16.810

Engineering Design and Rapid Prototyping

Lecture 1

IG.AID Introduction to Design

Instructor(s)

Prof. Olivier de Weck

Teaching Assistants: Anas Alfaris Nii Armar

January 9, 2007

Massachusetts Institute of Technology

1G.AID Happy New Year 2007 !

We won't be designing White Knight or SpaceShipOne this IAP, but ...

You will learn about "the design process" and fundamental building blocks of any complex (aerospace) system

"The scientist seeks to understand what is; the engineer seeks to create what never was"

-Von Karman

1G.Alo Outline

- Organization of 16.810
 - Motivation, Learning Objectives, Activities
- (Re-) Introduction to Design
 - Examples, Requirements, Design Processes (Waterfall vs. Spiral), Basic Steps
- "Design Challenge" Team Assignments
 - Previous Years (2004, 2005)
 - This Year: MITSET (30 min), VDS (30 min)
 - Deliverables Checklist, Team Assignments
- Facilities Tour

Organization of 16.810

IG.AID Expectations

- 6 unit course (3-3-0) 7+1 sessions
 - TR1-5 in 33-218, <u>must</u> attend all sessions or get permission of instructors to be absent
 - This is for-credit, no formal "problem sets", but expect a set of deliverables (see √-list)
 - Have fun, but also take it seriously
 - The course is a 3rd year "prototype" itself and we are hoping for your feedback & contributions
 - Officially register under 16.810 (Jan 2007) on WEBSIS

1G.810 History of this Course

December 2002	Undergraduate Survey in Aero/Astro Department.
	Students expressed wish for CAD/CAE/CAM experience.
April 4, 2003	Submission of proposal to Teaching and Education
	Enhancement Program ("MIT Class Funds")
May 6, 2003	Award Letter received from Dean for Undergraduate Education (\$17.5k)
June 5, 2003	Kickoff Meeting
Sept 18, 2003	Approved by the AA undergraduate committee (6 units)
Fall 2003	Preparation
Jan 5, 2004	First Class (Topic: Bicycle Frame Design)
Fall 2004	Preparation
Jan 4, 2005	Second Class (Topic: Race Car Wing Design)
Jan 2007	Third Class \rightarrow Focus on helping student projects
	see: http://ocw.mit.edu

16.810

1G.R10 Needs – from students

A 2001 survey of undergraduate students (Aero/Astro) – in conjunction with new Dept. head search

- There is a perceived lack of understanding and training in modern design methods using state-of-the-art CAD/CAE/CAM technology and design optimization.

- Individual students have suggested the addition of a short and intense course of rapid prototyping, combined with design optimization.

1G.R10 Boeing List of "Desired Attributes of an Engineer"

- A good understanding of engineering science fundamentals
 - Mathematics (including statistics)
 - Physical and life sciences
 - Information technology (far more than "computer literacy")
- A good understanding of design and manufacturing processes (i.e. understands engineering)
- A multi-disciplinary, systems perspective
- A basic understanding of the context in which engineering is practiced
 - Economics (including business practice)
 - History
 - The environment
 - Customer and societal needs

- Good communication skills
 - Written
 - Oral
 - Graphic
 - Listening
- High ethical standards
- An ability to think both critically and creatively - independently and cooperatively
- Flexibility. The ability and selfconfidence to adapt to rapid or major change
- Curiosity and a desire to learn for life
- A profound understanding of the importance of teamwork.

Massachusetts Institute of Technology

[•] This is a list, begun in 1994, of basic durable attributes into which can be mapped specific skills reflecting the diversity of the overall engineering environment in which we in professional practice operate.

[•] This current version of the list can be viewed on the Boeing web site as a basic message to those seeking advice from the company on the topic. Its contents are also included for the most part in ABET EC 2000.

