16.810

Engineering Design and Rapid Prototyping

Lecture 3a

1G.810 Computer Aided Design (CAD)

I nstructor(s)

Prof. Olivier de Weck

J anuary 16, 2007

1G.810 Plan for Today

- CAD Lecture (ca. 50 min)
- CAD History, Background
- Some theory on geometrical representation
- FEM Lecture (ca. 50 min)
- Motivation for Structural Analysis
- FEM Background
- Break
- Start creating your own CAD models (ca. 2 hrs)
- Work in teams of two
- Follow "User Manual" step-by-step, sample part
- Then start on your own team projects
- Use hand sketch (deliverable B) as starting point

1G. 810

Course Concept

1G. 810 Course Flow Diagram (2007)

1G. 810 What is CAD?

- Computer Aided Design (CAD)
- A set of methods and tools to assist product designers in
- Creating a geometrical representation of the artifacts they are designing
- Dimensioning, Tolerancing
- Configuration Management (Changes)
- Archiving
- Exchanging part and assembly information between teams, organizations
- Feeding subsequent design steps
- Analysis (CAE)
- Manufacturing (CAM)
- ...by means of a computer system.

1G.810 Basic Elements of a CAD System

I nput Devices

Keyboard
Mouse

CAD keyboard
Templates
Space Ball

Main System
Computer
CAD Software
Database

Output Devices

Hard Disk
Network
Printer
Plotter

Human Designer

1G.810 Brief History of CAD

- 1957 PRONTO (Dr. Hanratty) - first commercial numericalcontrol programming system
- 1960 SKETCHPAD (MIT Lincoln Labs)
- Early 1960’s industrial developments
- General Motors - DAC (Design Automated by Computer)
- McDonnell Douglas - CADD
- Early technological developments
- Vector-display technology
- Light-pens for input
- Patterns of lines rendering (first 2D only)
- 1967 Dr. Jason R Lemon founds SDRC in Cincinnati
- 1979 Boeing, General Electric and NIST develop IGES (Initial Graphic Exchange Standards), e.g. for transfer of NURBS curves
- Since 1981: numerous commercial programs
- Source: http://mbinfo.mbdesign.net/CAD-History.htm

1G.810 Major Benefits of CAD

- Productivity (=Speed) Increase
- Automation of repeated tasks
- Doesn't necessarily increase creativity!
- Insert standard parts (e.g. fasteners) from database
- Supports Changeability
- Don't have to redo entire drawing with each change
- EO - "Engineering Orders"
- Keep track of previous design iterations
- Communication
- With other teams/engineers, e.g. manufacturing, suppliers
- With other applications (CAE/FEM, CAM)
- Marketing, realistic product rendering
- Accurate, high quality drawings
- Caution: CAD Systems produce errors with hidden lines etc...
- Some limited Analysis
- Mass Properties (Mass, Inertia)
- Collisions between parts, clearances

1G.810 Generic CAD Process

- Boeing (sample) parts
- A/C structural assembly
- 2 decks
- 3 frames
- Keel
- Loft included to show interface/stayout zone to A/C
- All Boeing parts in Catia file format
- Files imported into SolidWorks by converting to IGES format

1G.all Vector versus Raster Graphics

Raster Graphics

- Grid of pixels
- No relationships between pixels
- Resolution, e.g. 72 dpi (dots per inch)
- Each pixel has color, e.g. 8-bit image has 256 colors

