Lecture \#9

Virtual Work

And the

Derivation of Lagrange's Equations

Derivation of Lagrangian Equations

Basic Concept: Virtual Work

Consider system of N particles located at $\left(x_{1}, x_{2}, x_{3}, \ldots x_{3 N}\right)$ with 3 forces per particle $\left(F_{1}, F_{2}, F_{3}, \ldots F_{3 N}\right)$, each in the positive direction.

Assume system given small, arbitrary displacements in all directions.

Called virtual displacements

- No passage of time
- Applied forces remain constant

The work done by the forces is termed Virtual Work.

$$
\delta W=\sum_{j=1}^{3 N} F_{j} \delta x_{j}
$$

Note use of δx and not $d x$.

Note:

- There is no passage of time
- The forces remain constant.

In vector form:

$$
\delta W=\sum_{i=1}^{3} \mathbf{F}_{i} \bullet \delta \mathbf{r}_{i}
$$

Virtual displacements MUST satisfy all constraint relationships,

\rightarrow Constraint forces do no work.

Example: Two masses connected by a rod

Constraint forces:

$$
\mathbf{R}_{1}=-\mathbf{R}_{2}=-R_{2} \hat{e}_{r}
$$

Now assume virtual displacements $\delta \mathbf{r}_{1}$, and $\delta \mathbf{r}_{2}$ - but the displacement components along the rigid rod must be equal, so there is a constraint equation of the form

$$
e_{r} \bullet \delta r_{1}=e_{r} \bullet \delta r_{2}
$$

Virtual Work:

$$
\begin{aligned}
\delta W & =\mathbf{R}_{1} \bullet \delta \mathbf{r}_{1}+\mathbf{R}_{2} \bullet \delta \mathbf{r}_{2} \\
& =-R_{2} \hat{e}_{r} \bullet \delta \mathbf{r}_{1}+R_{2} \hat{e}_{r} \bullet \delta \mathbf{r}_{2} \\
& =\left(R_{2}-R_{2}\right) \hat{e}_{r} \bullet \delta \mathbf{r}_{1} \\
& =0
\end{aligned}
$$

So the virtual work done of the constraint forces is zero

This analysis extends to rigid body case

- Rigid body is a collection of masses
- Masses held at a fixed distance.
\rightarrow Virtual work for the internal constraints of a rigid body displacement is zero.

Example: Body sliding on rigid surface without friction

Since the surface is rigid and fixed, $\delta r_{s}=0, \rightarrow \delta W=0$

For the body, $\delta W=\mathbf{R}_{1} \bullet \delta \mathbf{r}_{1}$, but the direction of the virtual displacement that satisfies the constraints is perpendicular to the constraint force. Thus $\delta W=0$.

Principle of Virtual Work

$m_{i}=$ mass of particle i
$\mathbf{R}_{i}=$ Constraint forces acting on the particle
$\mathbf{F}_{i}=$ External forces acting on the particle
\rightarrow For static equilibrium (if all particles of the system are motionless in the inertial frame and if the vector sum of all forces acting on each particle is zero)

$$
\mathbf{R}_{i}+\mathbf{F}_{i}=0
$$

The virtual work for a system in static equilibrium is

$$
\delta W=\sum_{i=1}^{N}\left(\mathbf{R}_{i}+\mathbf{F}_{i}\right) \bullet \delta \mathbf{r}_{i}=0
$$

But virtual displacements must be perpendicular to constraint forces, so

$$
\mathbf{R}_{i} \bullet \delta \mathbf{r}_{i}=0
$$

which implies that we have

$$
\sum_{i=1}^{N} \mathbf{F}_{i} \bullet \delta \mathbf{r}_{i}=0
$$

Principle of virtual work:

The necessary and sufficient conditions for the static equilibrium of an initially motionless scleronomic system which is subject to workless bilateral constraints is that zero virtual work be done by the applied forces in moving through an arbitrary virtual displacement satisfying the constraints.

Example: System shown consists of 2 masses connected by a massless bar. Determine the coefficient of friction on the floor necessary for static equilibrium. (Wall is frictionless.)

Virtual Work:

$$
\delta W=m g \delta x_{1}-\mu N_{2} \delta x_{2}
$$

Constraints and force balance: $\quad \delta x_{1}=\delta x_{2}, \quad N_{2}=2 m g$ Substitution: $m g(1-2 \mu) \delta x=0$

Result:

$$
\mu=1 / 2
$$

So far we have approached this as a statics problem, but this is a dynamics course!!