16.810 An engineer should be able to ...

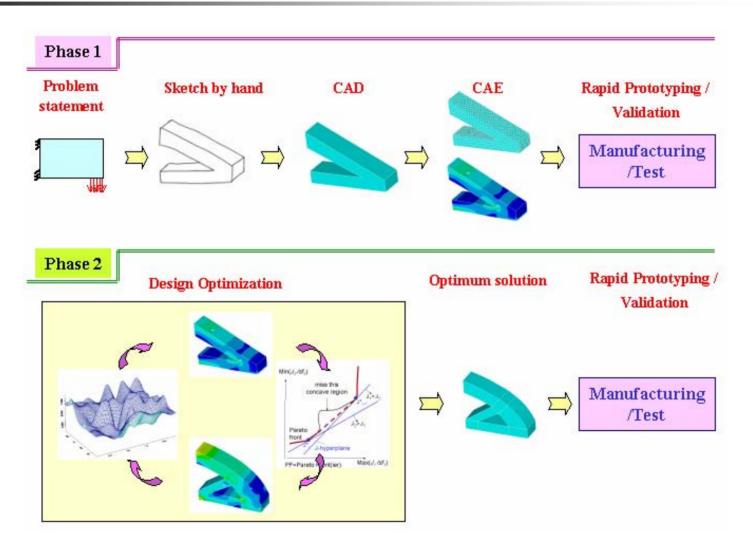
- Determine quickly how things work
- Determine what customers want
- Create a concept
- Use abstractions/math models to improve a concept
- Build or create a prototype version
- Quantitatively and <u>robustly test</u> a prototype to improve concept and to predict
- Determine whether customer value and enterprise value are aligned (business sense)
- Communicate all of the above to various audiences
 - Much of this requires "domain-specific knowledge" and experience
 - Several require systems thinking and statistical thinking
 - All require teamwork, leadership, and societal awareness

Slide from Prof. Chris Magee

Develop a holistic view and initial <u>competency</u> in <u>engineering design</u> by applying a combination of <u>human creativity</u> <u>and modern computational tools</u> to the synthesis of a simple component or system.

IGLAID Mind Map

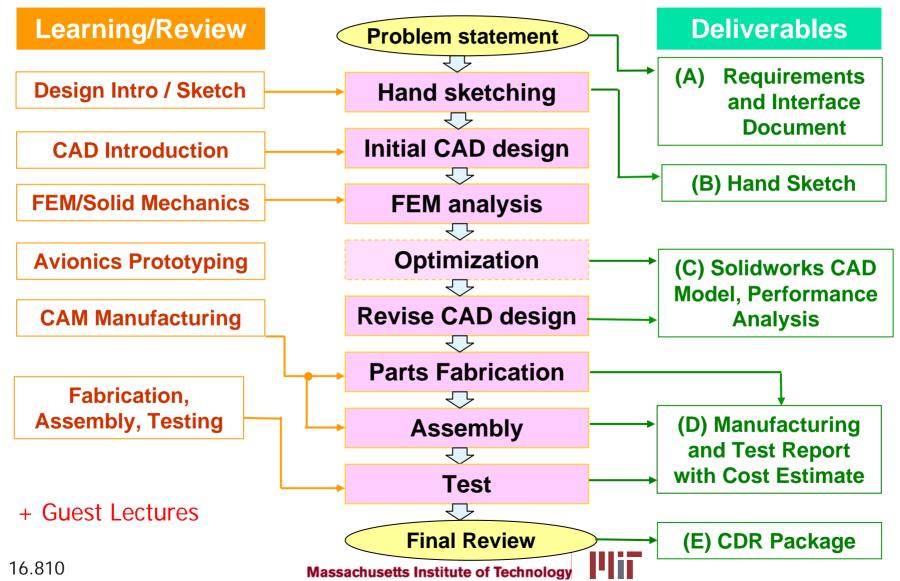
"Holistic View" - of the whole. Think about: - requirements, design, manufacturing, testing, cost ...


"Engineering Design" 16.810 - what you will likely do after MIT

"Human Creativity and Computational Tools": design is a constant interplay of synthesis and analysis "Competency" - can not only talk about it or do calculations, but actually carry out the process end-to-end

"Rapid Prototyping" a hot concept in industry today.

