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B    Software Documentation 
The software in the EMFF system can be initially grouped by its physical location:  avionics 
software on the avionics Tattletale, metrology software on the metrology Tattletale, and ground 
station software on the EMFF laptop.  The avionics Tattletale (TT8) houses software for 
avionics, communication, and control; the ground station and metrology TT8 computers each 
hold the majority of their own subsystems’ software.  However, in this appendix all software 
(SW) will be grouped by function, or subsystem: “avionics” (B.1) covers all SW on the avionics 
TT8 but does not address communication or the control test module in detail; “communications” 
SW (B.2) includes the communications modules on the avionics Tattletale and all ground station 
SW; “metrology” includes all SW on the metrology TT8; “control” (B.4) includes specific 
information on translating control test algorithms to C source code and integrating them into the 
avionics software. 

B.1   Avionics Software and Operating System Overview – MAS (p.1-15) 
“Avionics software” is the name for the software package loaded to the avionics Tattletale 
computer.  The avionics software is composed of three parts:  the initialization section, which 
establishes vehicle- or system-wide standards (e.g. number of vehicles), mathematical constants, 
hardware I/O interfaces, and global variables; the main() function, which contains the EMFF 
operating system (OS); and the many separate functions, or modules, which accomplish specific 
tasks relating to timing, control, communication, metrology, or computation. 

B.1.1   Initialization 

B.1.1.1   Version documentation 
The history of the code should be documented in the top section.  CODE_VER is a string 
established here, available at any point in the code for printout during debugging.  Under this are 
notes regarding sections of the avionics code currently undergoing revision. 
 
The version of code to which this document refers is “IT-2A test 3” – or version 3 of Integrated 
Test 2A. 

B.1.1.2   Constants 

B.1.1.2.1   System Constants and Data Sizes 
These constants are important at the entire system level.  They set the identification of the local 
vehicle, the number of vehicles in the system, number of stages in the operating system cycle, 
buffer sizes for incoming communications and metrology data, and sizes of data-holding vectors 
(e.g. PVA, MSA).  Table B-1 lists system and data size constants and where they are used. 
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Table B-1: Avionics System and Data Size Constants 
Identifier Name/Description Used in function Default value? 
VEH_ID Vehicle identification # (0, 1, or 2) MSA, comm code 0 = master 
NUMBER_OF_VEHICLES Number of vehicles in system MSA, comm code 2 = test 2X 
TSBUFSIZE Buffer size for TPU channel (input from 

Metrology TT8 ) 
main(): Comm and Met 
channel initial’n 

256 (B) 

SBUFSIZE Buffer size for serial channel (comm hardware 
= DR2000) 

main(): comm channel 
initialization (only) 

256 (B) 

NUM_OF_STAGES Number of stages in the main OS loop MainTimingInt() 5 for 2-vehicle ops 
IR_Period Sets control pd for *simulated* IR beacon SetupIRInt() 350 (ms) 
METRO_RAW_DATA_LENGTH Storage buffer for incoming met data GetMetroData() 100 (B) 
NUM_MET_DATA_ELEMENTS Sets vector length for collected met data GetMetroData() 12 (elements) 
NUM_PVA_ELEMENTS Sets vector length for PVA CreateLocal PVA() 9 (elements) 
NUM_MSA_ELEMENTS Sets vector length for MSA CreateMSA() 13 (elements) 
RW_PULSE_WIDTH Sets PWM signal width for RW actuation ControlTestcase1(), 

SmallControlInterrupt() 
0.010 (ms) 

C_PULSE_WIDTH Sets PWM signal width for coil actuation ControlTestcase1(), 
SmallControlInterrupt() 

1.0 (ms) 

 

B.1.1.2.2   Sensor and Actuator Calibration Constants  
The second set of constants pertains to the hardware attached to the avionics TT8.  There are 
hardware-specific calibration constants supplied by the manufacturer for the gyroscope, as well 
as variables reserved for calibrating input data from avionics sensors (gyro, tachometer) and 
scaling output data to actuators (reaction wheel, EM coils).  There is also a 10^x scalar in this 
section – x_INTEGER_SCALAR, which is only used to preserve significant figures when 
converting data to integer variable type.  Table B.1.2 lists the sensor and actuator calibration 
constants and where they are used. 
Table B-2: Sensor and Actuator Calibration Constants 
Identifier Name/Description Used in function Default value? 
GYRO_CAL Gyro-specific calibration value SmallControlInterrupt() 2050 (SN33239), 1987 (SN32846) 
GYRO_MAX A/D input calibration value SmallControlInterrupt() 4095 (mV) 
GYRO_MIN A/D input calibration value SmallControlInterrupt() 0 (mV) 
GYRO_ZERO_MAX Gyro-specific calibration value SmallControlInterrupt() 2055 / 1990 
GYRO_ZERO_MIN Gyro-specific calibration value SmallControlInterrupt() 2047 / 1980 
COIL_ONE_SENSOR_ZERO Coil current sensor cal - shift SmallControlInterrupt() 0.0 (Amps, placeholder) 
COIL_TWO_SENSOR_ZERO Coil current sensor cal - shift SmallControlInterrupt() 0.0 (Amps, placeholder) 
COIL_ONE_ACTUATOR_SCALAR Coil current calibration - scale SmallControlInterrupt() 0.625 (mu  Amps, arbitrary) 
COIL_TWO_ACTUATOR_SCALAR Coil current calibration - scale SmallControlInterrupt() 0.625 (mu  Amps, arbitrary) 
COIL_ONE_ACTUATOR_ZERO Coil current calibration - shift SmallControlInterrupt() 50.0 (Amps, central PWM value) 
COIL_TWO_ACTUATOR_ZERO Coil current calibration - shift SmallControlInterrupt() 50.0 (Amps, central PWM value) 
RW_ACTUATOR_SCALAR RWA current calibration - scale SmallControlInterrupt() 20 (no units, 2.6315789 saved?) 
RW_ACTUATOR_ZERO RWA current calibration - shift SmallControlInterrupt() 50.0 (Amps) 
COIL_INTEGER_SCALAR Multiplier converting float to int CreateLocalPVA() 100.0 (dimensionless) 
GYRO_INTEGER_SCALAR Multiplier converting float to int CreateLocalPVA() 10000.0 if rad; 100.0 if deg (d’less) 

 

B.1.1.3   Included Files 
The EMFF uses Tattletale Model 8 (TT8) with C language capabilities.  The avionics code must 
include certain standard and specialized C source files to run on the TT8.  Table B.1.3 lists the 
standard and Tattletale includes and where they can be found in Tattletale reference documents. 
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Table B-3: Included Files 

File name Library Type 
stdio.h Standard C 
Math.h Standard C 
string.h Standard C 
tt8.h TattleTale Model 8 
tt8lib.h TattleTale Model 8 
tpu332.h TattleTale Model 8 
dio332.h TattleTale Model 8 
userio.h TattleTale Model 8 
stdlib.h TattleTale Model 8 
Time.h TattleTale Model 8 

 

B.1.1.4   Input and Output Channels 
The input and output (I/O) pins on the TT8 are explained more fully in the avionics hardware 
section of this document <section 7>.  However, the code labels for all I/O pins are defined at the 
top of the avionics code.  Table B.1.4 lists the EMFF TT8 I/O pins with their variable 
designation and use. 
Table B-4: I/O Channels 

Identifier Name/description TT8 Pin Type and # 
MET_CHAN Metrology (Tx then Rx) TPU 0 
TPU_IR IR beacon timing interrupt count/detection TPU 1 
TPU_TACH_DIR Tachometer direction in TPU 2 
TPU_TACH Tachometer data in TPU 3 
C2_CHAN Coil 2 PWM signal out TPU 4 
RW_CHAN RW PWM signal out TPU 5 
TPU_ML Main Loop timing interrupt count/detection TPU 6 
TPU_ML2 PWM timing signal out TPU 7 
C1_CHAN Coil 1 PWM signal out TPU 8 
COMM_ICHAN Comm (receive) Serial 14 
COMM_OCHAN Comm (transmit) Serial 13 
ADCHAN_GYRO Gyro data in (OBSOLETE?) (previously TPU 0) 
ACTUATOR_STOP OBSOLETE (previously TPU 8) 

 

B.1.1.5   Function Prototypes 
Each specific task of the avionics software is accomplished in a separate function, or module.  
Table B.1.5 lists all function names and the purpose of each.  For a complete treatment of the 
avionics software modules, see section B.1.3. 
 

Table B-5: Function Prototypes (Avionics Software Modules) 
Function name Description 
void SmallControlInterrupt(void) Adjusts attitude control with local feedback between 

metrology data arrivals 
void ControlTestcase1(float MSA[ ]) Executes major control algorithm 
void SetupMainTimingInt(void) Sets up main loop interrupt (channel and recognition) 
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void MainTimingInt(void) Handler for main timing interrupt; changes to next stage 
within OS cycle 

void SetupPWM(int TPU_Chan) Sets up a PWM signal on channel TPU_Chan 
void DefinePWM(int TPU_Chan, float P_width, float 

P_duty) 
Changes attributes of an existing PWM signal 

void SetupIRInt(void) Sets up IR beacon interrupt (channel and recognition) 
void IRInterrupt() Handler for IR beacon interrupt; restarts OS cycle 
void GetMetroData(unsigned short int metrology_data[]) Brings in new data from metrology TT8 
void ClearString(char data[]) Empties a vector of characters 
void GetT(char cs[]) General; retrieves a byte over TPU channel 
void GetH(char data[]) General; retrieves byte over serial channel 
void SendH(char cs[]) General; sends a byte over serial channel 
void CreateLocalPVA(unsigned short int PVA_Local[], 

unsigned short int metrology_data[]) 
Pulls together local metrology and gyro/coil data into 
Primary Vehicle Array (PVA) 

void Transmit_PVA(unsigned short int PVA_Local[], int 
PacketNumber, unsigned short int 
PVA_Local_Packaged) 

Packages local PVA for transmission and sends over RF 
channel through DR2000 

void Fetch_PVA(unsigned short int PVA_Remote[], 
unsigned short int PVA_Remote_Packaged) 

Brings in remote PVA from RF channel through DR2000 
and unpackages 

void CreateMSA(float MSA[], unsigned short 
PVA_Local[],unsigned short PVA_Remote) 

Combines all PVA data into MSA 

void FloatToInt(void) Casts a float as an int, saving X significant figures 
int  BitwiseFun(void) Bitwise arithmetic needed to cast float as int 
void ConvertMSA(float MSA[], int result) Converts the real-number MSA to int form for transmit 
void InitTACH(void) Initializes tachometer  
float GetTACH(void) Polls tachometer for data 

 

B.1.1.6   Global Variables 
EMFF avionics code does use global variables.  Global variables are unavoidable when 
programming the TT8 using interrupts (see section B.1.2 for explanation).  Table B.1.6 lists and 
identifies the avionics global variables and notes the functions that use each.  In the avionics 
software, global variables are grouped according to the functions that use them.  NOTE: 
“unsigned short” implies type int.   
 