Recall d'Alembert who made dynamics a special case of statics:

$$
\begin{array}{r}
\delta W=\sum_{i=1}^{N}\left(\mathbf{R}_{i}+\mathbf{F}_{i}-m_{i} \dot{\mathbf{r}}_{\mathrm{i}}\right) \bullet \delta \mathbf{r}_{i}=0 \\
\Rightarrow \sum_{i=1}^{N}\left(\mathbf{F}_{i}-m_{i} \dot{\mathbf{r}}_{i}\right) \bullet \delta \mathbf{r}_{i}=0
\end{array}
$$

\rightarrow So we can apply all of the previous results to the dynamics problem as well.

Comments:

$>$ Virtual work and virtual displacements play an important role in analytical dynamics, but fade from the picture in the application of the methods.
$>$ However, this is why we can ignore the calculation of the constraint forces.

Generalized Forces

Since we have defined generalized coordinates, we need generalized forces to work in the same "space."

Consider the 2 particle problem:

Coordinates: $\quad x_{1}, x_{2}, x_{3}, x_{4}$
Constraint: $\quad\left(x_{1}-x_{3}\right)^{2}+\left(x_{2}-x_{4}\right)^{2}=l^{2}$
DOF: $\quad 4-1=3$

- Select $n=3$ generalized coordinates:

$$
q_{1}=\frac{\left(x_{1}+x_{3}\right)}{2} \quad q_{2}=\frac{\left(x_{2}+x_{4}\right)}{2} \quad q_{3}=\tan ^{-1} \frac{\left(x_{4}-x_{2}\right)}{\left(x_{3}-x_{1}\right)}
$$

- Can also write the inverse mapping:

$$
x_{i}=f_{i}\left(q_{1}, q_{2}, q_{3}, \ldots q_{n}, t\right)
$$

Virtual Work:

$$
\delta W=\sum_{j=1}^{3 N} F_{j} \delta x_{j}
$$

Constraint relations:

$$
\delta x_{j}=\sum_{i=1}^{n}\left(\frac{\partial x_{j}}{\partial q_{i}}\right) \delta q_{i}
$$

Substitution:

$$
\delta W=\sum_{j=1}^{3 N} \sum_{i=1}^{n} F_{j}\left(\frac{\partial x_{j}}{\partial q_{i}}\right) \delta q_{i}
$$

Define Generalized Force: $\quad Q_{i}=\sum_{j=1}^{3 N} F_{j}\left(\frac{\partial x_{j}}{\partial q_{i}}\right)$
\rightarrow Work done for unit displacement of q_{i} by forces acting on the system when all other generalized coordinates remain constant.

$$
\Rightarrow \delta W=\sum_{i=1}^{n} Q_{i} \delta q_{i}
$$

- If q_{i} is an angle, Q_{i} is a torque
- If q_{i} is a length, Q_{i} is a force
- If the q_{i} 's are independent, then for static equilibrium must have:

$$
Q_{i}=0, \quad i=1,2, \ldots n
$$

Derivation of Lagrange's Equation

- Two approaches
(A) Start with energy expressions

Lagrange's Equations
(Greenwood, 6-6)

Newton's Laws
(B) Start with Newton's Laws

Lagrange's Equations
(Wells, Chapters 3\&4)

Energy Expressions
(A) Replicated the application of Lagrange's equations in solving problems
(B) Provides more insight and feel for the physics

Our process

1. Start with Newton
2. Apply virtual work
3. Introduce generalized coordinates
4. Eliminate constraints
5. Using definition of derivatives, eliminate explicit use of acceleration

- Start with a single particle with a single constraint, e.g.
- Marble rolling on a frictionless sphere,
- Conical pendulum

1. Newton: $\mathbf{F}=m \mathbf{a}$

- For the particle: $F_{x}=m \ddot{x}, F_{y}=m \ddot{y}, F_{z}=m \ddot{z}$ where axes x, y, z describe an inertial frame
- Note that F_{x}, F_{y}, F_{z} are the vector sum of all forces acting on the particle (applied and constraint forces)

2. Apply Virtual Work:

- Consider $\delta \mathbf{s}$, which is an arbitrary displacement for the system, then the virtual work associated with this displacement is:

$$
\delta W=F_{x} \delta x+F_{y} \delta y+F_{z} \delta z
$$

- Note that $\delta \mathbf{s}$ may violate the applied constraints, because \mathbf{F} contains constraint forces
- Combine Newton and Virtual Work

$$
\begin{aligned}
& F_{x} \delta x=m \ddot{x} \delta x \\
& F_{y} \delta y=m \ddot{y} \delta y \\
& F_{z} \delta z=m \ddot{z} \delta z
\end{aligned}
$$

- Add the equations

$$
m(\ddot{x} \delta x+\ddot{y} \delta y+\ddot{z} \delta z)=F_{x} \delta x+F_{y} \delta y+F_{z} \delta z
$$

- Called D'Alembert's equation:

$$
m(\ddot{x} \delta x+\ddot{y} \delta y+\ddot{z} \delta z)=F_{x} \delta x+F_{y} \delta y+F_{z} \delta z
$$