"Components / Systems": part of all aerospace systems, But must be "easy" to implement in a short time


Course Concept

1G.A10

1G.A1D Course Flow Diagram (2007)

At the end of this class you should be able to ...

(1) Carry out a <u>systematic design process</u> from conception through design/implementation/verification of a simple component or system.

(2) Quantify the predictive accuracy of CAE versus actual test results.

- (3) Explain the relative improvement that <u>computer optimization</u> can yield relative to an initial, manual solution.
- (4) Discuss the complementary capabilities and limitations of the <u>human mind and the digital computer (synthesis versus analysis).</u>

IG.AID Grading

- Letter Grading A-F
- Composition
 - Design Deliverables*
 - Requirements Document, Sketch, CAD Model & Analysis, Test & Mfg Report, Final Review Slides
 - Final Product
 - Requirements Compliance
 - "Quality"
 - Active Class Participation
 - Attendance, Ask Questions, Contribute Suggestions, Fill in Surveys

*see checklist

10%

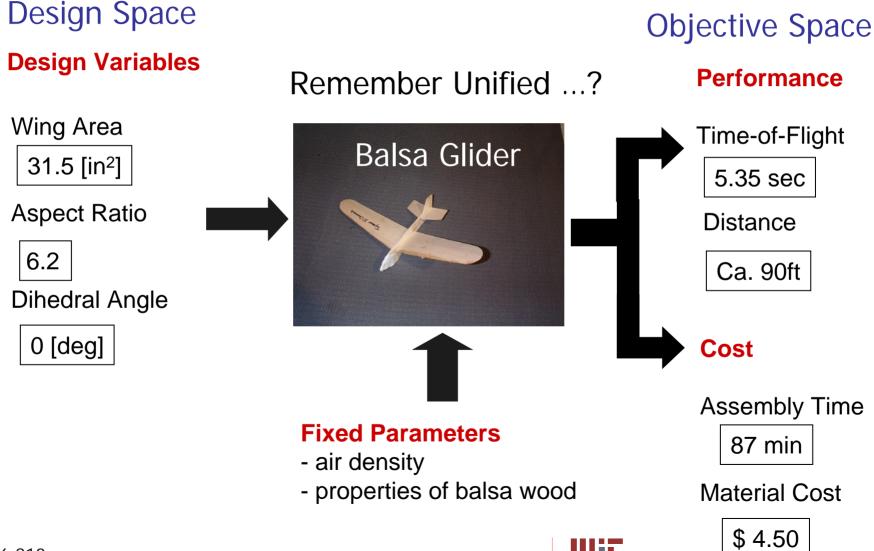
70%

20%

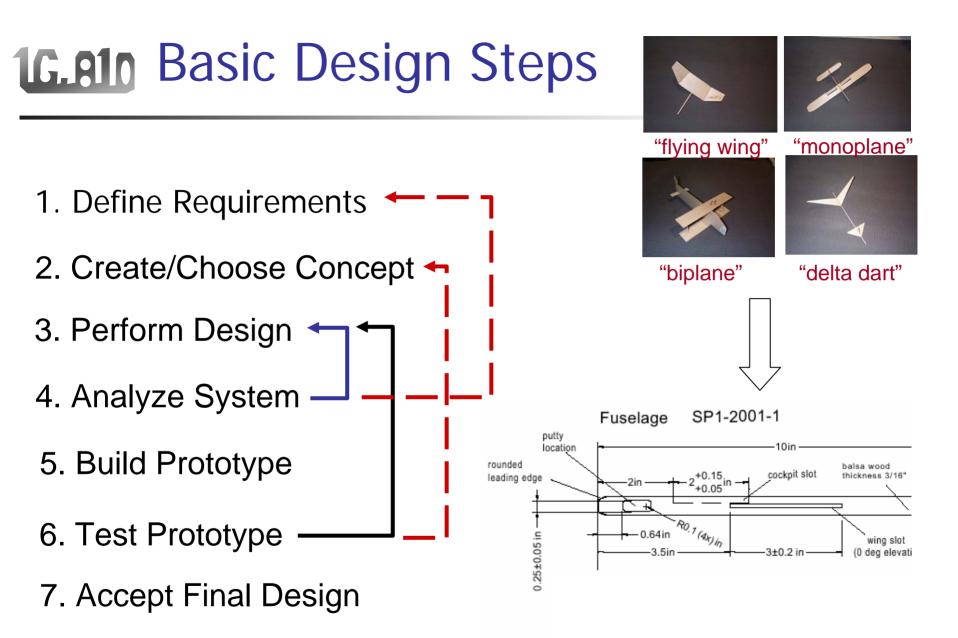
(Re-)Introduction to Design

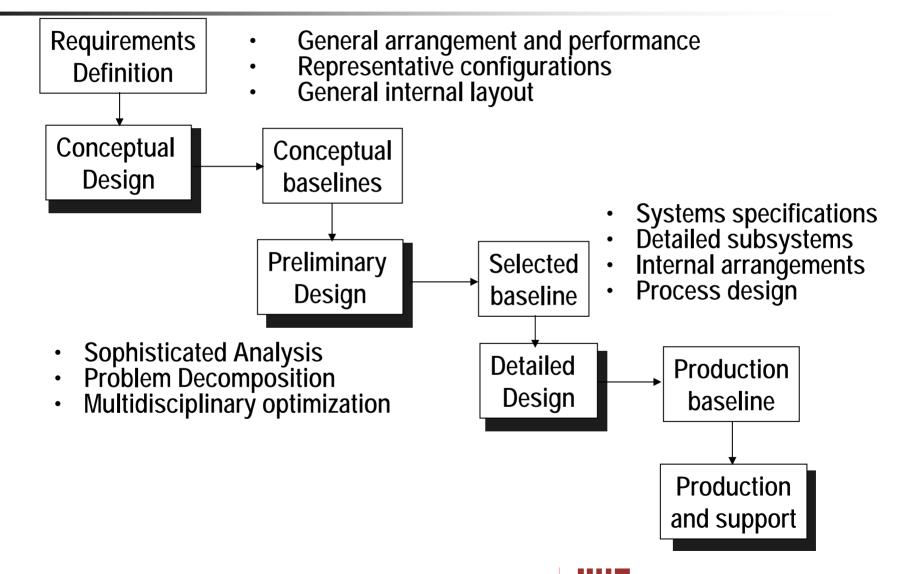
1G.RID Product Development - Design

Improved time-to-climb Performance of F/A-18 in Air-to-Air configuration by ~ 20%