 

 

 

Table B-6: Global Variables 
Type Identifier Name/description Used in function(s) Initial value? 
int flag_cmd N/A  1 
int testbit N/A  0 
int loop_counter index for OS stage count main, MainTimingInt 0 
int loop_stage holds actual OS stage  main, MainTimingInt 0 
int loop_order [NUM_OF_STAGES] order/numbers of OS stages MainTimingInt {1,2,3,4,5} 
int stage_length [NUM_OF_STAGES] vector with MainTimingInt 

timeout for each OS stage 
main, MainTimingInt (100,200,300, 

400,500) 
int int_flag interrupt flag main, MainTimingInt 1 
int inner_loop_counter gyro calibration counter main 0 
int gyro_new_cal gyro calibration value main, SmallControlInterrupt 0 
ExcCFrame framebuf0 framebuf1 framebuf2 standard buffers InstallHandler(…) [standard]  
int Packet_Number packet ID number Transmit_PVA, Fetch_PVA 48 (ASCII A) 
unsigned 
short 

PVA_Local [NUM_PVA_ELEMENTS] Primary Vehicle Array vector 
(for comm transmission) 

CreateLocalPVA, CreateMSA, 
Transmit_PVA, Fetch_PVA 

N/A 

unsigned 
short 

PVA_Remote [NUM_PVA_ELEMENTS] Primary Vehicle Array vector 
(for comm transmission) 

CreateLocalPVA, CreateMSA, 
Transmit_PVA, Fetch_PVA 

N/A 

unsigned PVA_Local_Packaged PVA_Local formatted into Transmit_PVA, Fetch_PVA N/A 
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short [NUM_PVA_ELEMENTS*2] bytes for comm trans 
unsigned 
short 

PVA_Remote_Packaged 
[NUM_PVA_ELEMENTS*2] 

PVA_Remote formatted into 
bytes for comm trans 

Transmit_PVA, Fetch_PVA N/A 

     
float c_rw_voltage commanded RWA voltage SmallControlInterrupt, 

ControlTestcase1 
0.0 

float cmd_PWM RW cmmanded PWM signal SmallControlInterrupt, 
ControlTestcase1 

N/A 

float c_current1 commanded current coil 1 SmallControlInterrupt, 
ControlTestcase1 

0.0 

float c_current2 commanded current coil 2 SmallControlInterrupt, 
ControlTestcase1 

0.0 

float a_current1 actual current reading coil 1 SmallControlInterrupt, 
ControlTestcase1 

0.0 

float a_current2 actual current reading coil 2 SmallControlInterrupt, 
ControlTestcase1 

0.0 

     
float c_torque commanded torque, rad/s SmallControlInterrupt 0 
float theta_int theta … radians SmallControlInterrupt 0.0 
float theta angle – radians SmallControlInterrupt 0.0 
float(?) t_now formerly ulong SmallControlInterrupt 0 
float(?) t_last formerly ulong SmallControlInterrupt 0 
float(?) dt formerly ulong SmallControlInterrupt 0 
float thetadot angular rate - rad/s SmallControlInterrupt 0 
float desired_theta_now desired angle, Test 1B only SmallControlInterrupt 0 
float desired_theta_last desired angle, Test 1B only SmallControlInterrupt 0 
float old_tach smooth out tach data SmallControlInterrupt 0 
int all_stop = 1  indicates all actuators off OBSOLETE 0 
     
float num holds element of MSA CreateMSA (?) N/A 
int sign neg = 1; pos = 0 FloatToInt N/A 
int mantissa base, float number FloatToInt N/A 
int exponent exponent, float number FloatToInt N/A 

* the “unsigned short int” variable type is necessary for any variable which will be transmitted 
over the RF channel – that is, which is handled by the comm subsystem.  Therefore the PVA data 
must be formatted such that it can be expressed in type int without losing any significant digits.  
See B.1.3.14, Create_Local_PVA() for more information on this typecasting and formatting. 
 

B.1.2   Main function and Operating System (OS) 

B.1.2.1   Background and Versions 
The operating system (OS) of the EMFF avionics went through several iterations before it was 
actually written.  We tried to design a simple system with loops and a linear progression, but 
eventually learned that the tasks the OS had to accomplish were too complex to handle without 
using interrupts.  We also looked at event-based interrupts, which we felt were more appropriate 
than timing-based interrupts, but found this to be too flaky when used on its own.  So the OS that 
was finally coded, in January 2003, is both timed and event-driven – the driving event is the IR 
beacon from the metrology system.  However, when testing before integration or without 
metrology, there is another time-based interrupt set to simulate the IR.  This is explained in 
greater detail in the following section (B.1.1.2, OS Interrupt Timing Cycle).  For a top-level 
diagram of the avionics software task progression, see Figure B-1: Overall Avionics Software 
Flowchart. 
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Figure B-1: Overall Avionics Software Flowchart 

 
The version of code documented in this Appendix is “IT-2A Version 3” – used throughout April 
and May 2003 on the EMFF vehicle(s).  There is some documentation recording the evolution of 
the code through this version at the top of the C source file.  Later versions (as of May 2003 
there are “4” and “5”) begin the reorganization of the main code – including simplifying the 
main thread and deleting extraneous sections and commands as well as streamlining modules.  
The plan is for versions 4 and 5 of IT-2A to be incorporated into future tests (e.g. IT-2B, 2C, 
2D). 
 
The specific file to which all examples are referenced in this document is as follows: 
Metrowerks CodeWarrior Project “Main Project Codev5 2A with MSA test.mcp” 
… linked at this time to  
“Main_Code_v3_IT-2A_29APR2003_TEST_modified_for_if_metro_doesnt_work.c” 
(May 1, 2003.  no explanation why the Project version says 5 while the code version is still 3.) 
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B.1.2.2   OS Interrupt Timing Cycle (overview and design) 

B.1.2.2.1   Tasks and Limiting Factors 
The high-level tasks of the operating system are the following: 

 
1. Collect data on vehicle position/motion (local data) (“Primary Vehicle Array” or PVA) 
2. Communicate local data to other vehicles and gather remote data from other vehicles 
3. Combine all data into Master State Array (MSA) 
4. Run control algorithm on MSA data 
5. Implement output from control algorithm by commanding actuators (coils and reaction 

wheel) 
 
All of the above tasks must happen in a single cycle of the OS.  There are two main limiting 
factors on length of the OS cycle: the frequency of updates required to run the control algorithm 
successfully (high end) and the rate at which metrology can supply new data (low end).  The 
speed of the computer is not a limiting factor; when using interrupts, the CPU and TPU capacity 
is more than sufficient to run at the speed required by control.   
 
The speed of the communication subsystem (transmission over the RF channel among multiple 
vehicles and a ground station) is also a factor, but the communication subsystem is not fully 
implemented in the code documented here, so its limits are not yet certain.  For more on comm, 
see section 2 in this Appendix. 

B.1.2.2.2   Stage Progression 
The avionics software main function is broken up into stages.  Theoretically, each high-level task 
in the OS is addressed in one stage of the function.  The time allotted to complete each stage is 
determined by an “inner loop” interrupt.  The timing of the interrupt is determined by the global 
integer variable stage_length[NUM_OF_STAGES] – defined at the top of the code as a vector 
containing the length of each OS stage in milliseconds.  If any one high-level task times out, the 
OS proceeds to the next stage.  For example, if there is an error bringing in metrology data, 
rather than waste time (causing further drift) the OS will proceed through the stages anyway, and 
extrapolate the control input at the final stage using metrology data from the previous cycle.   

B.1.2.2.3   Infrared Interrupt 
To optimize accuracy, the five stages of the OS should run every time fresh local data is 
available from the metrology subsystem.  Therefore the system timing is driven by an interrupt 
based on the infrared (IR) beacon flash from the metrology Tattletale (TT8), which signals a new 
metrology data-gathering cycle.  The input pin through which avionics TT8 receives the IR 
signal from metrology TT8 is TPU channel 1. 

B.1.2.2.4   Simulated IR 
The avionics TT8 is also set up to run a simulated IR interrupt when the metrology subsystem is 
not available or when debugging the avionics subsystem in an isolated environment.  The 
standard simulated IR cycle length is defined to be 350ms (#define IR_Period, see Table 1) but 
may be adjusted according to need while testing. 

B.1.2.2.5   Intermediate Adjustments – Small Control Loop 
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Since the main loop is set to run on the order of <5Hz based on the metrology subsystem, there is 
a substantial amount of time for drift to occur between arrivals of fresh metrology data.  To 
ensure that the system does not drift beyond the point of recovery, more frequent adjustments are 
made to local vehicle control using measurements taken from the gyroscope on board each 
vehicle.  This “Small Control Loop” (SCL) is run on a timed interrupt approximately every 100 
ms.  For sequence and details of the SCL, refer to section 1.3 (Modules), under 
SmallControlInterrupt(). 

B.1.2.2.6   Summary of Timing Design 
The process developed in January 2003 approximately follows the overall timing cycle shown in 
Figure B-2. 

 
Figure B-2: Operating System Timing Cycle 

For a short time at each SCL interrupt the processor executes attitude adjustments using the gyro 
data.  metrology data collection, RF communication, and main control execution all occur at 
each IR interrupt.   NOTE: In reality the period on the SCL is not exactly 100ms; therefore there 
is no simultaneous interrupt at multiples of 700ms.   

B.1.2.3   OS Implementation:  main() Function and Interrupts 
When the avionics TT8 is powered up, it runs through the avionics initialization code (B.1.1) and 
then enters the OS proper in the main() function. (see Figure B-1 in section B.1.2.1).  The 
main() function contains initialization of all interrupts (IR, main timing, and small control 
loop), hardware, pulse width modulated (PWM) signals, and data arrays. 
 