- Observations:
- Scalar relationship
- LHS \approx kinetic energy
- $\mathrm{RHS} \approx$ virtual work term

3. Introduce generalized coordinates

- Assumed motion on a sphere $\boldsymbol{\rightarrow} 1$ stationary constraint
- $\mathrm{DOF}=3-1=2$ generalized coordinates

$$
x=f_{1}\left(q_{1}, q_{2}\right), \quad y=f_{2}\left(q_{1}, q_{2}\right), \quad z=f_{3}\left(q_{1}, q_{2}\right)
$$

- Define virtual displacements in terms of generalized coordinates:

$$
\begin{aligned}
& \delta x_{j}=\sum_{i=1}^{n}\left(\frac{\partial x_{j}}{\partial q_{i}}\right) \delta q_{i} \\
& \delta x=\frac{\partial x}{\partial q_{1}} \delta q_{1}+\frac{\partial x}{\partial q_{2}} \delta q_{2} \\
& \rightarrow \delta y=\frac{\partial y}{\partial q_{1}} \delta q_{1}+\frac{\partial y}{\partial q_{2}} \delta q_{2} \\
& \delta z=\frac{\partial z}{\partial q_{1}} \delta q_{1}+\frac{\partial z}{\partial q_{1}} \delta q_{2}
\end{aligned}
$$

- Note: these virtual displacements conform to the constraints, because the mapping of the generalized coordinates conforms to the surface of the sphere.
- Substitute virtual displacements into D'Alembert's equation

$$
\begin{gathered}
\delta x=\frac{\partial x}{\partial q_{1}} \delta q_{1}+\frac{\partial x}{\partial q_{2}} \delta q_{2} \\
\delta y=\frac{\partial y}{\partial q_{1}} \delta q_{1}+\frac{\partial y}{\partial q_{2}} \delta q_{2} \\
\delta z=\frac{\partial z}{\partial q_{1}} \delta q_{1}+\frac{\partial z}{\partial q_{1}} \delta q_{2} \\
\{ \\
m(\ddot{x} \delta x+\ddot{y} \delta y+\ddot{z} \delta z)=F_{x} \delta x+F_{y} \delta y+F_{z} \delta z \\
m\left(\ddot{x} \frac{\partial x}{\partial q_{1}}+\ddot{y} \frac{\partial y}{\partial q_{1}}+\ddot{z} \frac{\partial z}{\partial q_{1}}\right) \delta q_{1}+m\left(\ddot{x} \frac{\partial x}{\partial q_{2}}+\ddot{y} \frac{\partial y}{\partial q_{2}}+\ddot{z} \frac{\partial z}{\partial q_{2}}\right) \delta q_{2} \\
=\left(F_{x} \frac{\partial x}{\partial q_{1}}+F_{y} \frac{\partial y}{\partial q_{1}}+F_{z} \frac{\partial z}{\partial q_{1}}\right) \delta q_{1}+\left(F_{x} \frac{\partial x}{\partial q_{2}}+F_{y} \frac{\partial y}{\partial q_{2}}+F_{z} \frac{\partial z}{\partial q_{2}}\right) \delta q_{2}
\end{gathered}
$$

- Facts:
- Virtual displacements δq_{1} and δq_{2} conform to constraints
- Virtual work δW is work that conforms to constraints
- δq_{1} and δq_{2} are independent and can be independently moved without violating constraints

- Conclusion:

- Force of the constraint has been eliminated by selecting generalized coordinates that enforce the constraint (Reason 2 for Lagrange, pg 24)
- Further, we can split the equation into two equations in two unknowns due to independence of δq_{1} and δq_{2}.

$$
\begin{aligned}
& m\left(\ddot{x} \frac{\partial x}{\partial q_{1}}+\ddot{y} \frac{\partial y}{\partial q_{1}}+\ddot{z} \frac{\partial z}{\partial q_{1}}\right)=\left(F_{x} \frac{\partial x}{\partial q_{1}}+F_{y} \frac{\partial y}{\partial q_{1}}+F_{z} \frac{\partial z}{\partial q_{1}}\right) \\
& m\left(\ddot{x} \frac{\partial x}{\partial q_{2}}+\ddot{y} \frac{\partial y}{\partial q_{2}}+\ddot{z} \frac{\partial z}{\partial q_{2}}\right)=\left(F_{x} \frac{\partial x}{\partial q_{2}}+F_{y} \frac{\partial y}{\partial q_{2}}+F_{z} \frac{\partial z}{\partial q_{2}}\right)
\end{aligned}
$$