.bmp - raw data format

Abstract

424 DBC 020000000000003 E 00000028000000420000003500000001 $0001000000000000000000120 B 0000120 B 00000000000000000000$ FFFFFF 0000000000000015 FD 00000000000000000000 FF EF F8 0000 00000000000001 DO 005 C 0000000000000000 OF 8000 OF 8000000000 0000001 C 000001400000000000000038000000 E 000000000000000 $700000007000000000000000 \mathrm{EO} 0000003800000000000001 \mathrm{C0} 0000$ 001 C 00000000000007800000000 E 00000000000007000000000700 00000000000 O 00000003 BB BB BB 800000001 C 00000003 FFFFFFCO 00 $0000180000000300 \mathrm{C0004000000010000000030040004000000030}$ 000000020060004000000070000000030050004000000060000000 0200700040000000400000000300100040000000 EO 000000030030 0040000000400000000300100040000000 CO 000000030018004000 $0000400000000300100040000000 \mathrm{CO} 0000000200180040000000 \mathrm{C0}$ $0000000300180040000000 \mathrm{C0} 0000000200080040000000 \mathrm{C0} 000000$ 030018004000000080000000030018004000000060000000030010 004000000080000000030018004000000040000000030010004000 0000600000000200180040000000400000000300100040000000 EO 000000020038004000000040000000030010004000000060000000 030030004000000070000000030070004000000030000000030060 00400000001000000003777777400000001800000003 FF FFFFCO 00 00001 C 0000000001 CO 00000000000 E 000000000380000000000007 000000000700000000000003000000000 E 00000000000001000000 001400000000000001 EO 0000003800000000000000700000007000 00000000000038000000 E 0000000000000001 C 000001 CO 00000000 0000000 F 80000 F 800000000000000001 D0 005 C 0000000000000000 OOFFBBF8 00000000000000000017 FF 40000000000000000000

1G.810 Vector Graphics

.emf format
 CAD Systems use vector graphics

Most common interface file:

- Object Oriented
- relationship between pixels captured
- describes both (anchor/control) points and lines between them
- Easier scaling \& editing

1G.810 Major CAD Software Products

- AutoCAD (Autodesk) \rightarrow mainly for PC
- Pro Engineer (PTC)
- SolidWorks (Dassault Systems)
- CATIA (IBM/Dassault Systems)
- Unigraphics (UGS)
- I-DEAS (SDRC)

Some CAD-Theory

Geometrical representation

(1) Parametric Curve Equation vs. Nonparametric Curve Equation
(2) Various curves (some mathematics!)

- Hermite Curve
- Bezier Curve
- B-Spline Curve
- NURBS (Nonuniform Rational B-Spline) Curves

Applications: CAD, FEM, Design Optimization

Curve Equations

Two types of equations for curve representation

(1) Parametric equation
$\mathbf{x}, \mathbf{y}, \mathbf{z}$ coordinates are related by a parametric variable (u or θ)
(2) Nonparametric equation
x, y, z coordinates are related by a function

Example: Circle (2-D)

Parametric equation

$$
x=R \cos \theta, \quad y=R \sin \theta \quad(0 \leq \theta \leq 2 \pi)
$$

Nonparametric equation

$$
\begin{array}{ll}
x^{2}+y^{2}-R^{2}=0 & \text { (Implicit nonparametric form) } \\
y= \pm \sqrt{R^{2}-x^{2}} & \text { (Explicit nonparametric form) }
\end{array}
$$

Curve Equations

Two types of curve equations

(1) Parametric equation Point on 2-D curve: $\mathbf{p}=\left[\begin{array}{ll}x(u) & y(u)\end{array}\right]$

Point on 3-D surface: $\mathbf{p}=[x(u) y(u) z(u)]$
u : parametric variable and independent variable
(2) Nonparametric equation

$$
y=f(x): 2-\mathrm{D}, \quad z=f(x, y): 3-\mathrm{D}
$$

Which is better for CAD/CAE? : Parametric equation

$$
\begin{array}{ll}
x=R \cos \theta, \quad y=R \sin \theta \quad(0 \leq \theta \leq 2 \pi) & \begin{array}{l}
\text { It also is good for } \\
\text { calculating the } \\
\text { points at a certain } \\
\text { interval along a } \\
\text { curve }
\end{array} \\
x^{2}+y^{2}-R^{2}=0 & \\
y= \pm \sqrt{R^{2}-x^{2}} &
\end{array}
$$

Parametric Equations -

Advantages over nonparametric forms

1. Parametric equations usually offer more degrees of freedom for controlling the shape of curves and surfaces than do nonparametric forms.
e.g. Cubic curve