Development of Swiss F/A-18 Low Drag Pylon (LDP) 1994-1996

"design" – to create, fashion, execute, or construct according to plan


Merriam-Webster

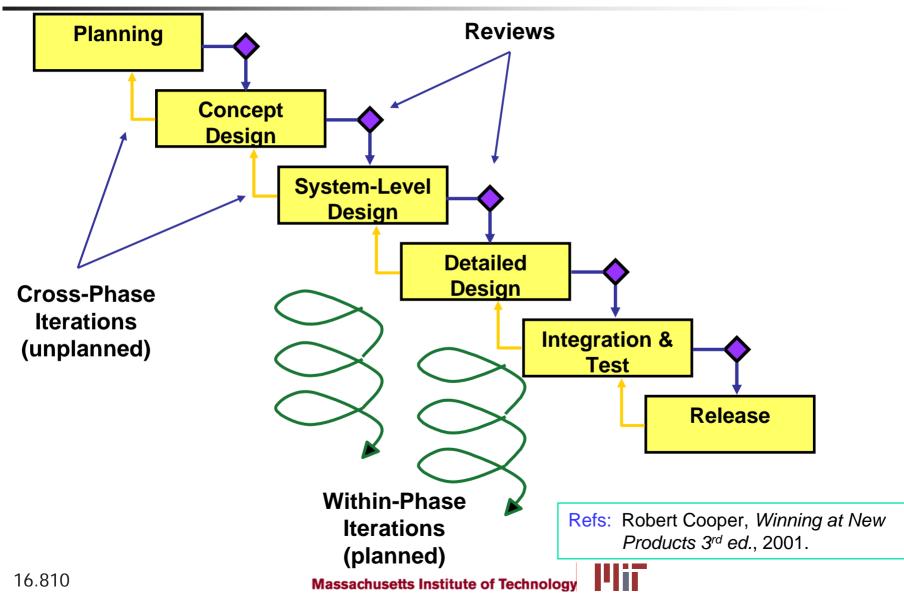

IGAID Design and Objective Space

Massachusetts Institute of Technology

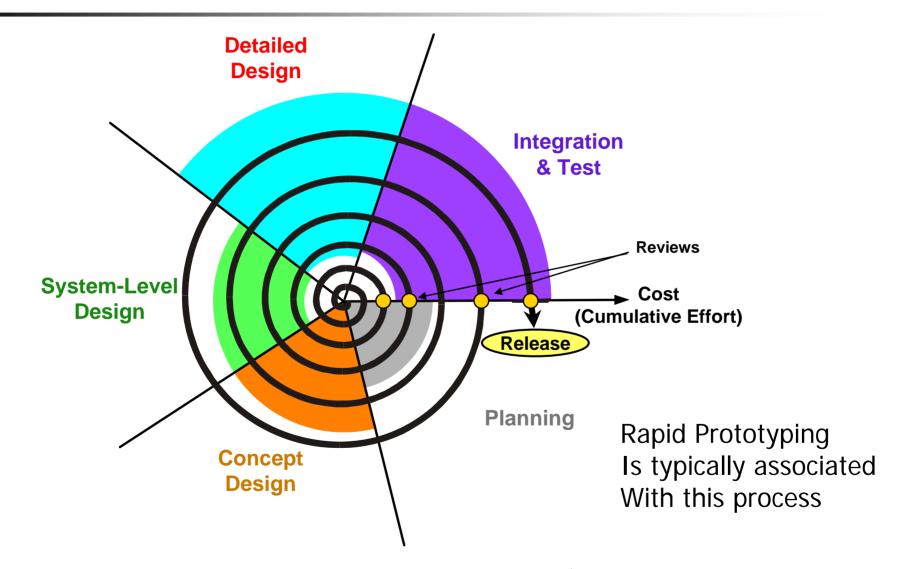
1G.RIN Typical Design Phases

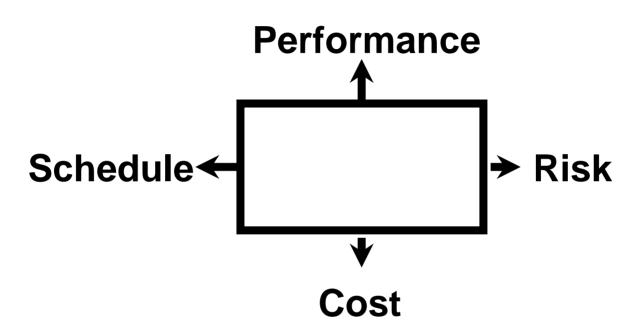
IGAIN Phased vs. Spiral PD Processes

Spiral PD Process (primarily used in software development)


Massachusetts Institute of Technology

Process Design Questions:


- How many spirals should be planned?
- Which phases should be in each spiral?
- When to conduct gate reviews?


1G.AID Stage Gate PD Process

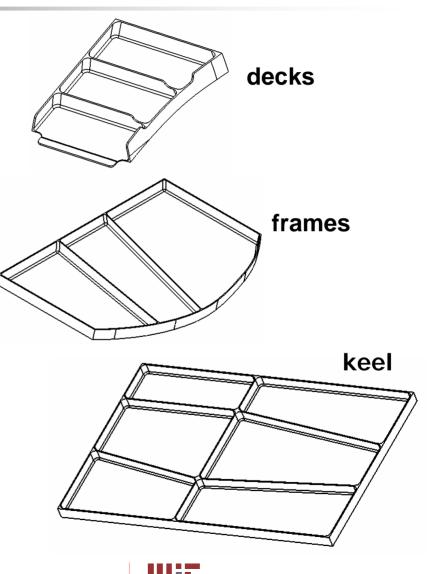
1G.All Spiral PD Process

1G.ALD Basic Trade-offs in Product Development

- Performance ability to do primary mission
- Cost development, operation life cycle cost
- Schedule time to first unit, production rate
- Risk of technical and or financial failure