5. Finally, eliminate acceleration terms

- Consider the total derivative

$$
\frac{d}{d t}\left(\dot{x} \frac{\partial x}{\partial q_{1}}\right)=\ddot{x} \frac{\partial x}{\partial q_{1}}+\dot{x} \frac{d}{d t}\left(\frac{\partial x}{\partial q_{1}}\right)
$$

- Rearrange

$$
\begin{equation*}
\ddot{x} \frac{\partial x}{\partial q_{1}}=\frac{d}{d t}\left(\dot{x} \frac{\partial x}{\partial q_{1}}\right)-\dot{x} \frac{d}{d t}\left(\frac{\partial x}{\partial q_{1}}\right) \tag{1}
\end{equation*}
$$

- Recall

$$
x=f_{1}\left(q_{1}, q_{2}\right) \quad \therefore \quad \dot{x}=\frac{d}{d t}\left[f_{1}\left(q_{1}, q_{2}\right)\right]
$$

- Perform the derivative (chain rule):

$$
\begin{equation*}
\dot{x}=\frac{\partial x}{\partial q_{1}} \dot{q}_{1}+\frac{\partial x}{\partial q_{2}} \dot{q}_{2} \tag{2}
\end{equation*}
$$

- Partial derivative of (2) with respect to \dot{q}_{1} gives

$$
\begin{equation*}
\frac{\partial \dot{x}}{\partial \dot{q}_{1}}=\frac{\partial x}{\partial q_{1}} \tag{3}
\end{equation*}
$$

- Since $x=f_{1}\left(q_{1}, q_{2}\right), \frac{\partial x}{\partial q_{1}}=g_{1}\left(q_{1}, q_{2}\right)$ is a ftn of both q_{1} and q_{2}
the time derivative of $\frac{\partial x}{\partial q_{1}}$ gives (chain rule again)

$$
\begin{equation*}
\frac{d}{d t}\left(\frac{\partial x}{\partial q_{1}}\right)=\frac{\partial}{\partial q_{1}}\left(\frac{\partial x}{\partial q_{1}}\right) \dot{q}_{1}+\frac{\partial}{\partial q_{2}}\left(\frac{\partial x}{\partial q_{1}}\right) \dot{q}_{2} \tag{4}
\end{equation*}
$$

- Partial derivative of \dot{x} (2) with respect to q_{1} gives

$$
\begin{equation*}
\frac{\partial \dot{x}}{\partial q_{1}}=\frac{\partial}{\partial q_{1}}\left(\frac{\partial x}{\partial q_{1}}\right) \dot{q}_{1}+\frac{\partial}{\partial q_{1}}\left(\frac{\partial x}{\partial q_{2}}\right) \dot{q}_{2} \tag{5}
\end{equation*}
$$

- Note RHS of 4 and 5 are the same, thus

$$
\begin{equation*}
\rightarrow \frac{\partial \dot{x}}{\partial q_{1}}=\frac{d}{d t}\left(\frac{\partial x}{\partial q_{1}}\right) \tag{6}
\end{equation*}
$$

- Now, insert (3) and (6) into (1):

$$
\begin{gather*}
\ddot{x} \frac{\partial x}{\partial q_{1}}=\frac{d}{d t}\left(\dot{x} \frac{\partial x}{\partial q_{1}}\right)-\dot{x} \frac{d}{d t}\left(\frac{\partial x}{\partial q_{1}}\right) \tag{1}\\
\frac{\partial x}{\partial q_{1}}=\frac{\partial \dot{x}}{\partial \dot{q}_{1}} \quad \frac{d}{d t}\left(\frac{\partial x}{\partial q_{1}}\right)=\frac{\partial \dot{x}}{\partial q_{1}} \tag{3and6}
\end{gather*}
$$

- Results in:

$$
\begin{equation*}
\ddot{x} \frac{\partial x}{\partial q_{1}}=\frac{d}{d t}\left(\dot{x} \frac{\partial \dot{x}}{\partial \dot{q}_{1}}\right)-\dot{x} \frac{\partial \dot{x}}{\partial q_{1}} \tag{7}
\end{equation*}
$$

- Note that

$$
\dot{x} \frac{\partial \dot{x}}{\partial \dot{q}_{1}}=\frac{\partial\left(\frac{\dot{x}^{2}}{2}\right)}{\partial \dot{q}_{1}} \quad \text { and } \quad \dot{x} \frac{\partial \dot{x}}{\partial q_{1}}=\frac{\partial\left(\frac{\dot{x}^{2}}{2}\right)}{\partial q_{1}}
$$

- Finally

$$
\begin{equation*}
\ddot{x} \frac{\partial x}{\partial q_{1}}=\frac{d}{d t}\left(\frac{\partial\left(\frac{\dot{x}^{2}}{2}\right)}{\partial \dot{q}_{1}}\right)-\frac{\partial\left(\frac{\dot{x}^{2}}{2}\right)}{\partial q_{1}} \tag{8}
\end{equation*}
$$