Parametric curve: $x=a u^{3}+b u^{2}+c u+d$

$$
y=e u^{3}+f u^{2}+g x+h
$$

Nonparametric curve: $y=a x^{3}+b x^{2}+c x+d$
2. Parametric forms readily handle infinite slopes

$$
\frac{d y}{d x}=\frac{d y / d u}{d x / d u} \Rightarrow d x / d u=0 \text { indicates } d y / d x=\infty
$$

3. Transformation can be performed directly on parametric equations
e.g. Translation in x-dir.

Parametric curve: $x=a u^{3}+b u^{2}+c u+d+x_{0}$

$$
y=e u^{3}+f u^{2}+g x+h
$$

Nonparametric curve: $y=a\left(x-x_{0}\right)^{3}+b\left(x-x_{0}\right)^{2}+c\left(x-x_{0}\right)+d$

Hermite Curves

* Most of the equations for curves used in CAD software are of degree 3, because two curves of degree 3 guarantees 2nd derivative continuity at the connection point \rightarrow The two curves appear to be one.
* Use of a higher degree causes small oscillations in curves and requires heavy computation.
* Simplest parametric equation of degree 3

$$
\left.\begin{array}{rl}
\mathbf{P}(u) & =[x(u) y(u) z(u)
\end{array}\right] \quad \begin{array}{ll}
x(0) \\
& =\mathbf{a}_{0}+\mathbf{a}_{1} u+\mathbf{a}_{2} u^{2}+\mathbf{a}_{3} u^{3} \quad(0 \leq u \leq 1)
\end{array}
$$

$\mathbf{a}_{0}, \mathbf{a}_{1}, \mathbf{a}_{2}, \mathbf{a}_{3}$: Algebraic vector coefficients

The curve's shape change cannot be intuitively anticipated from changes in these values

Hermite Curves

$$
\mathbf{P}(u)=\mathbf{a}_{0}+\mathbf{a}_{1} u+\mathbf{a}_{2} u^{2}+\mathbf{a}_{3} u^{3} \quad(0 \leq u \leq 1)
$$

Instead of algebraic coefficients, let's use the position vectors and the tangent vectors at the two end points!

Position vector at starting point: $\mathbf{P}_{0}=\mathbf{P}(0)=\mathbf{a}_{0}$
Position vector at end point: $\quad \mathbf{P}_{1}=\mathbf{P}(1)=\mathbf{a}_{0}+\mathbf{a}_{1}+\mathbf{a}_{2}+\mathbf{a}_{3}$
Tangent vector at starting point: $\mathbf{P}_{0}^{\prime}=\mathbf{P}^{\prime}(0)=\mathbf{a}_{1}$
Tangent vector at end point: $\quad \mathbf{P}_{1}^{\prime}=\mathbf{P}^{\prime}(1)=\mathbf{a}_{1}+2 \mathbf{a}_{2}+3 \mathbf{a}_{3}$

No algebraic coefficients
$\mathbf{P}_{0}, \mathbf{P}_{0}^{\prime}, \mathbf{P}_{1}, \mathbf{P}_{1}^{\prime}$: Geometric coefficients

ΔThe curve's shape change can be intuitively anticipated from changes in these values

Effect of tangent vectors on the curve's shape

Bezier Curve

* In case of Hermite curve, it is not easy to predict curve shape caused by changes in the magnitude of the tangent vector, ${ }^{\prime}$, and \mathbf{P}_{1}^{\prime}
* Bezier Curve can control curve shape more easily using several control points (Bezier 1960)

$$
\mathbf{P}(u)=\sum_{i=0}^{n}\binom{n}{i} u^{i}(1-u)^{n-i} \mathbf{P}_{i}, \quad \text { where }\binom{n}{i}=\frac{n!}{i!(n-i)!}
$$

\mathbf{P}_{i} : Position vector of the i th vertex (control vertices)

* Number of vertices: $\mathbf{n + 1}$ (No of control points)
* Number of segments: \mathbf{n}
* Order of the curve: n
* The order of Bezier curve is determined by the number of control points.
n control points

Bezier Curve

Properties

- The curve passes through the first and last vertex of the polygon.
-The tangent vector at the starting point of the curve has the same direction as the first segment of the polygon.
- The nth derivative of the curve at the starting or ending point is determined by the first or last $(n+1)$ vertices.