B.1.2.3.1   OS Initialization 
Figure B-3 follows the thread of operations in the main() function through this initialization 
process and the entrance to the OS loop. 
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Figure B-3: OS Initialization Sequence 

 

Create and Initialize Local Variables 
Aside from the global variables noted in section B.1.1.6 (Table B-6), the avionics code utilizes 
many variables local to the main function.  Table B-7 lists the local main() function variables 
and their significance.   
Table B-7: Local Variables, main() Function 
Type* Identifier Name/description Initial value? 
float cal_loop counter for gyro calibration loop 2 
int temp_cal_var used in gyro calibration - 
int i loop counter – PVA debug 0 
unsigned char done exit condition for main loop 0 
char data[257] debug for comm – OBSOLETE NULL 
int met_stillopen test MET_CHAN close Tx - before reopen Rx 1 
unsigned short int metrology_data 

[NUM_MET_DATA_ELEMENTS] 
vector to hold incoming metrology data {0} 

unsigned short int PVA_Local 
[NUM_PVA_ELEMENTS] 

holds PVA data for local vehicle (1, or A) {0} 

unsigned short int PVA_Remote 
[NUM_PVA_ELEMENTS] 

holds PVA data for remote vehicle (2, or B) {0} 

unsigned short int PVA_C[NUM_PVA_ELEMENTS] holds PVA data for third vehicle - FUTURE {0} 
float MSA[NUM_MSA_ELEMENTS] holds MSA information for ControlTestcase1 {0} 
int result called by ConvertMSA(MSA, result) 0 
long sammy holds TPU TCR 1 clock value; type long  required by 

TT8 function TPUGetTCR1() 
- 

int result1, result2 comm initialization – channel open success - 
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* the “unsigned short int” variable type is necessary for any variable which will be transmitted 
over the RF channel – that is, which is handled by the comm subsystem.  Therefore the PVA data 
must be formatted such that it can be expressed in type int without losing any significant digits.  
See B.1.3.14 (Create_Local_PVA()) for more information on this typecasting and formatting. 

Print ID info 
When running the avionics TT8 from Motocross (loading program), it will print identification 
information at the beginning of every run.  It prints the title of the code (not filename), version 
number as defined in the label at the top of the file, and the time/date of the last compilation. 

TPU clock 
The temporary variable “sammy” holds the value returned here from TPUGetTCR1().  More 
information on this function can be found in the Tattletale Model 8 manual, ANSI-C version, 
found online as “TT8C_Man.pdf” in  \\aero-astro\CDIO3\07. Reference\4. Tattletale Manual\ . 

IR Interrupt Handler 
Defining the infrared interrupt includes three function calls:  setting up the interrupt, installing 
the interrupt handler, and enabling the interrupt.  Details about how to use each of these 
functions can be found in the text(s) referenced for each function. 
- SetupIRInt() 
 Reference: section B.1.3.6 (SetupIRInt) 
 NOTE:  The period of the *simulated* IR interrupt (PWM count) is set in this function. 
- InstallHandler(IRInterrupt, TPU_INT_VECTOR + TPU_IR, &framebuf2) 
 References: TT8C_Man.pdf,  section 5 page 17 (InstallHandler) 
         section B.1.3.7 (IRInterrupt) 
- TPUInterruptEnable(TPU_IR) 
 Reference: TT8C_Man.pdf,  section 5 page 42 
 

Set up actuator PWM outputs 
The system actuators (reaction wheel and two superconducting coils) are commanded by the 
control algorithm using a pulse-width modulated (PWM) signal – which is put out through the 
avionics TT8.  Refer to section 1.3.x (SetupPWM) for more detailed information.  The PWM 
signal itself is monitored by the TT8 TPU – for more information on this process, see the specific 
TPU reference manual “tpupn17 – PWM Function.pdf” in  
\\aero-astro\CDIO3\07. Reference\4. Tattletale Manual\App Notes\ . 
 

Initialize RW PWM 
The reaction wheel PWM signal is specifically initialized to a 50% duty cycle immediately after 
the channel is set up.  This is the “zero” setting for the reaction wheel.  It is this opinion of this 
EMFFORCER that there should also be initialization commands to re-define the PWM for each 
coil – and that since we had not yet powered up the coils at this version of the test we had not 
included those commands.  However, please note that this is speculation. 

Initialize Tachometer 
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Simply calls the InitTACH() function.  For more information refer to B.1.3.x (InitTACH). 

Calibrate gyroscope 
The gyroscope is calibrated by running a 90-rep loop that incorporates the new value into the old 
values.  It changes the global variable gyro_new_cal using the local variables temp_cal_var 
and cal_loop.  For details on the function used to access the gyro reading), refer to 
TT8C_Man.pdf, section 5, page 10 (AtoDReadMilliVolts). 

Define PITR timer (Small Control Loop) 
The Small Control Loop (SCL) runs on an interrupt different from that which governs the Main 
Timing and Infrared interrupts.  The periodic interrupt timer (PITR) is an ultra-fast timer 
available on the TT8 which runs separately from the main thread.  Since the SCL must interrupt 
with the highest frequency, it is set using this timer.  The PITR is mentioned on pages 6-20 and 
5-17 in TT8C_Man.pdf.   

Set Up Main Timing Interrupt 
The Main Loop (ML) Timing Interrupt governs the length of each stage of the OS.  Functions 
used to set up the  
- SetupMainTimingInt() 
 Reference: section B.1.3.x (SetupMainTimingInt) 
 NOTE:  The *counter* PWM signal is started in this function.  We set a signal to fire 
every millisecond through pin TPU_ML2, and tie that pin to TPU_ML – through which we count 
the pulses, thereby incrementing the timer for the Main Timing and *simulated* IR interrupts. 
- InstallHandler(MainTimingInt, TPU_INT_VECTOR + TPU_ML, &framebuf1) 
 References: TT8C_Man.pdf,  section 5 page 17 (InstallHandler) 
         section B.1.3.x (MainTimingInt) 
NOTE: This set-up sequence does *not* call “TPUInterruptEnable(TPU_ML)” – because 
that function is called already in MainTimingInt().  The interrupt timeout length (i.e. number 
of pulses counted before int_flag is set) on TPU_ML is set differently depending on which stage 
the OS is in – governed by the global variable stage_length(5). 

Initialize Main Timing Interrupt 
After setting up the main timing interrupt, it is necessary to begin the sequence by running the 
handler:  MainTimingInt().  This does the following: 
- increments global variable loop_counter (from 0, as it was initialized, to 1) 
- sets MainTimingInt timer to stage_length[loop_counter] (stage_length[1] = 100ms) 
- sets int_flag = 1 (TRUE)   
 
When MainTimingInt() returns, the remainder of the initialization process does the 
following: 
- sets int_flag = 1 (TRUE)   (again) 
- resets loop_counter = 0 (for entrance into main loop?) 

Initialize Communications I/O 
Comm I/O initialization includes the following processes: 
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 Reference:  TT8C_Man.pdf,  section 5 page 44 (TSerOpen) 
- Open receive channel - TSerOpen(COMM_ICHAN, …) – with error message 
 Reference:  TT8C_Man.pdf,  section 5 page 44 (TSerOpen) 
- Provide buffer for incoming comm data (Serial input) 
 Reference: TT8C_Man.pdf,  section 5 page 31 (SerSetInBuf) 

Initialize Metrology I/O 
Metrology I/O initialization includes the following processes: 
- Open TT8-TT8 channel to *transmit* - TSerOpen(MET_CHAN, …, OUTP, …) 
 Reference:  TT8C_Man.pdf,  section 5 page 44 (TSerOpen) 
- Send initializing “start byte” to metrology TT8 – “go” command  (doesn’t currently work) 
 Reference:  TT8C_Man.pdf,  section 5 page 45 (TSerPutByte) 
- Close transmit channel – with error message – TSerClose(MET_CHAN) 
 Reference:  TT8C_Man.pdf,  section 5 page 43 (TSerClose) 
- Open TT8-TT8 channel to *receive* - TSerOpen(MET_CHAN, …, INP, …) 
 Reference:  TT8C_Man.pdf,  section 5 page 44 (TSerOpen) 
- Flush metrology input channel to clear out any junk accumulated on initialization 
 Reference:  TT8C_Man.pdf,  section 5 page 43 (TSerInFlush) 

Initialize Data Arrays 
This sequence ensures that the Primary Vehicle Array (PVA) data are set to 0 before they are 
used in the main loop.  The arrays currently initialized here are those used by the comm sequence 
for vehicle 1 in a two-node network (what we have): PVA_Local, PVA_Remote, 
PVA_Local_Packaged, PVA_Remote_Packaged.  The “–Packaged” arrays are the original arrays 
(unsigned short integer, 2 bytes per element) split into bytes for transmission to the comm 
hardware (DR2000) and over the RF channel. 

Start Avionics Local Timer 
The PVA data requires a local timestamp in order to link data for the local vehicle (PVA_Local) 
to the simultaneously collected set of data from other vehicle(s) (PVA_Remote).  This is achieved 
through the TT8 embedded “stopwatch” function.  For more information, refer to 
TT8C_Man.pdf, section 5 page 38 (StopWatchStart()). 

Enter Main Loop 
The next step is to enter the Main Loop – set apart by a “while” loop with exit condition of a 
keystroke.  The main loop is explained in detail in the following section, B.1.2. 
 

B.1.2.3.2   OS Main Loop and Interrupts 
Figure B-4 traces the flow of the OS Main Loop *without* the Small Control Loop interrupts.  
The SCL runs separately on its PITR (periodic interrupt timer) at a higher frequency of interrupt.  
For more information on the SCL, see its module description (B.1.3.x, 
SmallControlInterrupt). 
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Figure 0-4: OS Main Loop Cycle 
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Enter Main Loop 
The “Main Loop” cycle of the OS – containing the functions leading up to execution of the 
control algorithm – is set apart inside a simple “while” loop.  Until the exit condition is met 
(done = 1), the OS continues to address interrupts and cycle through the stages.   

Main Loop Exit Condition 
The exit condition for the main loop is detection of a keyboard hit (reference TT8C_Man.pdf 
section 5 page 18, kbhit()) – but this can only register while testing the avionics code through 
a serial cable to a host PC running Motocross (the TT8 loading program).  When testing the 
avionics code as burned to FLASH memory and disconnected from the PC, the only exit is to 
manually reset the TT8 by pressing its [orange] reset button or cutting power. 

The Variable int_flag 
The global variable int_flag (interrupt flag) triggers entry into the main() function switch/case 
statement, which contains the OS stages in sequence.  Int_flag is… 
- INITIALIZED to 1 at the top of the avionics code 
- SET to 1 in MainTimingInt, which runs both whenever the main timer (on TPU_ML) 
interrupts, or when IRInterrupt runs (when there is an IR beacon flash, or the simulated-IR 
timer on TPU_IR interrupts; IRInterrupt calls MainTimingInt) 
- CLEARED (set to 0) in the main function, immediately after recognition that it was set. 