- The above process is identical for y and z.
- Recall our virtual work equation for q_{1} :

$$
m\left(\ddot{x} \frac{\partial x}{\partial q_{1}}+\ddot{y} \frac{\partial y}{\partial q_{1}}+\ddot{z} \frac{\partial z}{\partial q_{1}}\right)=\left(F_{x} \frac{\partial x}{\partial q_{1}}+F_{y} \frac{\partial y}{\partial q_{1}}+F_{z} \frac{\partial z}{\partial q_{1}}\right)
$$

- Insert equations (8) for x, y and z and collect terms to eliminate acceleration terms. (Reason 3 for Lagrange, pg 24)

$$
\begin{aligned}
& \frac{d}{d t}\left(\frac{\partial}{\partial \dot{q}_{1}}\left(m \frac{\dot{x}^{2}+\dot{y}^{2}+\dot{z}^{2}}{2}\right)\right)-\frac{\partial}{\partial q_{1}}\left(m \frac{\dot{x}^{2}+\dot{y}^{2}+\dot{z}^{2}}{2}\right) \\
& \quad=\left(F_{x} \frac{\partial x}{\partial q_{1}}+F_{y} \frac{\partial y}{\partial q_{1}}+F_{z} \frac{\partial z}{\partial q_{1}}\right)
\end{aligned}
$$

- Observe that:

$$
T=\frac{1}{2} m v^{2}=\frac{1}{2} m\left(\dot{x}^{2}+\dot{y}^{2}+\dot{z}^{2}\right)
$$

which is the kinetic energy of the particle

- Finally:

$$
\frac{d}{d t}\left(\frac{\partial}{\partial \dot{q}_{1}} T\right)-\frac{\partial}{\partial q_{1}} T=\left(F_{x} \frac{\partial x}{\partial q_{1}}+F_{y} \frac{\partial y}{\partial q_{1}}+F_{z} \frac{\partial z}{\partial q_{1}}\right)
$$

- Similarly:

$$
\frac{d}{d t}\left(\frac{\partial}{\partial \dot{q}_{2}} T\right)-\frac{\partial}{\partial q_{2}} T=\left(F_{x} \frac{\partial x}{\partial q_{2}}+F_{y} \frac{\partial y}{\partial q_{2}}+F_{z} \frac{\partial z}{\partial q_{2}}\right)
$$

- The general form of Lagrange's equation is thus:

$$
\begin{gathered}
\frac{d}{d t}\left(\frac{\partial}{\partial \dot{q}_{r}} T\right)-\frac{\partial}{\partial q_{r}} T=Q_{q_{r}} \\
Q_{q_{r}}=\left(F_{x} \frac{\partial x}{\partial q_{r}}+F_{y} \frac{\partial y}{\partial q_{r}}+F_{z} \frac{\partial z}{\partial q_{r}}\right)
\end{gathered}
$$

- Some observations:
- One Lagrange equation needed for each DOF
- Easily extendable for a system of particles
- T-Expression of system kinetic energy
- All inertial forces contained in the LHS
- $Q_{q r}$ only contains external forces
- How to use this

1. Determine number of DOF and constraints
2. Identify generalized coordinates and equations of constraint
a. Iterate on 1 and 2 if needed
3. Write expression for T
a. v inertial velocity that can be written in terms of the coordinates of any frame
b. Find required derivatives of T
4. Find generalized forces $Q_{q_{r}}$
a. If forces are known in inertial coordinates, transform them to generalized coordinates
b. Apply generalized force equation for each force

$$
Q_{q_{r}}=\left(F_{x} \frac{\partial x}{\partial q_{r}}+F_{y} \frac{\partial y}{\partial q_{r}}+F_{z} \frac{\partial z}{\partial q_{r}}\right)
$$

5. Substitute into Lagrange's equation
6. Solve analytically or numerically

Example: Projectile Problem:

$1,2,3 . \operatorname{DOF}=3$, no constraints
4. $\quad T=\frac{1}{2} m v^{2}=\frac{1}{2} m\left(\dot{x}^{2}+\dot{y}^{2}+\dot{z}^{2}\right)$
5. $\frac{\partial T}{\partial \dot{x}}=m \dot{x}, \frac{\partial T}{\partial \dot{y}}=m \dot{y}, \frac{\partial T}{\partial \dot{z}}=m \dot{z}$
$\frac{d}{d t}\left(\frac{\partial T}{\partial \dot{x}}\right)=m \ddot{x}, \frac{d}{d t}\left(\frac{\partial T}{\partial \dot{y}}\right)=m \ddot{y}, \frac{d}{d t}\left(\frac{\partial T}{\partial \dot{z}}\right)=m \ddot{z}$
$\frac{\partial T}{\partial x}=\frac{\partial T}{\partial y}=\frac{\partial T}{\partial z}=0$
6. Generalized forces:

$$
\begin{aligned}
& Q_{q_{r}}=\left(F_{x} \frac{\partial x}{\partial q_{r}}+F_{y} \frac{\partial y}{\partial q_{r}}+F_{z} \frac{\partial z}{\partial q_{r}}\right) \\
& \mathbf{F}=-m g \hat{z} \\
& Q_{q_{x}}=Q_{q_{y}}=0, \quad Q_{q_{z}}=F_{z} \frac{\partial z}{\partial z}=-m g
\end{aligned}
$$