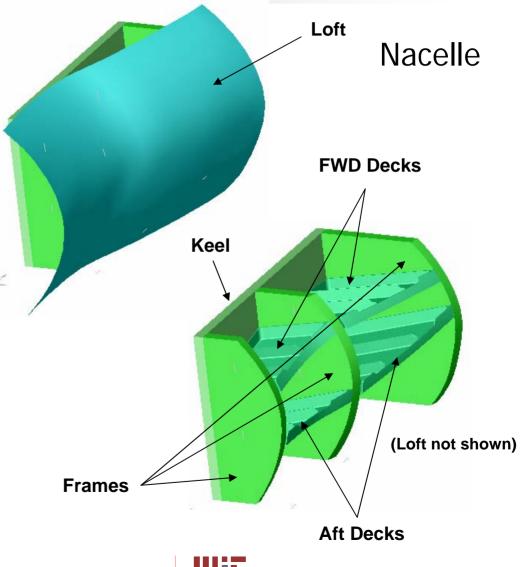
Ref: Maier, Rechtin, "The Art of Systems Architecting"

1G.RID Key Differences in PDP's


- Number of phases (often a superficial difference)
- Phase exit criteria (and degree of formality)
- Requirement "enforcement"
- Reviews
- Prototyping
- Testing and Validation
- Timing for committing capital
- Degree of "customer" selling and interference
- Degree of explicit/implicit iteration (waterfall or not)

Massachusetts Institute of Technology

Timing of supplier involvement


1G.R10 Hierarchy I: Parts Level

- deck components
 - Ribbed-bulkheads
 - Approximate dimensions
 - 250mm x 350mm x 30mm
 - Wall thickness = 2.54mm
- frame components
 - Ribbed-bulkheads
 - Approximate dimensions
 - 430mm x 150mm x 25.4mm
 - Wall thickness = 2mm
- keel
 - Ribbed-bulkhead
 - Approximate dimensions
 - 430mm x 660mm x 25.4mm
 - Wall thickness = 2.54mm

1G.R10 Hierarchy II: Assembly Level

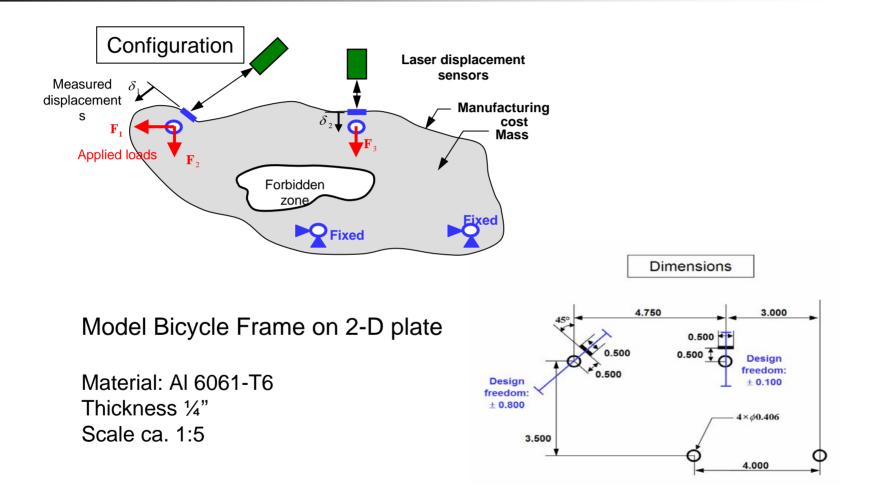
- Boeing (sample) parts
 - A/C structural assembly
 - 2 decks
 - 3 frames
 - Keel
 - Loft included to show interface/stayout zone to A/C
 - All Boeing parts in Catia file format
 - Files imported into SolidWorks by converting to IGES format