The Variables Loop_Stage and Loop_counter  
The global variable loop_stage determines which task in the OS cycle is executed next.  After 
clearing int_flag, the next action is to assign a value to loop_stage based on the current value of 
the variable loop_counter.  The global variable loop_counter holds the *index* of the current OS 
stage.  The range of this index is 0-4.  Loop_counter is an index of two vectors: 
- the current stage number (e.g. 3) 

- set of stage numbers is held in the global variable vector loop_order 
- range of stage numbers is 1 to 5 
- stage number = loop_counter + 1 

- the length of time (e.g. 150) allotted for that stage (e.g. 3) before the main timer interrupts  
- set of time lengths is held in the global variable vector stage_length, in milliseconds 
 

OS Stage 1 – Wait 
In the case that the stage number is 1 (this means that loop_counter = 0), the only task of the OS 
is to wait until it receives metrology data.  It appears that this stage is left over from a time when 
the OS cycle restart was to be triggered by the arrival of data from the metrology TT8.  
Regardless,  the avionics system does nothing in this case and returns to the beginning of the 
main OS loop (while(!done)) to check done and int_flag again.   
NOTE: If the main timer interrupts before the process is complete, an error message is printed to 
the screen (when working while connected to a PC running Motocross). 
 

OS Stage 2 – Metrology 
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When the stage number is 2 (loop_counter = 1), the OS checks for metrology data.  This calls the 
following steps: 
- Check to see if the data arrived, i.e., if there is a data byte waiting on the metrology channel 
 Reference: TT8C_Man.pdf, section 5 page 42 (TSerByteAvail(MET_CHAN)) 
- If no data have arrived, print error to screen (only when connected to PC with Motocross) 
- If data are there, bring in the data using GetMetroData(metrology_data). 
 References:  section B.1.3.11 (GetMetroData(metrology_data[])) 
           section B.1.3.12 (GetT(data[])) 
           TT8C_Man.pdf, section 5 page 43 (TSerGetByte()) 
- Return to beginning of main loop; check done and int_flag 
NOTE: If the main timer interrupts before the process is complete, an error message is printed to 
the screen (when working while connected to a PC running Motocross). 

OS Stage 3 – PVA 
When the stage number is 3 (loop_counter = 2), the avionics TT8 must collect a local timestamp, 
local gyro and tach readings, and the metrology data collected in stage 2; then it must format this 
data into unsigned short int type and enter into the PVA_Local vector.  The reason for the 
uniform typecasting is to prepare the data for transmission over the RF channel in the 
communication process.   

Reference: section B.1.3.14 (CreateLocalPVA(PVA_Local[])) 
After this, follow the same procedure: return to beginning of main loop; check done and int_flag 
NOTE: If the main timer interrupts before the process is complete, an error message is printed to 
the screen (when working while connected to a PC running Motocross). 

OS Stage 4 - Comm  
When the stage number is 4 (loop_counter = 3), the avionics TT8 enters the communication 
process.  For the two-node network (one vehicle + ground station (GS), RF transmission from 
vehicle to GS only), this is simple; there is  
- one conditional statement that checks the vehicle ID (if VEH_ID == 0), and proceeds to… 
- transmit or receive accordingly.   
For a multi-vehicle network, the communication algorithm and code is substantially more 
complex; for more comm theory and design refer to section B.2 (Communication Software). 
References: section B.1.3.17 (Transmit_PVA(PVA_Local[], …)) 
After this, follow the same procedure: return to beginning of main loop; check done and int_flag 
NOTE: If the main timer interrupts before the process is complete, an error message is printed to 
the screen (when working connected to a PC running Motocross). 

OS Stage 5 - MSA and Control 
When the stage number is 5 (loop_counter = 4), the avionics TT8 must run two related processes 
sequentially:   
- create the Master State Array (MSA) 
 Reference:  sec B.1.3.19 (CreateMSA(MSA[], PVA_Local[], PVA_Remote[])) 
- run the control test case using that MSA. 
 Reference: Appendix A: Control 
NOTE1: For an expanded system, the comm would handle and log an MSA transmission to the 
ground station (GS) as well as the PVA transmission sequence.  To prepare the MSA for this 
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transmission, it must be typecast all as unsigned short int – which is accomplished through 
ConvertMSA(MSA[], result).  However, this code has not yet been tested on the floor. 
NOTE2: If the main timer interrupts before the process is complete, an error message is printed 
to the screen (when working connected to a PC running Motocross). 
 

B.1.3   Avionics Software: Modules 

B.1.3.1   SmallControlInterrupt  
NOTE:  ALL I/O for the Small Control Interrupt (SCL) is GLOBAL because the function is an 
interrupt handler, which cannot be passed any inputs or return any values. 
Global Variables - Inputs: determined in overall control calculations and only referenced here 

c_speed (commanded RW speed),  
c_current1, c_current2 (commanded current for coils) 

Global Variables – Inputs/Outputs (modified):  
 a_current1, a_current2 (actual current value in coil 1 or 2) 
Other references: 
 TT8 library function AtoDReadMillivolts(ADCHAN_x)  (TT8C_Man.pdf section 5) 
 EMFF function GetTACH()   (section B.1.3.9) 
 TT8 function StopWatchTime()  (TT8C_Man.pdf section 5) 
 Gyro calibration variables and procedures (refer to B.1.2, B.1.1) 
 DefinePWM(inputs)  (B.1.3.5) 
 Defined channels for signal output to each actuator (RW, coil1 coil 2)  (see B.1.1) 
Notes:  

The Small Control Loop interrupts the OS system progress approximately every 100ms 
(based on the PITR timer set in the main() function) to collect data on the actuators and 
compensate for drift in control due to time lag.  It… 

- gathers fresh gyroscope and tachometer data with the most recent (but older than 
gyro/tach) desired actuation levels commanded by control.   

- adjusts the PWM signal put out to the actuators, compensating for control/position drift 
as well as for weakening batteries powering the coils/RW.   

This function is extremely well commented.  See source file  
(“Main_Code_v3_IT-2A_20APR2003_TEST_modified_for_if_metro_doesnt_work.c”) 

for a detailed walkthrough and step-by-step explanation of SCL calculations and commands. 
The StopWatchTime function returns the time in microseconds in variable type ulong, 

but we have changed it temporarily to type float for debugging 
 The coil current sensors are not operational at print time for this document; code 
involving commanded and actual coil current has not been adequately (at all?) tested/debugged 

B.1.3.2   ControlTestCase1  <BB> 
 The purpose of this section is to control the vehicle.  This section is referred to as the big 
control loop because it is where the overall control is calculated.  It differs from the small control 
loop because it updates slower and uses metrology position/attitude data in addition to local gyro 
and tachometer feedback data. 
 First this modules stores all the MSA data into an array.  It then set up some counters, 
constants, and variables.  The most important of these are control_output, input_state, and gains.  
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The array control_output is the output command of the controller.  The array has three values for 
test case 2ab.  The first value is the commanded magnetic moment, mu, for coil 0 -- the coil that 
starts parallel to the fixed coil, the big coil.  The second value is the commanded magnetic 
moment for the other coil, and the last value is the commanded torque for the reaction wheel.  
The input_state array contains six values which are computed from the MSA values mentioned 
above.  The first value is the x distance between the vehicles, the second value is the y distance, 
and the third value is theta.  The last three values are the derivatives of the first three.  For more 
detail on this see the modeling section of Appendix A.  The gains matrix is a matrix that is the 
size of control_output by the size of input_state, in this case 3 by 6.  These values are taken from 
the Control team’s work and constitute the core of the controller for the system.  For more 
information see Appendix A. 
 The next part of this module performs a matrix multiplication of the gains matrix and the 
input_state array.  The results of this multiplication is stored in control_output.  The values of 
control_output are then manipulated to provide commanded current to the coils -- c_current1 and 
c_current2 – and commanded voltage to the reaction wheel.  The conversions for c_current1 and 
c_current2 are straightforward.  The conversion for c_torque is a bit more tricky and is dealt with 
in Appendix A.  

B.1.3.3   MainTimingInt 
Inputs: none 
Outputs/Return: none 
Global variables accessed:  loop_counter, int_flag, stage_length[] 
Other references:  TPU_ML (main loop timing/interrupt pin),  
Processes: 

Increment loop_counter 
Clear the interrupt on TPU_ML 
Set the number of counts TPU_ML should register before next interrupt 
  set number of counts = stage_length[loop_counter] 
Initialize TPU_ML to begin counting again 
Reset int_flag = 1 
Conditional: if this process has run the last stage (loop_counter == NUM_OF_STAGES), 

then the main loop has completed a full cycle before registering an IR interrupt.  At this point 
the TT8 should reset and begin again; instead for debugging purposes simply reset 
loop_counter to 0 (to restart the OS cycle). 

Notes:   
Called as handler for TPU_ML timeout interrupt; *also* called from IRInterrupt (handler 

for TPU_IR interrupt, which happens either from metrology IR or from simulated IR PWM). 
The IR-simulation PWM signal is set up and defined at the beginning of the 

MainTimingInt() module; this code should be commented out when running the avionics 
with metrology connected. 

B.1.3.4   SetupPWM 
Inputs:  int TPU_Chan  
Outputs/Return: none 
Global variables accessed: none 
Other references:  TPU function: PWM  “tpupn17 - PWM Function.pdf” in TT8 App Notes 
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Processes:  Uses process as defined in Motorola spec sheets to set up a pulse width-modulated 
function going out on channel “TPU_Chan” with given period length and duty cycle. 

Notes:  Refer to TT8 app notes for more information on function setup and PRAM offsets. 

B.1.3.5   DefinePWM 
Inputs:  int TPU_Chan, float P_width (milliseconds), float P_duty (percent 0 100)  
Outputs/Return: none 
Global variables accessed: none 
Other references: TPU function: PWM  “tpupn17 - PWM Function.pdf” in TT8 App Notes 
Processes: 

Prints PWM change information to the screen (if hooked to PC running Motocross) 
Conditional: IF NEW PWM DOWN TIME IS LESS THAN 10 ms 
  set new pulse width and percent duty using TPU PWM function 
 ELSE  print error message!   

Notes:  the error message from a down time of *greater* than 10 ms is to limit the *upper* end 
of the  PWM signal.  There is a maximum time that you can set the pulse width (0x8000 [hex]) - 
duty cycle combination, and the conditional checks that. 

B.1.3.6   SetupIRInt 
This function sets up the infrared interrupt receiver (NOT the interrupt handler!) 
Inputs:  none 
Outputs: none 
Global variables accessed: none 
Other references:   

TPU_IR (pin detecting incoming interrupt) 
IR_Period (defined length for simulated IR pulse) 
TPU function: ITC  “tpupn16 - ITC Function.pdf” in TT8 App Notes 

Processes: 
 Uses process as defined in Motorola spec sheets to receive an incoming pulse and register 
as an interrupt.  Basically:  disable chan (TPU_IR)  set function parameters  enable chan. 
Notes:  Refer to TT8 app notes for more information on function setup and PRAM offsets. 