7. $\mathrm{EOMs}: m \ddot{x}=0,=m \ddot{y}=0, m \ddot{z}=-m g$
8. Solve differential equations.

- Comments:
- Method is overkill for this problem
- Inspection shows agreement with Newton

Example: Mass moving along a frictionless track.

- Track geometry defined such that:

$$
\rho=a z, \text { and } \phi=-b z
$$

DOF $=3-2=1$

- Constraint equations: $\rho=a z$, and $\phi=-b z$
- Generalized coordinate: z
- Find $T=\frac{1}{2} m v^{2}$, what is v ?
- Define rotating coordinate frame such that mass remains in $\hat{x}-\hat{z}$ plane.

$$
\begin{aligned}
& r=\rho \hat{x}+z \hat{z}=a z \hat{x}+z \hat{z} \quad \text { and } \quad \omega=\dot{\phi} \hat{z}=-b z \hat{z} \\
& v^{2}=\dot{r} \bullet \dot{r} \\
& \dot{r}=a \dot{z} \hat{x}+\dot{z} \hat{z}+(-b z \hat{z}) \times a z \hat{x}+z \hat{z} \\
& =a \dot{z} \hat{x}-a b \dot{z} z \hat{y}+\dot{z} \hat{z} \\
& =(a \dot{z})^{2}+(a b \dot{z} z)^{2}+\dot{z}^{2} \\
& =\left(1+a^{2}+a^{2} b^{2} z^{2}\right) \dot{z}^{2}
\end{aligned}
$$

$$
T=\frac{m}{2}\left(1+a^{2}+a^{2} b^{2} z^{2}\right) \dot{z}^{2} \quad \text { and } \quad \frac{\partial T}{\partial \dot{z}}=m\left(1+a^{2}+a^{2} b^{2} z^{2}\right) \dot{z}
$$

$$
\begin{aligned}
& \frac{d}{d t}\left(\frac{\partial T}{\partial \dot{z}}\right)=m\left(1+a^{2}+a^{2} b^{2} z^{2}\right) \ddot{z}+2 m\left(a^{2} b^{2} z\right) \dot{z}^{2} \\
& \frac{\partial T}{\partial z}=m\left(a^{2} b^{2} z\right) \dot{z}^{2}
\end{aligned}
$$

- External force is gravity

$$
\begin{gathered}
Q_{q_{r}}=\left(F_{x} \frac{\partial x}{\partial q_{r}}+F_{y} \frac{\partial y}{\partial q_{r}}+F_{z} \frac{\partial z}{\partial q_{r}}\right) \\
\mathbf{F}=-m g \hat{z} \\
Q_{q_{x}}=Q_{q_{y}}=0, \quad Q_{q_{z}}=F_{z} \frac{\partial z}{\partial z}=-m g
\end{gathered}
$$

- Equation of Motion:

$$
\left(a^{2}+a^{2} b^{2} z^{2}+1\right) \ddot{z}+a^{2} b^{2} z \dot{z}^{2}=-g
$$

- Comments:

- Solution highly nonlinear
- "Trick" was finding inertial velocity
- Still need to use FARM approach

Extending Lagrange's Equation to Systems with Multiple Particles

- Assume a system of particles and apply Newton's laws:

$$
\begin{gathered}
F_{x_{1}}=m \ddot{x}_{1}, F_{y_{1}}=m \ddot{y}_{1}, F_{z_{1}}=m \ddot{z}_{1} \\
\vdots \\
\vdots \\
F_{x_{p}}=m \ddot{x}_{p}, F_{y_{p}}=m \ddot{y}_{p}, F_{z_{p}}=m \ddot{z}_{p}
\end{gathered}
$$

- As before, the F 's contain both external and constraint forces.
- Multiply both sides of each equation by the appropriate virtual displacement and add all the equations together.

$$
\sum_{i=1}^{p} m\left(\ddot{x}_{i} \delta x_{i}+\ddot{y}_{i} \delta y_{i}+\ddot{z}_{i} \delta z_{i}\right)=\sum_{i=1}^{p}\left(F_{x_{i}} \delta x_{i}+F_{y_{i}} \delta y_{i}+F_{z_{i}} \delta z_{i}\right)
$$