1G.RIn Product Complexity

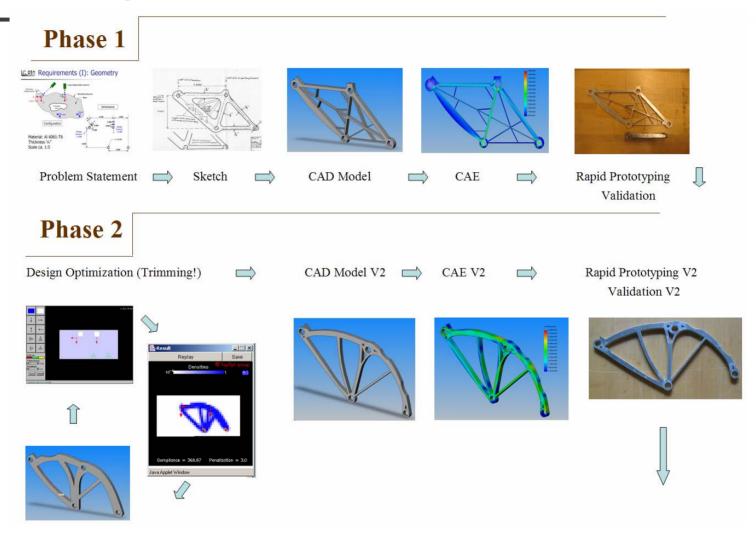
How many levels in drawing tree?

 $\#levels = \left\lceil \frac{\log(\# parts)}{\log(7)} \right\rceil$

		~ #parts	#level	S
Screwdriver	(B&D)	3	1	simple
Roller Blades	(Bauer)	30	2	
Inkjet Printer	(HP)	300	3	
Copy Machine	(Xerox)	2,000	4	
Automobile	(GM)	10,000	5	
Airliner	(Boeing)	100,000	6	
6.910			(complex


Massachusetts Institute of Technology

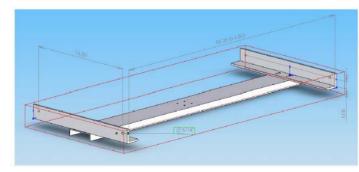
"Design Challenge" and Team Assignments

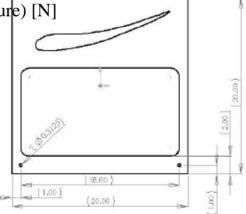


1G.Alo Project Description – IAP 2004

1G.R10 Project Deliverables – IAP 2004

1G.RIn Project Description – IAP 2005



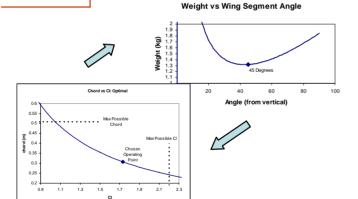

maximize [F = L - 3*D - 5*W]

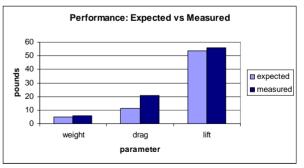
Where:

- L = measured downforce (negative lift) at specified speed [N]
- D = measured drag at specified speed [N]

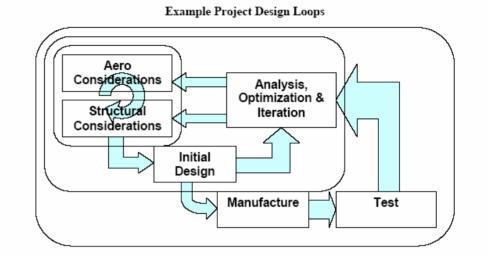
W = total weight of the assembly (not including test fixture) [N] The nominal speed is 60 mph