B.1.3.7   IRInterrupt 
This function is the handler for the incoming IR beacon interrupt. 
Inputs: none 
Outputs: none 
Global variables accessed: loop_counter 
Other references:  

TPU_IR (pin detecting incoming IR or simulated IR interrupt) 
TPU_ML (main loop timing/interrupt pin – timeout varies according to OS stage), 
MainTimingInt();  (section B.1.3.3) 
TPUSetInterrupt(channel);  TT8 library function, TT8C_Man.pdf   sec 5 page 40 
TPU_InterruptEnable(channel);   TT8 library function, TT8C_Man.pdf   sec 5 page 42 

Processes:  
Clear IR interrupt and disable it to reset 

 
 
Massachusetts Institute of Technology 18 Dept of Aeronautics and Astronautics 



EMFFORCE OPS MANUAL  Space Systems Product Development – Spring 2003 
 

Reset “loop_counter” to -1.  Necessary because the first action in MainTimingInt is to 
increment loop_counter - since loop_counter is an index it must first refer to the “0th loop.” 

Call MainTimingInt();  which begins the OS cycle at stage 1 (index 0) 
Re-enable the IR interrupt 

Notes: none 

B.1.3.8   InitTACH 
Inputs: none 
Outputs: none 
Global variables accessed: none 
Other references:  

TPU_TACH (digital I/O pin receiving signal/data from tachometer) 
TPU function: FQM  “tpupn03 - FQM Function.pdf” in TT8 App Notes 

Processes:  Uses process as defined in Motorola spec sheets to detect and translate signal coming 
in over pin TPU_TACH.  Defines recognition of signal, initializes and enables channel. 

Notes:  Refer to TT8 app notes for more information on function setup and PRAM offsets. 

B.1.3.9   GetTACH 
Inputs: none 
Outputs: returns type float (tach reading) 
Global variables accessed: old_tach (RW speed detected on previous cycle) 
Local variables: float speed (speed of RW - init to 0.0); int dir (direction of RW spin) 
Other references: 
 TPUGetPin(channel);  TT8 library fuction, TT8C_Man.pdf sec 5 page 41 

TPU_TACH (digital I/O pin receiving signal/data from tachometer) 
TPU_TACH_DIR (digital I/O pin receiving *direction* data from tachometer) 

Processes: 
 Note direction of RW (read TPU_TACH_DIR) 

Read TPU_TACH and convert to RPM or rad/second 
Smooth data - avg with last tach reading (old_tach) 
Return new calculated RW speed as type float. 

Notes: none 

B.1.3.10   GetMetroData 
Inputs: unsigned short int metrology_data[] 
Outputs/Return: (modify metrology_data[]) 
Global variables accessed: metrology_data[] duplicate array in global/local; unresolved!! 
Local variables: raw_data[], int loop (init to 0), numofloop 
Other references:  GetT()  function called to pull in bytes from pin; strlen() C library function 
Processes: 
 Initialize raw data holding array, loop vars 
 Call incoming-data function, GetT.  (fills raw data array with bytes) 
 Converts bytes (char-type elements) of raw data into words (short int), metrology_data[] 
  Does this through a loop that combines every two elements of raw_data into one 
of metrology_data; use “8-bit shift” left to hold places; then express bitwise #as decimal for int. 
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Notes:  Sec. B.1.3.10 describes how this modules *should* proceed.  In fact, at time of print, this 
version of the code has been modified to work without incoming metrology data – so instead of 
using this function to call GetT and work with a data stream off the MET_CHAN TPU pin, we 
set the elements of metrology_data[] to initial values and checked that these values came through 
avionics/comm. correctly during initial debugging of IT-2A. 

B.1.3.11   GetT 
Inputs:  char data[] (uses this because data coming across pin is 1 byte at a time) 
Outputs: (modified raw_data) 
Global variables accessed: none 
Other references: TSerByteAvail and TSerGetByte (TT8C_Man.pdf, section 5) 
Processes:  
 Use the TT8 library functions to pull the bytes coming across the metrology-avionics 
TT8 connection (MET_CHAN = TPU pin number).  Fills raw data array with as many bytes as 
are available.  Flushes input at completion (detects no more bytes available). 
Notes:  This is a reusable function called currently only by GetMetroData 

B.1.3.12   ClearString 
Inputs: char data[] 
Outputs: (modified data[]) 
Global variables accessed none: 
Other references: C library function strlen(array[])  (return string length of array of type char) 
Processes: 
 Empties the string data[]   -   sets all elements to NULL. 
Notes:  This is a reusable function.  Currently *should* be called by GetMetroData to prevent 
excess old data from interfering with new measurements.  In fact it is not used... 

B.1.3.13   CreateLocalPVA 
 - get a timestamp (based on the stopwatch timer started just before entering this mail 
loop) 
 Reference: TT8C_Man.pdf section 5 page 38 (StopWatchTime()) 
- read in local attitude/rate and feedback data from the gyro and tach (hardware local to avionics 
board, not connected to metrology TT8).   
 Reference:  
- convert all variables to the same accepted format (unsigned short int, in preparation for comm 
transmission); this is difficult because the timestamp access function returns an unsigned long-
type value, and the gyro-read function returns a float-type value. 
- enter the timestamp, metrology data and local attitude/rate data into the PVA (PVA_Local). 

B.1.3.14   SendH 
Inputs:  char cs[] 
Outputs:  (array *not* modified) 
Global variables accessed: none 
Other references:  SerPutByte = get byte off serial line (in TT8_Man.c section 5) 
Processes:  Use TT8 library function SerPutByte to transmit a single byte over the *serial* 
channel, the avionics output to the DR2000 communication hardware (hence send”H”).  
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Notes:  There is some confusion over data transmission.  If you try to send more than 1 byte at a 
time, it appears that anything past the first byte is lost (ie.not put on the hardware for 
transmission), 

B.1.3.15   GetH 
Inputs:  char data[] 
Outputs: (modified data[]) 
Global variables accessed: none 
Other references: SerByteAvail, SerGetByte (see SendH descriptions & sec 5 of TT8C_Man.pdf) 
Processes:  Checks to see if a byte is available on the serial channel; then brings it in and stores 
in raw data array.   
Notes: see SendH for complementary function. 

B.1.3.16   Transmit_PVA 
For information on this communication function, see section B.2 Communication Software. 
NOTE:  This replaces the baseline function SendH, which contained no comm. code. 

B.1.3.17   Fetch_PVA 
For information on this communication function, see section B.2 Communication Software. 
NOTE:  This replaces the baseline function GetH, which contained no comm. code. 

B.1.3.18   CreateMSA  <SJS & MAS> 
Variables:  float MSA[], unsigned short PVA_Local[], unsigned short PVA_Remote[]. 
Processes:  

Converts the raw data from PVA_Local[] and PVA_Remote[] from the raw unsigned 
short data to float.  

Check function: ensure that the PVA distances are accurate. 
Previous MSA’s velocities are taken 
Multiply those by dt.  
Whichever PVA distance is closer is chosen for the MSA 

Notes:  Table B-X lists the elements in float MSA(13): 
Table B-8: Elements in the Master State Array (MSA) 

MSA[i] Function 

MSA[0] timestamp for MSA creation 

MSA[1] x position of vehicle 0 

MSA[2] x velocity of vehicle 0 

MSA[3] y position of vehicle 0 

MSA[4] y velocity of vehicle 0 

MSA[5] angle of zero vehicle axis with respect to 0 veh axis  --> frame of reference 

MSA[6] vehicle 0 rate (gyro measurement) 

MSA[7] x position of vehicle 1 
MSA[8] x velocity of vehicle 1 
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MSA[9] y position of vehicle 1 

MSA[10] y velocity of vehicle 1 

MSA[11] angle of 1veh axis with respect to 0 vehicle axis 

MSA[12] 
vehicle 1 rate (gyro measurement) 

 
Local variables used (type float):  

MSA_time,  
MSA_x0,  
MSA_y0,  
MSA_x0dot,  
MSA_y0dot,  
MSA_ang01,  
MSA_ang0dot,  
MSA_x1,  
MSA_y1,  
MSA_x1dot,  
MSA_y1dot,  
MSA_ang10,  
MSA_ang1dot,  
MSA_ang00,  
dt,  
dx1,  
dy1,  
MSAdist0,  
MSAdist1,  
Diff_PVA_MSA0,  
Diff_PVA_MSA1,  
PVA_sec,  
PVAmsec_raw,  
PVAmsec,  
PVA0_met_time,  
PVA0_ang1,  
PVA0_dist1,  
rategyro0,  
rategyro1,  
PVA1_dist0,  
PVA1_ang10. 
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Notes:  
 The digits 1 or 0 in (e.g.) PVA1_ang10 imply the angle ccw *from* one vehicle 
(0 = master or central (NOT necessarily local), 1 = removed (base coordinates are non-
zero). 

B.1.3.19   FloatToInt  <SJS> 
Inputs: none 
Outputs/Return: none 
Global variables accesses: none 
Internal variables:  int counter, flag, intvar;  float var; 
Processes: 

Takes a float value, and converts it to a value that can be read as an int.   
Determines if the value is positive or negative. 
Creates the variable int intvar, which is simply the truncated value of the MSA[] 

reference value. 
Includes if( ) statements for all the different possible orders of magnitude and 

breaks down the float value into mantissa and exponent. 
The float value is converted into a string of sixteen bits where the first number is 

the sign of the value (1 for negative, 0 positive), the next twelve for the mantissa, and 
the last three for the exponent. 

B.1.3.20   BitwiseFun  <SJS> 
Inputs: none 
Outputs: none 
Global variables accessed: none 
Internal variables: int first_half, second_half, result; 
Other references: none 
Processes:  Bitwise arithmetic is performed to convert the float value into a string of 
sixteen bits where the first number is the sign of the value (1 for negative, 0 positive), the 
next twelve for the mantissa, and the last three for the exponent. 
Notes: none 

B.1.3.21   ConvertMSA  <SJS> 
Inputs: float MSA[]; int result; 
Outputs/Return: float MSA[]; 
Global variables accessed: none 
Local variables: int IntMSA[], int i; 
Other references: none 
Processes:  Takes each float value in MSA[] and converts it into a string of 16 bits by 

calling the functions FloatToInt() followed by BitwiseFun(). 
Notes:  none 
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B.2   Communications Software (JEU) 

B.2.1   Packet Structure 
The DR2000 Protocol Packet definition sets the overarching construction of the 
communications system packet structure.  The DR2000 Protocol, shown in Table 0-A, 
defines the packet header, the declaration and allocation of data bytes, and the use of 
built-in error checking and correction routines.  The communications team created a 
virtual network layer for integration of the DR2000 technology directly into the 
EMFFORCE project.  This layer constructs a system specific network using secondary 
headers and TDMA (Time Division Multiple Access)-like timeslots to enhance the 
packet definitions hardwired into the DR2000s. 