- Recall that this is D'Alembert's equation
- Assume the system has n DOF, $n \leq 3 p$
- Select generalized coordinates, q_{i} that enforce the constraints:

$$
\begin{aligned}
& x_{i}=f_{i}\left(q_{1}, q_{2}, \ldots, q_{n}, t\right) \\
& y_{i}=g_{i}\left(q_{1}, q_{2}, \ldots, q_{n}, t\right) \\
& z_{i}=h_{i}\left(q_{1}, q_{2}, \ldots, q_{n}, t\right)
\end{aligned}
$$

- Express virtual displacements in terms of generalized coordinates:

$$
\begin{aligned}
& \delta x_{i}=\frac{\partial x_{i}}{\partial q_{1}} \delta q_{1}+\frac{\partial x_{i}}{\partial q_{2}} \delta q_{2}+\ldots+\frac{\partial x_{i}}{\partial q_{n}} \delta q_{n} \\
& \delta y_{i}=\frac{\partial y_{i}}{\partial q_{1}} \delta q_{1}+\frac{\partial y_{i}}{\partial q_{2}} \delta q_{2}+\ldots+\frac{\partial y_{i}}{\partial q_{n}} \delta q_{n} \\
& \delta z_{i}=\frac{\partial z_{i}}{\partial q_{1}} \delta q_{1}+\frac{\partial z_{i}}{\partial q_{2}} \delta q_{2}+\ldots+\frac{\partial z_{i}}{\partial q_{n}} \delta q_{n}
\end{aligned}
$$

- Substitute the relations into D'Alembert's equation

$$
\begin{aligned}
& \sum_{i=1}^{p} m\left(\ddot{x}_{i} \frac{\partial x_{i}}{\partial q_{r}}+\ddot{y}_{i} \frac{\partial y_{i}}{\partial q_{r}}+\ddot{z}_{i} \frac{\partial z_{i}}{\partial q_{r}}\right) \delta q_{r} \\
& \quad=\sum_{i=1}^{p}\left(F_{x_{i}} \frac{\partial x_{i}}{\partial q_{r}}+F_{y_{i}} \frac{\partial y_{i}}{\partial q_{r}}+F_{z_{i}} \frac{\partial z_{i}}{\partial q_{r}}\right) \delta q_{r}
\end{aligned}
$$

- As before, have used fact that the generalized coordinates automatically enforce the constraints.
- Sum over the entire system of particles decouples for each of the generalized coordinates.
- This leaves us n such equations.
- Using the calculus relations (chain rule), one can show that

$$
\frac{d}{d t}\left(\frac{\partial}{\partial \dot{q}_{r}} T\right)-\frac{\partial}{\partial q_{r}} T=Q_{q_{r}}
$$

- Once again, one Lagrange equation for each DOF.

Lagrange's Equation for Conservative Systems

- Conservative forces and conservative systems
- Forces are such that the work done by the forces in moving the system from one state to another depends only on the initial and final coordinates of the particles (path independence).
- Potential Energy, V
- Work done by a conservative force in a transfer from a general configuration A to a reference configuration B is the potential energy of the system at A with respect to B.
- Note: V is defined as work from the general state to the reference state.
- Examples of conservative forces:
- Springs (linear elastic)
- Elastic bodies
- Gravity force
- Non-conservative forces
- Friction
- Drag of a fluid
- Any force with time or velocity dependence
- General Expression for V, the potential energy

$$
V=-\int_{B}^{A} \sum_{i=1}^{P}\left(F_{x_{i}} d x_{i}+F_{y_{i}} d y_{i}+F_{z_{i}} d z_{i}\right)
$$

- Note the "-" sign since the path is from B to A. The sum is over the P particles in the system.
- For path independence, integrand must be an exact differential. Thus:

$$
F_{x_{i}}=-\frac{\partial V}{\partial x_{i}} \quad F_{y_{i}}=-\frac{\partial V}{\partial y_{i}} \quad F_{z_{i}}=-\frac{\partial V}{\partial z_{i}}
$$

- Observe that:

$$
\begin{aligned}
& \frac{\partial F_{x_{3}}}{\partial y_{4}}=\frac{\partial}{\partial y_{4}}\left(-\frac{\partial V}{\partial x_{3}}\right)=-\frac{\partial^{2} V}{\partial x_{3} \partial y_{4}} \\
& \frac{\partial F_{y_{4}}}{\partial x_{3}}=\frac{\partial}{\partial x_{3}}\left(-\frac{\partial V}{\partial y_{4}}\right)=-\frac{\partial^{2} V}{\partial x_{3} \partial y_{4}}
\end{aligned}
$$