1G.810 Two Drawbacks of Bezier curve

(1) For complicated shape representation, higher degree Bezier curves are needed.
\rightarrow Oscillation in curve occurs, and computational burden increases.
(2) Any one control point of the curve affects the shape of the entire curve.
\rightarrow Modifying the shape of a curve locally is difficult. (Global modification property)

Desirable properties :

1. Ability to represent complicated shape with low order of the curve
2. Ability to modify a curve's shape locally

B-spline curve!

B-Spline Curve

$$
\mathbf{P}(u)=\sum_{i=0}^{n} N_{i, k}(u) \mathbf{P}_{i}
$$

* Developed by Cox and Boor (1972)
where

$$
\mathbf{P}_{i}: \text { Position vector of the } i \text { th control point }
$$

$$
\begin{aligned}
& N_{i, k}(u)=\frac{\left(u-t_{i}\right) N_{i, k-1}(u)}{t_{i+k-1}-t_{i}}+\frac{\left(t_{i+k}-u\right) N_{i+1, k-1}(u)}{t_{i+k}-t_{i+1}} \\
& N_{i, 1}(u)= \begin{cases}1 & t_{i} \leq u \leq t_{i+1} \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

$$
t_{i}= \begin{cases}0 & 0 \leq i<k \\ i-k+1 & k \leq i \leq n \\ n-k+2 & n<i \leq n+k\end{cases}
$$

(Nonperiodic knots)
k : order of the B-spline curve
$n+1$: number of control points

The order of curve is independent of the number of control points!

B-Spline Curve

Example

Advantages

(1) The order of the curve is independent of the number of control points (contrary to Bezier curves)

- User can select the curve's order and number of control points separately.
- It can represent very complicated shape with low order
(2) Modifying the shape of a curve locally is easy. (contrary to Bezier curve)
- Each curve segment is affected by k (order) control points. (local modification property)

NURBS (Nonuniform Rational B-Spline) Curve

$$
\begin{aligned}
\mathbf{P}(u)= & \frac{\sum_{i=0}^{n} h_{i} \mathbf{P}_{i} N_{i, k}(u)}{\sum_{i=0}^{n} h_{i} N_{i, k}(u)} \quad\left(\text { B-spline: } \mathbf{P}(u)=\sum_{i=0}^{n} \mathbf{P}_{i} N_{i, k}(u)\right) \\
\mathbf{P}_{i} & : \text { Position vector of the } i \text { th control point } \\
h_{i} & : \text { Homogeneous coordinate }
\end{aligned}
$$

* If all the homogeneous coordinates $\left(h_{i}\right)$ are 1, the denominator becomes 1 If $h_{i}=0 \forall i$, then $\sum_{i=0}^{n} h_{i} N_{i, k}(u)=1$.
* B-spline curve is a special case of NURBS.
*Bezier curve is a special case of B-spline curve.
(1) More versatile modification capacity
- Homogeneous coordinate $\boldsymbol{h}_{\boldsymbol{i}}$, which B-spline does not have, can change.
- Increasing h_{i} of a control point \rightarrow Drawing the curve toward the control point.
(2) NURBS can exactly represent the conic curves - circles, ellipses, parabolas, and hyperbolas (B-spline can only approximate these curves)
(3) Curves, such as conic curves, Bezier curves, and B-spline curves can be converted to their corresponding NURBS representations.

Summary

(1) Parametric Equation vs. Nonparametric Equation
(2) Various curves

- Hermite Curve
- Bezier Curve
- B-Spline Curve
- NURBS (Nonuniform Rational B-Spline) Curve
(3) Surfaces
- Bilinear surface
- Bicubic surface
- Bezier surface
- B-Spline surface
- NURBS surface

1G. 110 SolidWorks

- SolidWorks
- Most popular CAD system in education
- Will be used for this project
- Do Self-I ntroduction via 16.810 User Manual
- See also
- http://www.solidworks.com (Student Section)