 
Table B-A: DR2000 Protocol Packet Definition (courtesy of the RFM DR2000 Manual)  

Primary Packet Header Data Error Checking 
To Address From Address Packet Number Command Length Data Frame Check 1 Frame Check 2 

1 Byte 1 Byte 1 Byte 1 Byte 1 Byte n Bytes 1 Byte 1 Byte 
0-255 1-255 1-255 3-239 1-255 0-255 0-255 0-255 

 

B.2.1.1   Header 
The primary packet header contains information used by the DR2000 communications 
transceiver. As per DR2000 Protocol specifications, the packet header contains: 

• To Address (one byte)  
• From Address (one byte) 
• Packet Number (one byte) 
• Command (one byte) 
• Length (one byte) 

 
For reference, the node assignments for our system are as follows: 

• 0x31 Node 1: GUI Ground Station 
• 0x32 Node 2: Vehicle 0 
• 0x33 Node 3: Vehicle 1 
• 0x34 Node 4: Vehicle 2 

 
To Address: The “To Address” tells the DR2000 transceiver which node in the 
network to transmit to.  The hex value of ‘0x00’ instructs the receiver to broadcast 
the packet to all nodes in the network.  To transmit to a single node, this value 
should be set to the hex value representing that node.  For example, in our system 
the hex value ‘0x31’ represents node 1 (also ASCII character value ‘1’).   This 
value is automatically stored in the flash memory of the DR2000.   
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From Address: The “From Address” tells the other nodes which node in the 
network sent the packet.  Once again, the value must be in hex, with the same 
rules regarding the address values applying except for the broadcast value (a 
“From” broadcast is meaningless).  The “From Address” value also is 
automatically stored in the flash memory of the DR2000. 

 
Packet Number: The “Packet Number” header exists for two main reasons.  
First, it allows the application layer in the network to keep track of packets 
emanating from one source.  Second, it allows the error-checking and correction 
software to request a repeat of a packet if necessary (the DR2000 supposedly 
makes use of an Automatic Repeat Request error-correction routine).  Our system 
uses packet numbers with decimal values ranging from 48 (ASCII character ‘0’) 
to 57 (ASCII character ‘9’).  These packet numbers recycle every ten packets. 

 
Command: The “Command” value is currently set at 0x40.  The actual function 
of the “Command” has not been determined.  However, it could be used to 
transmit additional information about the packet (similar to a secondary header) 
as long as the software is adjusted to interpret the “Command” header.  This may 
run into problems in the GUI since it uses a specific byte sequence to capture the 
desired information. 

 
Length: The “Length” allocates the number of bytes used for the transmitted 
data.  This value needs to be consistent with the flash packet size required by the 
DR2000.   

 
NOTE: The flash packet size is the data length plus 5 (for the header). 

 

B.2.1.2   Secondary headers 
Secondary headers provide the functionality of a primary packet header (Please see the 
section on the packet header) but are contained within the body of the packet (data bytes).  
They are often used to provide information concerning the packet in addition to what is 
provided in the primary header.  They are particularly useful for transmitting information 
about how the data should be interpreted or decoded. 

 
The current system has a single secondary header that is used by the GUI to decide what 
information it should record.  This header consists of a two-byte sequence of the ASCII 
character ‘6’ (54 decimal).  When coded, the secondary header appears as: 
  

TSerPutByte(OCHAN, 54);  
TSerPutByte(OCHAN, 54); 

 
When a packet enters the serial port of the ground station laptop, the GUI looks for a 
predetermined byte sequence.  When that byte sequence is found, the GUI truncates the 
remainder of the packet and sends the truncated version off for analysis.  The secondary 
header serves as that predetermined byte sequence. 
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It may be possible to use the “Command” value in the packet header as a secondary 
header.  Be forewarned that significant problems will arise if the system becomes 
unstable and the header bytes are lost (which has happened before). 

 
If the system complexity increases, it will be possible to implement APID (APplication 
IDentification) functionality by adding to the secondary header.  If multiple packets need 
to be transmitted per vehicle per time slot, APIDs can be used to confirm the identity of 
the packets being transmitted.  Furthermore, APIDs can enable implementation of a 
dynamic communications system 

 

B.2.1.3   Data 
The current communications system transmits and receives the following data structures: 

• Vehicle 1 Primary Vehicle Array (PVA) 
• Vehicle 2 PVA 
• (optional) Vehicle 3 PVA 
• Ground Station Operational Commands 

 
Each Primary Vehicle Array captures the following information: 

• The local vehicle metrology data timestamp in seconds 
• The local vehicle metrology data timestamp remainder in milliseconds (the rest of 

the timestamp after the number of seconds is truncated) 
• The distance to the first remote vehicle as measured from the local vehicle 
• The angle from the line of sight between the local vehicle and the first remote 

vehicle to the local “east” direction 
• A timestamp to mark the creation of the local vehicle PVA in seconds 
• A timestamp to mark the creation of the local vehicle PVA with the remaining 

milliseconds (the rest of the timestamp after the number of seconds is truncated) 
• The angular rate of the local vehicle, scaled and type-cast 
• The amperage of the first electromagnetic coil of the local vehicle, scaled and 

typecast 
• The amperage of the second electromagnetic coil of the local vehicle, scaled and 

typecast 
 

The addition of a third vehicle into the system generates the following additions to each 
PVA: 

 
• The distance to the second remote vehicle as measured from the local vehicle 
• The angle from the line of sight between the local vehicle and the second remote 

vehicle to the local “east” direction 

The Ground Station operational command data structure has not yet been determined. 
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B.2.1.4   Error-checking and correction routines 
The DR2000 employs a hardwired error-checking and correction routine known as ARQ, 
or Automatic Repeat Request.   If a packet arrives in error, ARQ should request from the 
sending node that the offending packet be resent.  The communications team has so far 
been unable to determine whether this function is actually working.   To utilize ARQ, the 
 packet definition includes two error-checking bytes in Frame Check Sequence 
(FCS) or Cyclic Redundancy Check (CRC) format (shown in Table 0-A). 

 

B.2.2   GUI (ESS) 
The GUI is simply a Graphic User Interface coded in Labview for the express purpose of 
real-time monitoring, control, and data logging of the system.  After initialization, the 
GUI runs in an infinite loop until an error occurs or the user manually deactivates the 
virtual instrument. 
 

B.2.2.1   Initialization  
The GUI performs all the necessary functions to initialize the laptop communications port 
to receive data from the DR2000.  This process is transparent to the user as long as the 
default values are used for system constants. 
 

B.2.2.2   String Capture 
The GUI waits a user-determined length of time for bytes to accumulate on the serial 
port.  It then reads them in as a character string.  This string is the ASCII interpretation of 
the byte data stream output by the DR2000.   
 

B.2.2.3   String Parsing 
If the sample time is set properly and the DR2000 is successful in receiving good packets, 
each character string will contain at least one good packet.  The GUI, using the “match 
pattern” virtual instrument, will examine the string until it finds the user-determined 
Header Tag.  Once the header tag is located, the virtual instrument takes a substring of 
user-determined length from the original character string and passes it to the next 
function.   
 

• If no header tag is found, an empty string is passed.   
• If multiple header tags exist (usually from multiple packets) only the first will be 

passed on 
• If the number of bytes to be passed exceeds the data available, the rest will be 

zeros. 
 
Ideally, one complete data packet will be passed as a character string to the next function. 
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B.2.2.4   Type Conversion 
The character string needs to be converted to an unsigned integer array, as this is how it 
was passed over the RF link from the vehicle.  The high and low bytes are interspersed by 
a “for” loop and case function, creating a new array of unsigned integers. 
 

B.2.2.5   Unit Conversion 
The variables passed over the communications system RF channel each have a different 
“actual” range prior to being scaled to unsigned integers.  In order to see real-time data 
that makes sense, the scaled unsigned integers need to be converted back to their original 
data type and rescaled.  This requires a conversion matrix with two columns and n rows, 
where n is the length of the integer array: the first is a binary variable that determines 
whether or not the variable needs to be converted to a signed variable; the second column 
is the scaling factor that converts the recentered integer into an actual float value in the 
appropriate units. 
 
As of May 2003, this functionality has not been implemented. 
 

B.2.2.6   Data Logging 
The integer array is appended to the end of a spreadsheet file for later analysis.   

 

B.2.3   Communication Procedures 
The communications software consists of two main procedures that operate within the 
Avionics operating system.  The communications system’s responsibilities include:  

• Taking in data from the other software modules within the local vehicle’s 
operating system 

• Encoding the data for transmission 
• Transmitting the data to the other network nodes 
• Receiving the data from the other network nodes 
• Decoding the received data, and  
• Outputting the appropriate arrays to the other software modules running within 

the operating system of the remote vehicles.   
 

These responsibilities are divided into two procedures: transmit and receive. 
 

B.2.3.1   Transmit 
The transmit function takes the local PVA array composed of 16-bit unsigned integers 
and packages it into an array of 8-bit high and low bytes for transmission.  The high byte 
is simply the upper 8-bit chunk of the 16-bit unsigned integer shifted bitwise into byte 
format while the low byte is the lower 8-bit chunk of the same 16-bit unsigned integer.  
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For example, let’s suppose we have an unsigned integer of decimal value 20,000.  In 
binary, this unsigned integer becomes: 

 
0100111000100000 

 
Thus, the low byte is: 

 
00100000 

 
And the high byte is: 

 
01001110 

 
Note that the high byte is the original 16-bit value bit-wise “anded” (‘&’ in C) with 
65280 decimal, or: 

 
1111111100000000 

 
And shifted right (‘>’ in C) by 8 bits. 

  
The function then transmits this packaged array through the serial line connecting the 
TT8 with the DR2000 transceiver.  

 
NOTE: The nature of the serial connection means that data can only be sent as bytes, 
which explains the necessity of packaging the data for transmission. 

 
NOTE: The first bytes to be sent through the serial line to the DR2000 for each packet 
must be the five header bytes.  If these are not sent through the serial line, the DR2000 
will not send the packet. 

 
IMPORTANT: There must be a delay between the transmission of each byte; otherwise 
there will be problems with the DR2000’s.  The issue seems to be related to the DR2000 
internal buffer.  Apparently, the TT8 can send bytes to the DR2000 internal buffer faster 
than the communications board can read them.  This mismatch in throughput will cause 
packet collisions.  To avoid this problem, we have chosen a delay of 1 millisecond, which 
seems to be sufficient to keep the communications system working reliably with a high 
data throughput.  The use of shorter delays has not yet been tested. 