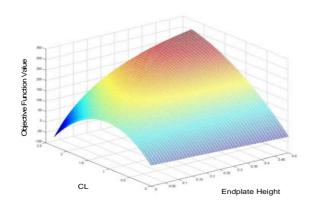


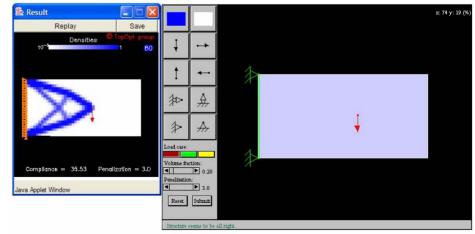



1G.RIn Project Deliverables – IAP 2005

Phase 1

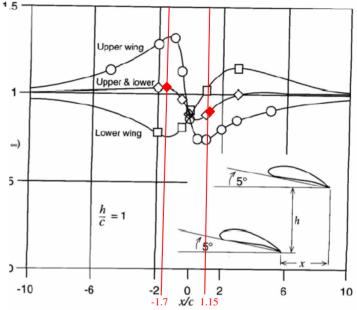


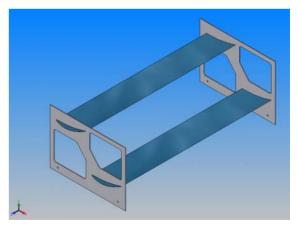

Design Optimization


Prototype Testing and Validation

1G.A10 Optimization – 2004 & 2005

- Manual Iteration
 - Design loops (Spiral method)
- Software





1G.AID Learning from Mistakes

- Carrying out a full lifecycle creates memorable learning experiences
- Don't prevent students from making mistakes
- Example: bi-wing configuration
- Excerpt from Student Reflective Memo:
- "I learned the value of constantly checking simulations against reality My rear-wing design used a biplane setup, ...due to a huge oversight, the wings were actually arranged in an incorrect orientation which incurred a large drop in down force.This experience taught me a great lesson – always triple check your assumptions against your design. I spent hours and hours optimizing a design that was never constructed, simply because I was told to assume that the down force bonus would be experienced. I never bothered to verify this myself, and this disconnection had dire consequences."

1G.R10 IAP 2007 Challenge

- Focused on Student-Driven Teams
 - VDS Vehicle Design Summit
 - MITSET Space Elevator Team
- Define/pick the current baseline configuration
- Create a performance model of the baseline configuration
 - VDS: miles-per-gallon [mpg]
 - MITSET: time-to-climb [sec]
- Pick 4-5 most critical components and subsystems based on performance sensitivity
- IAP 2007
 - assign 2-3 students per component/subsystem in the 1st session of IAP
 - design/redesign those components during weeks 2-3
 - manufacture and reintegrate during week 4
 - CDR at the end of IAP 2007 look at performance improvement

1G.RID Team Presentations (30 min each)

MIT Space Elevator Team (MITSET)

NASA Centennial Challenge Power Beaming

Vehicle Design Summit (VDS)

Assisted Human Power Vehicle (AHPV)

Image: VDS 1.0 – Summer 2006

Facilities Tour

1G.A10

Facilities Tour

* Design Studio (33-218)

- 14 networked CAD/CAE workstations that are used for complex systems design and optimization.

- Omax

- Matlab

* Software to be used:

- Xfoil
- Solidworks
- Cosmos
- Altium

16.810

* Machine Shop

-Water Jet cutter, Wing cutter

* Wind Tunnel

-Subsonic aerodynamic testing

MIT Wright Brother's Wind Tunnel, see <u>http://web.mit.edu/</u> aeroastro/www/labs/WBWT/

1G.AID Next Steps

- Form a Team
 - Pick MITSET or VDS
 - Pick a component/subsystem
 - Give your team a distinctive name
- Study the following
 - 16.810 documents: schedule, deliverables checklist, project description, Register on WEBSIS if not already done
- Get username and passwd on AA-Design LAN
- Complete Attendance Sheet
- Prepare for Thursday's lecture:
 - Look at CAD/CAE/CAM manual (Sample Part)
 - Go through step-by-step
 - Signup for a machine shop slot for Waterjet Manufacturing (OMAX)

Massachusetts Institute of Technology