- Thus, in general

$$
\begin{equation*}
\frac{\partial F_{x_{i}}}{\partial y_{r}}=\frac{\partial F_{y_{r}}}{\partial x_{i}} \tag{C2}
\end{equation*}
$$

- Equation (C1) represents a necessary condition for a force to be conservative, Equation (C2) is a sufficient condition.
- Recall expression for generalized forces:

$$
Q_{q r}=\sum_{i=1}^{p}\left(F_{x_{i}} \frac{\partial x_{i}}{\partial q_{r}}+F_{y_{i}} \frac{\partial y_{i}}{\partial q_{r}}+F_{z_{i}} \frac{\partial z_{i}}{\partial q_{r}}\right)
$$

- Separate forces into conservative and non-conservative

$$
\begin{aligned}
Q_{q r} & =-\sum_{i=1}^{p}\left(\frac{\partial V}{\partial x_{i}} \frac{\partial x_{i}}{\partial q_{r}}+\frac{\partial V}{\partial y_{i}} \frac{\partial y_{i}}{\partial q_{r}}+\frac{\partial V}{\partial y_{i}} \frac{\partial z_{i}}{\partial q_{r}}\right)+Q_{q r}^{N} \\
& =-\frac{\partial V}{\partial q_{r}}+Q_{q r}^{N}
\end{aligned}
$$

- Lagrange's Equation:

$$
\frac{d}{d t}\left(\frac{\partial}{\partial \dot{q}_{r}} T\right)-\frac{\partial}{\partial q_{r}} T=Q_{q_{r}}
$$

- Substitute in generalized force:

$$
\begin{aligned}
& \frac{d}{d t}\left(\frac{\partial}{\partial \dot{q}_{r}} T\right)-\frac{\partial}{\partial q_{r}} T=-\frac{\partial V}{\partial q_{r}}+Q_{q r}^{N} \\
& \Rightarrow \frac{d}{d t}\left(\frac{\partial}{\partial \dot{q}_{r}} T\right)-\frac{\partial}{\partial q_{r}}(T-V)=Q_{q r}^{N}
\end{aligned}
$$

- Since conservative forces are not functions of
velocities: $\frac{\partial}{\partial \dot{q}_{r}} V=0$
- Thus, can define the Lagrangian $L=T-V$ to obtain the final form of Lagrange's equation:

$$
\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{q}_{r}}\right)-\frac{\partial L}{\partial q_{r}}=F_{q r}
$$

Example: Planar pendulum with an inline spring.

- $\mathrm{DOF}=3-1=2$
- Constraint equation: $z=0$
- Generalized coordinates: r, θ
- Coordinate mapping: $x=r \cos \theta, \quad y=r \sin \theta$
- Kinetic energy

$$
T=\frac{1}{2} m v^{2}=\frac{1}{2} m\left(\dot{x}^{2}+\dot{y}^{2}\right)
$$

- Derivatives of coordinates:

$$
\dot{x}=\dot{r} \cos \theta-r \dot{\theta} \sin \theta, \quad \dot{y}=\dot{r} \sin \theta+r \dot{\theta} \cos \theta
$$

- Substitute into kinetic energy equation

$$
T=\frac{1}{2} m\left(\dot{r}^{2}+r^{2} \dot{\theta}^{2}\right)
$$

- Potential energy

$$
V=\frac{1}{2} k\left(r-r_{o}\right)^{2}-m g r \cos \theta
$$

- Lagrangian

$$
L=T-V=\frac{1}{2} m\left(\dot{r}^{2}+r^{2} \dot{\theta}^{2}\right)-\frac{1}{2} k\left(r-r_{o}\right)^{2}+m g r \cos \theta
$$

- Derivatives of L (note need to do this for each GC)

$$
\begin{aligned}
& \frac{\partial L}{\partial \dot{r}}=m \dot{r}, \quad \frac{d}{d t}\left(\frac{\partial L}{\partial \dot{r}}\right)=m \ddot{r}, \quad \frac{\partial L}{\partial r}=m r \dot{\theta}^{2}-k\left(r-r_{o}\right)+m g \cos \theta \\
& \frac{\partial L}{\partial \dot{\theta}}=m r^{2} \dot{\theta}, \quad \frac{d}{d t}\left(\frac{\partial L}{\partial \dot{\theta}}\right)=m r^{2} \ddot{\theta}+2 m r \dot{r} \dot{\theta}, \quad \frac{\partial L}{\partial \theta}=-m g r \sin \theta
\end{aligned}
$$

- Substitute into Lagrange's Equation:

$$
\begin{aligned}
m \ddot{r}-m r \dot{\theta}^{2}+k\left(r-r_{o}\right) & =m g \cos \theta \\
m r^{2} \ddot{\theta}+2 m r \dot{r} \dot{\theta}-m g r \sin \theta & =0
\end{aligned}
$$