  

B.2.3.2   Receive 
The receive function (aka ‘Fetch’) accepts the data packets from the other network nodes 
by grabbing each byte as it appears in the serial line between the TT8 and the DR2000.  
As a byte comes into the TT8, it is assigned as an element value in a temporary storage 
array (PVA_Remote_Packaged, for example).  When all of the data has been collected, 
the function converts this array back into a 16-bit unsigned integer array referred to as 
one of the PVA_Remote arrays or the GUI_Command array, depending on the source of 
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the data.  The other software modules can then retrieve these arrays as needed during the 
rest of the operating cycle (see Avionics for a description of the operating system). 

 

B.2.4   Network Structure 
 
B.2.4.1   Node definitions 
The communications network node assignments for our system are as follows: 

• Node 1: GUI Ground Station 
• Node 2: Vehicle 0 
• Node 3: Vehicle 1  
• Node 4: Vehicle 2 

 

B.2.4.2   Communications cycle 
The communications cycle is but one portion of the overall operating system cycle.  
Within the communications time slot, each node has a certain amount of time in which to 
transmit its data.  The breakdown follows in Table 0-B:  

 
Table B.2-B: Communications Cycle Broken Down Into Time Slots 

Time slot 1 Time slot 2 Time slot 3 Time slot 4 
Node 2 transmit 

All others receive 
Node 3 transmit 

All others receive 
Node 4 transmit 

All others receive 
Node 1 transmit 

All others receive 
 
The Ground Station (node 1) communication is considered to be the lowest priority; 
hence it transmits last.  Any commands sent by the ground station will be implemented in 
the next operating system cycle. 

 
Each node broadcasts its data to every other node.  Each vehicle requires information 
from all the other vehicles in order to make the appropriate control calculations.  The 
only way to achieve this information flow is for each vehicle to broadcast their PVA.  
The command packets can then be directed to one or all of the vehicles.  Since the current 
operating system allocates a fixed amount of time for each node to transmit, it makes 
sense to simply go ahead and broadcast all of the command packets, regardless of which 
communications node is the intended recipient. 

 

B.2.4.3   Bandwidth usage 
The DR2000s transmit at 57,600 baud, which is 57.7 kbps equivalently. This represents 
our system data rate (since only one transceiver can transmit at any given time). 

 
Given the fixed packet size chosen for the current version of the communications system, 
we know that we have: 
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• 5 header bytes (40 bits) 
• 32 data bytes (256 bits) 
• 2 CRC bytes (16 bits) 
• 78 start/stop bits (one start bit and one stop bit for each byte sent) 

 
This gives a total of 390 effective bits for one packet. 

 
Our current communications network transmits at most 4 packets per cycle (one 
command packet, and at most 3 vehicle PVA packets).  This means we transmit 1,560 
bits for a cycle with maximum bandwidth usage.  Given our system baud rate, we can 
calculate the cycle length in milliseconds: 

 

Cycle length = 
ond

ms
bits
onds

cycle
bits

sec
1000*sec

∗  (ms) 

 = (1560 bits/cycle) * (1/57600 seconds/bits) * (1000 ms / second) 
 = 27.08 ms/cycle 
 

Now we can calculate the number of communications cycles we can perform in a second: 
 

Cycles per second = 
ms

cycle
ond

ms
083333.27
1*

sec
1000 = 36.92 cycles/sec 

 

B.2.5   DR2000 Communication 
 

B.2.5.1   DR2000 Commands 
The DR2000 has several sets of very useful commands that should be kept handy at all 
times when dealing with the communications system.  To use these commands, use the 
Microsoft Windows application HyperTerminal or another suitable serial port program 
such as Telix. 

 
THESE COMMANDS ARE CASE-SENSITIVE. 

 
The first set deals with commands for the local DR2000: 

 
• To display the current DR2000 configuration 

 
$$s 

 
This command will cause the serial program to output configuration data that 
looks like: 
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• To change the “To Address” (in hex!) 
 

$$TOADhh  Valid digits: 0-f (00 – ff) 
 

For reference, the node assignments for our system are as follows: 

o 0x31 Node 1: GUI Ground Station 
o 0x32 Node 2: Vehicle 0 
o 0x33 Node 3: Vehicle 1 
o 0x34 Node 4: Vehicle 2 

  
REMEMBER: this value is stored in the flash memory. 

 
 

• To change the “From Address” (in hex!) 
 

$$FRADhh  Valid digits: 0-9, a-f (00 – ff) 
 

For reference, the node assignments for our system are as follows: 

o 0x31 Node 1: GUI Ground Station 
o 0x32 Node 2: Vehicle 0 
o 0x33 Node 3: Vehicle 1 
o 0x34 Node 4: Vehicle 2 

  
REMEMBER: this value is stored in the flash memory. 

 
• To change the “Packet Size” (in hex!) 

 
$$SIZEhh  Valid digits: 0-9, a-f (01 – ff) 

  
REMEMBER: this value is stored in the flash memory. 

 
The Packet Size value that is stored in the flash is set once.  It is not something 
that can be changed dynamically due to how the DR2000s are constructed. 
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The second set deals with commands for the remote DR2000s (these commands will 
affect the remote DR2000 with the same address as the “To Address” used by the local 
DR2000): 

 
• To change the “To Address” (in hex!) 

 
$&TOADhh  Valid digits: 0-f (00 – ff) 

 
For reference, the node assignments for our system are as follows: 

o 0x31 Node 1: GUI Ground Station 
o 0x32 Node 2: Vehicle 0 
o 0x33 Node 3: Vehicle 1 
o 0x34 Node 4: Vehicle 2 

  
REMEMBER: this value is stored in the flash memory. 

 
 

To change the “From Address” (in hex!) 
 

$&FRADhh  Valid digits: 0-9, a-f (00 – ff) 
 

For reference, the node assignments for our system are as follows: 

o 0x31 Node 1: GUI Ground Station 
o 0x32 Node 2: Vehicle 0 
o 0x33 Node 3: Vehicle 1 
o 0x34 Node 4: Vehicle 2 

  
REMEMBER: this value is stored in the flash memory. 

 
• To change the “Packet Size” (in hex!) 

 
$&SIZEhh  Valid digits: 0-9, a-f (01 – ff) 

 
REMEMBER: this value is stored in the flash memory. 

 

B.2.5.2   TT8 Serial Settings 
The DR2000 connects to the TT8 via one the TT8 TPU Serial lines.  The input channel 
(receive) is TPU channel 14 and the output channel (transmit) is TPU channel 13. 

 
NOTE: The serial line baud rate MUST be set at 115.2 kbps. The modified DR2000’s are 
designed to match an RS232 baud rate of 115.2 kbps. 
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B.3   Metrology Code Overview (OM) 
The metrology code is written to handle various interrupts that are triggered by an 
internal clock timer and both the IR and ultrasonic receivers.  The initialization of the 
code begins by defining global variables needed by the metrology system and initializing 
the interrupts.  After these initial steps the metrology systems goes into an infinite loop 
and handles each interrupt.   

B.3.1   Version documentation 
The version of the code is kept tracked by the variable CODE_VER.  This variable is 
initialized at the beginning of the code and needs to be updated each time the code is 
updated. 

B.3.2   Include Files 
The following table (Table B.3-A) provides a list of the included files.  These files are 
needed for many of the TT8 functions to be used.   

 
Table B.3-A: Include Files 

File name Library Type 
Stdio.h Standard C 
math.h Standard C 
String.h Standard C 
Tt8.h TattleTale Model 8 
Tt8lib.h TattleTale Model 8 
Tt8pic.h TattleTale Mode 8 
tpu332.h TattleTale Model 8 
dio332.h TattleTale Model 8 
Userio.h TattleTale Model 8 
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Stdlib.h TattleTale Model 8 
time.h TattleTale Model 8 

 

B.3.3   Input and Output Channels 
The following channels (please refer to Table B.3-B) are defined for integration with the 
TT8 and the metrology hardware.  The table includes the variable name within the code, 
along with a description and the pin number for the TT8. 
 

Table B.3-B: Metrology I/O Channels 

Identifier Name/description TT8 Pin Type and # 
IR_RECV_CHAN IR receiver in TPU 0 
US_RECV_CHAN1 US1 receiver in TPU 1 
US_RECV_CHAN2 US2 receiver in TPU 2 
US_RECV_CHAN3 US3 receiver in TPU 3 
IR_XMT IR transmit TPU 4 
US_XMT US transmit TPU 5 
US_TIMER_CHAN Sequence timer trigger TPU 6 
US_TIMER_RCV Sequence timer receive TPU 7 
SendCHAN I/O to avionics TT8 TPU 8 

 

B.3.4   Global Variables 
The constants set here in Table B.3-C are used system wide.  They identify what vehicle ID, 
which is required to determine when in the sequence to pulse IR and US signals.  They 
also allow for time stamping IR and US signals for distance calculations and for time 
stamping the data sent to the avionics TT8. 

Table B.3-C: Global Variables 

Identifier Name/Description Used in function 
vehicle_ID Vehicle identifier main(),  
usSeq, usStateSeq Sequence identifier handleUSTimer(),  
ArmLength Length of metrology arm xylocation(), 
gIRArriveTime, gUSArriveTimeVec, usArriveTimes Timestamp of IR and ultrasonic arrival 

times 
handleIR(), 
handleUSTimer() 

GcounterRate Clock Rate main(), handleUSTimer() 
gIR_Usdelay Delay time between IR and US transmit handleUSTimer() 
PeriodDelay Delay between timing sequences handleUSTimer() 
centerDistance,centerAngle Distance and angle to other vehicle handleUSTimer(), 

xylocation() 
Usdistance Distance from US transmitter of second 

vehicle to US receiver 
handleUSTimer() 

TimeStampIR IR receive timestamp handleIR(), 
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B.3.5   Function Prototypes 
Each task of the code is divided into a function.  Each function is responsible for a 
specific task and is called upon when needed.  A list of the function prototypes is 
included in Table B.3-D. 
 

Table B.3-D: Function Prototypes 

Function name Description 
void SetupIRRcv(void) Setup IR receive interrupt 
void SetupUSRcv(int CHAN) Setup ultrasonic receive interrupt 
void SetupIRXmt(void) Transmit IR 
void SetupUSXmt(void) Transmit ultrasonic 
void handleIR(void) Handle the IR signal when interrupt is 

triggered 
void handleUSTimer(void) Handle the US Timer when the interrupt is 

triggered 
void SetupUSTimer(void) Setup the US Timer 
void SetupUSTimerRcv(void) Setup the US Timer receive interrupt 
double xylocation(double distanceA, double distanceB, 

double distancC, int satNum) 
Calculate the distance from center of 
vehicle to second vehicle 

 

B.3.6   Metrology Design Overview 
The metrology system currently uses data obtained from IR and ultrasonic sensors to 
calculate the relative distance and angle of each vehicle.   Each vehicle is equipped with 
one omni-directional ultrasonic transmitter, three omni-directional ultrasonic receiver, 
four omni-directional IR transmitter arrays, and three IR receiver arrays.  There are 
multiple IR transmitters in case one transmitter has a limited field of view due to other 
devices needed on the metrology system.  Also, the power of the IR signal is limited to 
each IR transmitter, by adding an array of transmitter we are able to guarantee the signal 
can reach the receiver of the other vehicles.  There are multiple IR receivers because the 
receivers do not have a 360° field of view.  The three receiver arrays allow us to cover 
the full field of view required for the system to work properly.  The system then uses the 
position of the ultrasonic receivers and the time difference between the IR and ultrasonic 
receivers to calculate the relative distance and angle. 
 
