Product Development – Spring 2003

Figure B.3-F: Distance Calibration

The second test was an angle calibration. In this test, the distance is kept constant and the
angle varied (at 30 degree increments). Figure B.3-G shows the actual angle from the
transmitter and receiver and the data received from the metrology TT8. Again, the data
was averaged and a standard error was calculated. Error bars are included to show the
deviation between all the points that were averaged.

Massachusetts Institute of Technology 42 Dept of Aeronautics and Astronautics

EMFFORCE OPS MANUAL Space Systems Product Development – Spring 2003

Figure B.3-G: Angle Calibration

The error between the actual values and the readings can be attributed to the value for the
length of the arm of the metrology system. This value is included in the code and used in
the angle calculation (it is also used for distance). A rough test to see how the length was
critical to the sensitivity to the calculation was done. Although no data was collected, it
was noted that moving the distance of one US receiver up to an inch varied the angle by
up to 12 degrees. More test need to be done to get data on its sensitivity, but it should be
noted that the distance from the center of the system to the ultrasonic sensor (defined as
ArmLength in the code) needs to be accurate.

Massachusetts Institute of Technology 43 Dept of Aeronautics and Astronautics

	B Software Documentation
	B.1 Avionics Software and Operating System Overview – MAS
	B.1.1 Initialization
	B.1.1.1 Version documentation
	B.1.1.2 Constants
	B.1.1.2.1 System Constants and Data Sizes
	B.1.1.2.2 Sensor and Actuator Calibration Constants

	B.1.1.3 Included Files
	B.1.1.4 Input and Output Channels
	B.1.1.5 Function Prototypes
	B.1.1.6 Global Variables

	B.1.2 Main function and Operating System (OS)
	B.1.2.1 Background and Versions
	B.1.2.2 OS Interrupt Timing Cycle (overview and design)
	B.1.2.2.1 Tasks and Limiting Factors
	B.1.2.2.2 Stage Progression
	B.1.2.2.3 Infrared Interrupt
	B.1.2.2.4 Simulated IR
	B.1.2.2.5 Intermediate Adjustments – Small Control Loop
	B.1.2.2.6 Summary of Timing Design

	B.1.2.3 OS Implementation: main() Function and Interrupts
	B.1.2.3.1 OS Initialization
	Create and Initialize Local Variables
	Print ID info
	TPU clock
	IR Interrupt Handler
	Set up actuator PWM outputs
	Initialize RW PWM
	Initialize Tachometer
	Calibrate gyroscope
	Define PITR timer (Small Control Loop)
	Set Up Main Timing Interrupt
	Initialize Main Timing Interrupt
	Initialize Communications I/O
	Initialize Metrology I/O
	Initialize Data Arrays
	Start Avionics Local Timer
	Enter Main Loop
	B.1.2.3.2 OS Main Loop and Interrupts
	Enter Main Loop
	Main Loop Exit Condition
	The Variable int_flag
	The Variables Loop_Stage and Loop_counter
	OS Stage 1 – Wait
	OS Stage 2 – Metrology
	OS Stage 3 – PVA
	OS Stage 4 - Comm
	OS Stage 5 - MSA and Control

	B.1.3 Avionics Software: Modules
	B.1.3.1 SmallControlInterrupt
	B.1.3.2 ControlTestCase1 <BB>
	B.1.3.3 MainTimingInt
	B.1.3.4 SetupPWM
	B.1.3.5 DefinePWM
	B.1.3.6 SetupIRInt
	B.1.3.7 IRInterrupt
	B.1.3.8 InitTACH
	B.1.3.9 GetTACH
	B.1.3.10 GetMetroData
	B.1.3.11 GetT
	B.1.3.12 ClearString
	B.1.3.13 CreateLocalPVA
	B.1.3.14 SendH
	B.1.3.15 GetH
	B.1.3.16 Transmit_PVA
	B.1.3.17 Fetch_PVA
	B.1.3.18 CreateMSA <SJS & MAS>
	B.1.3.19 FloatToInt <SJS>
	B.1.3.20 BitwiseFun <SJS>
	B.1.3.21 ConvertMSA <SJS>

	B.2 Communications Software (JEU)
	B.2.1 Packet Structure
	B.2.1.1 Header
	B.2.1.2 Secondary headers
	B.2.1.3 Data
	B.2.1.4 Error-checking and correction routines

	B.2.2 GUI (ESS)
	B.2.2.1 Initialization
	B.2.2.2 String Capture
	B.2.2.3 String Parsing
	B.2.2.4 Type Conversion
	B.2.2.5 Unit Conversion
	B.2.2.6 Data Logging

	B.2.3 Communication Procedures
	B.2.3.1 Transmit
	B.2.3.2 Receive

	B.2.4 Network Structure
	B.2.4.1 Node definitions
	B.2.4.2 Communications cycle
	B.2.4.3 Bandwidth usage

	B.2.5 DR2000 Communication
	B.2.5.1 DR2000 Commands
	B.2.5.2 TT8 Serial Settings

	B.3 Metrology Code Overview (OM)
	B.3.1 Version documentation
	B.3.2 Include Files
	B.3.3 Input and Output Channels
	B.3.4 Global Variables
	B.3.5 Function Prototypes
	B.3.6 Metrology Design Overview
	B.3.7 Distance Determination Code
	B.3.8 Metrology Software: Modules
	B.3.9 Calibration Data