The current design of the system uses a Tattletale 8 processor (TT8), which is capable of 
handing ultrasonic and infrared transmitters and receivers.  All code is written in C, 
which is easily uploaded on the TT8 via a serial connection from a PC.  The timing 
sequence shown in Figure B.3-A was created to map out the sequence of events for the 
metrology system. 
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Figure B.3-A: Metrology System Timing 

 
The first event begins with the master vehicle.  Each vehicle is assigned master, slave 1, 
or slave 2 prior to the test.  This label is available to each vehicle and can be set prior to 
each test over the communications port or prior to software load.  The master vehicle 
emits an IR pulse.  Each vehicle then receives the pulse (assumed to be instantaneous 
since the speed of light is much greater than the speed of sound) and causes an interrupt 
to be triggered on the TT8. 
 
The IR triggered interrupt begins a timer, usTimer, which sets the TPU pin high or low at 
given times.  When the TPU pin is set high, a second interrupt is triggered causing the 
TT8 to do a sequence of events based on timing and vehicle ID.  Two counters are used 
to track the sequence of events.   One counter, usSeq, oscillates between 0 and 1, 
switching back and forth each time the timer interrupt is triggered.  A second counter, 
usStateSeq, increments by 1 each time usSeq resets to 0. 
 
The following flow chart (Figure B.3-B) is followed once each vehicle receives the IR 
signal.   The first command after the IR is received is to setup the timer, usTimer, to 
initiate the next interrupt in 5ms.  It also initializes the counters, usSeq and usStateSeq, to 
zero.  Following that, it enters a loop, allowing two separate events to occur depending on 
the value of usSeq.    
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Figure B.3-B: Beginning Coding Sequence 

 
When usSeq is zero, the following events occur (as seen in Figure B.3-C).  The first check 
is to determine if the vehicle is in the beginning of the sequence (usStateSeq < 3) or the 
end.  If usStateSeq is less than three, the vehicle then reads in the US receiver data.  This 
data is the time stamp of the US signal arriving to the receiver, later used to determine the 
distance of the US signal.  Following this, the code then checks to see if the state and 
vehicle ID match.  If this is the case, the vehicle prepares to transmit an US pulse, 
otherwise it prepares to receive a US signal.  Next, it resets the usTimer to initiates the 
next interrupt 15ms later.  Finally, it increments usSeq by one and restarts the loop.   
 
If the state is greater than three, a separate group of events occur.  In this case usStateSeq 
and usSeq are reinitialized to zero.  Next, a check occurs to see if the vehicle is the 
master.  If this is the case, an IR pulse is emitted.  The code then restarts the loop 
(including restarting the entire timing sequence). 

usStateSeq =
vehicle ID0 usStateSeq°  0 Setup 

US Rcv

Setup 
US Xmt

Read 
US Rcv

Setup 
US Timer

15 ms

usSeq = 1

2

Yes

Yes
No

No

usSeq = 0  usStateSeq
 = 0 IR Xmt

usStateSeq < 3

No

Yes

VehicleID = 0
Yes

No

Figure B.3-C: Loop for usSeq = 0 

 
When usSeq is set to one, the following events occur (as seen in Figure B.3-D).  The 
highest priority task in the loop is the transmission of the US signal.  This event is the 
first that takes place, with only a simple check to see if the vehicle is required to emit a 
US signal at that instant in the sequence.    After that check, a second check is made to 
 
 
Massachusetts Institute of Technology 38 Dept of Aeronautics and Astronautics 



EMFFORCE OPS MANUAL  Space Systems Product Development – Spring 2003 
 

identify the location within the timing sequence.  If the sequence corresponds to a 
usStateSeq of less than three, the US timer is reset to 5 ms, usSeq is reinitialized to zero, 
and the code is looped to the beginning.  If this not true, corresponding to the end of the 
US transmissions, the distance is calculated and sent to the main processor.  In addition, 
the IR receiver is setup to receive another signal and the US timer is reset to 30 ms (to 
ensure the next IR signal is sent at 100ms).  Finally, usSeq is reinitialized, and the loop is 
restarted. 

usStateSeq =
vehicle ID1 US Xmt usStateSeq <

3

Setup 
US Timer

5 ms

Setup 
US Timer

30 ms

Dist Calc
Construct PVA usSeq = 0

2

No

NoYes

Yes

usStateSeq =
3

Send
Data

Setup
IRRcv

Yes

No

Figure B.3-D: Loop for usSeq = 1 

 

B.3.7   Distance Determination Code 

As a result of the transmitter and receiver code, each sensor will have a distance to each 
(3 sensors x 2 vehicles = 6 distances).  These distances will then help the vehicle to 
determine a distance and angle from center of the vehicle sending the signal to the center 
of itself.  The following algorithm is then used to determine the distance and angle. This 
algorithm is depicted graphically in Figure B.3-E. 
  
Since only two sensors are needed to determine the two unknowns (distance, r, and angle, 
θ) the two sensors that read the closest distance are used.  By eliminating the third sensor 
we are able to get an initial idea of where the signal came (reducing the signal origin to a 
certain range).  A temporary frame of reference is set to the two sensors, with the origin 
at one sensor and the second sensor (x0,0) away.  Since the distance is know to each 
sensor, you can determine the coordinates of the originating signal relative to the 
temporary frame.  Once that coordinate is determined, the frame is then rotated and 
translated so that the frame of reference is centered at the center of the vehicle.  The 
coordinates are the converted from Cartesian to polar so that an r and θ are known. 
 

Start Determine 2 
closes sensors

 Calculate coordinates
in sensor frame

Rotate and translate
to body frame

 Calculate distance 
and angle End 

 
Massachusetts Institute of Technology 39 Dept of Aeronautics and Astronautics 



EMFFORCE OPS MANUAL  Space Systems Product Development – Spring 2003 
 

A

B C
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d2
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y

x
A C

x 2 + y 2 = d1
2

(x − x2)2 + y 2 = d2
2

x = x2
2 + d1

2 − d2
2

2x2

y = d1
2 − x 2

A

B C

 
Figure B.3-E: Distance Determination Sequence 

 

B.3.8   Metrology Software: Modules 
Main() The main function initializes the system to run.  After printing out 

information (version number and the date and time compiled), the 
system runs into an infinite loop.  To exit the loop, the avionics 
TT8 needs to send a start byte, which is a single byte containing 
the vehicle ID.   

  
Next, the code then enables the interrupts (IR receive and the clock 
timer).  Following this, it sends the first IR pulse (if the vehicle is 
the master vehicle).  Then it enters an infinite loop and just handles 
all interrupts. 

 
SetupIRXmt() This function transmit the IR pulse.  It uses the standard embedded 

function QOM.  QOM is defined in the TT8 users guide. 
 
SetupUSXmt() This function prepares to transmit the ultrasonic pulse.  The line of 

code that is commented out, enables the channel. This is needed to 
send the signal to pulse.  The function uses the standard embedded 
function QOM.  QOM is defined in the TT8 users guide. 

 
SetupIRRcv() This function prepares the IR receiver. The function uses the 

standard embedded function ITC.  ITC is defined in the TT8 users 
guide.  This allows the signal to trigger an interrupt (handleIR). 
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SetupUSRcv() This function prepares the ultrasonic receiver. The function uses 
the standard embedded function ITC.  ITC is defined in the TT8 
users guide. 

 
 
handleIR() This function is used when the IR pulsed is received.  The IR pulse 

triggers an interrupt that calls handleIR().  The function 
timestamps the IR pulse by calling a standard TT8 function 
StopWatchTime() (this allows us to timestamp the data for use later 
on in data analysis).   It then initiates the timing sequence (US 
timer) that will initiate the events described in the software design.  
Finally it clears the IR interrupt, so that an unintended IR signal 
won’t trigger the interrupt again (this is re-enabled in a later part of 
the code when the next pulse is expected). 

 
SetupUSTimer() This function initiates an timer that will send a pulse at the end of 

the timer.  This function uses an embedded function QOM.  QOM 
is defined in the TT8 users guide. 

 
SetupUSTimerRcv() This function prepares the IR receiver. The function uses the 

standard embedded function ITC.  ITC is defined in the TT8 users 
guide.  This allows the signal to trigger an interrupt 
(handleUSTimer). 

 
handleUSTimer() This function handles most of the sequencing and calculating in the 

metrology system.  The function uses the variables of usSeq and 
usStateSeq to keep track where the code is in the sequence of 
events.  The section on software design describes the order of 
events.   

 
xylocation() This function calculates the distance and angle to the center of 

vehicle using the data from the three ultrasonic receivers.  The 
algorithm is described in the software design section. 

B.3.9   Calibration Data 
The data shown in Figure B.3-F was obtained to calibrate the hardware and correct for any 
error in the system. The first test was a distance calibration.  In this test the angle was 
kept constant and the distance was varied.  The graph shows the actual distance from the 
transmitter and receiver and the data received from the metrology TT8.  The data was 
averaged and a standard error was calculated.  Error bars are included to show the 
deviation between all the points that were averaged. 
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Figure B.3-F: Distance Calibration 

 
The second test was an angle calibration.  In this test, the distance is kept constant and the 
angle varied (at 30 degree increments).  Figure B.3-G shows the actual angle from the 
transmitter and receiver and the data received from the metrology TT8.  Again, the data 
was averaged and a standard error was calculated.  Error bars are included to show the 
deviation between all the points that were averaged. 
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Figure B.3-G: Angle Calibration 

 
The error between the actual values and the readings can be attributed to the value for the 
length of the arm of the metrology system.  This value is included in the code and used in 
the angle calculation (it is also used for distance).  A rough test to see how the length was 
critical to the sensitivity to the calculation was done.  Although no data was collected, it 
was noted that moving the distance of one US receiver up to an inch varied the angle by 
up to 12 degrees.  More test need to be done to get data on its sensitivity, but it should be 
noted that the distance from the center of the system to the ultrasonic sensor (defined as 
ArmLength in the code) needs to be accurate. 
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