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Derivation of Lagrangian Equations 
 
Basic Concept: Virtual Work 
Consider system of N particles located at ( )1 2 3 3, , , Nx x x x…

)
 with 

3 forces per particle ( 1 2 3 3, , , NF F F F… , each in the positive 
direction. 
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Assume system given small, arbitrary displacements in all 
directions. 
 
Called virtual displacements 

- No passage of time 
- Applied forces remain constant 
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The work done by the forces is termed Virtual Work. 
3

1

N

j j
j

W F xδ δ
=

= ∑  

Note use of δx and not dx. 
 
Note: 

• There is no passage of time 
• The forces remain constant. 

 
 
In vector form: 

3

1
i i

i
Wδ δ

=

= •∑F r  

 
 
Virtual displacements MUST satisfy all constraint relationships,  
 
! Constraint forces do no work. 
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Example:  Two masses connected by a rod 
 

l

1R
2R

�re

l

1R
2R

�re

 
 
Constraint forces:  

1 2 �rR e2= − = −R R  
 

Now assume virtual displacements 1δ r , and 2δ r  - but the 
displacement components along the rigid rod must be equal, so 
there is a constraint equation of the form 

21 rere rr δδ •=•  
Virtual Work: 

 

( )

1 1 2 2

2 1 2

2 2 1

� �
�

0

R r R r
r r

r
r r

r
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R e R e
R R e

= • + •
= − • + •

= − •

=

2

δ δ δ
δ δ

δ
 

 
So the virtual work done of the constraint forces is zero 
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This analysis extends to rigid body case 
• Rigid body is a collection of masses  
• Masses held at a fixed distance.   

 
! Virtual work for the internal constraints of a rigid body   
 displacement is zero. 
 
 
Example:  Body sliding on rigid surface without friction 
 

 
 

Since the surface is rigid and fixed, 0, 0sr Wδ δ= → =  

 
For the body, 1W 1δ δ= •R

W

r , but the direction of the virtual 
displacement that satisfies the constraints is perpendicular to the 
constraint force.  Thus 0δ = . 
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Principle of Virtual Work 

im  = mass of particle i 

iR  = Constraint forces acting on the particle 

iF  = External forces acting on the particle 

 
! For static equilibrium (if all particles of the system are 
motionless in the inertial frame and if the vector sum of all 
forces acting on each particle is zero) 

0i i+ =R F  

The virtual work for a system in static equilibrium is 

( )
1

0
N

i i i
i

Wδ δ
=

= + •∑ R F r =  

But virtual displacements must be perpendicular to constraint 
forces, so 

0i iδ• =R r , 

which implies that we have 

1

0
N

i i
i

δ
=

• =∑F r  

 
Principle of virtual work: 
The necessary and sufficient conditions for the static 
equilibrium of an initially motionless scleronomic system 
which is subject to workless bilateral constraints is that zero 
virtual work be done by the applied forces in moving through 
an arbitrary virtual displacement satisfying the constraints. 
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Example:  System shown consists of 2 masses connected by a 
massless bar.  Determine the coefficient of friction on the floor 
necessary for static equilibrium.  (Wall is frictionless.) 

 

  
Virtual Work: 1 2W mg x N x2δ δ µ δ= −  

 
Constraints and force balance: 1 2 2, 2x x N mgδ δ= =  

Substitution: ( )1 2mg x 0µ δ− =  

 

Result: 1
2µ =  
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So far we have approached this as a statics problem, but this is a 
dynamics course!! 
 
Recall d�Alembert who made dynamics a special case of statics: 

( )

( )

i
1

1

0

0

R F r r

F r r

N

i i i i
i

N

i i i i
i

W m

m

=

=

= + − •

− • =

∑

∑

""

""

δ δ

δ
 

=

⇒

 
! So we can apply all of the previous results to the dynamics 
 problem as well. 
 
Comments: 

 
" Virtual work and virtual displacements play an important 

role in analytical dynamics, but fade from the picture in the 
application of the methods.   

 
" However, this is why we can ignore the calculation of the 

constraint forces.  
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Generalized Forces 
Since we have defined generalized coordinates, we need 
generalized forces to work in the same �space.� 
 
Consider the 2 particle problem: 
 

(x1, x2)

(x3, x4)

xi

xj

l θ

(x1, x2)

(x3, x4)

xi

xj

l θ

 
 

( ) ( )
1 2 3 4

2 2 2
1 3 2 4

Coordinates: , , ,

Constraint:
DOF: 4 1 3

x x x x

x x x x l− + − =

− =

 

 
• Select n=3 generalized coordinates: 
 

q x x q x x q x x
x x1

1 3
2

2 4
3

1 4 2

3 12 2
=

+
=

+
=

−
−

−( ) ( ) tan ( )
( )  

• Can also write the inverse mapping: 
 

( )1 2 3, , , ,i i nx f q q q q t= …  
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Virtual Work:   
3

1

N

j j
j

W F xδ δ
=

= ∑  

 

Constraint relations:  
1

n
j

j i
i i

x
x q

q=

∂ 
δ = δ ∂ 

∑  

 

Substitution:     

3

1 1

N n
j

j i
j i i

x
W F

q= =

∂ 
qδ = δ ∂ 

∑∑  

 

Define Generalized Force:      
3

1

N
j

i j
j i

x
q=

Q F
∂ 

=  ∂ 
∑  

 
! Work done for unit displacement of qi by forces acting on the 
system when all other generalized coordinates remain constant. 

 

   
⇒ =

=
∑δ δW Qi i
i

n

1
q

n

 

• If  is an angle,  is a torque iq iQ

• If  is a length,  is a force iq iQ

• If the �s are independent, then for static equilibrium must 
have: 

iq

0, 1, 2,iQ i= = …  
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Derivation of Lagrange�s Equation 
 
• Two approaches 
 
 (A)  Start with energy expressions 
 
    Formulation 
 
  Lagrange�s Equations  (Greenwood, 6-6) 
 
    Interpretation 
 
   Newton�s Laws 
 
 
 
 (B)  Start with Newton�s Laws 
 
    Formulation 
 
  Lagrange�s Equations  (Wells, Chapters 3&4) 
 
    Interpretation 
 
   Energy Expressions 
 
 
(A)  Replicated the application of Lagrange�s equations in 
solving problems 
 
(B)  Provides more insight and feel for the physics 
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Our process 

1. Start with Newton 

2. Apply virtual work 

3. Introduce generalized coordinates 

4. Eliminate constraints 

5. Using definition of derivatives, eliminate explicit use of 
acceleration 

 
• Start with a single particle with a single constraint, e.g. 
o Marble rolling on a frictionless sphere,  
o Conical pendulum 

 
 

θ

φ

r = L

x

y

z
m

F

Free body
Diagramθ

φ

r = L

x

y

z
m

F

Free body
Diagram
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1.  Newton:  m=F a
  
• For the particle:  , ,x y zF mx F my F mz= = ="" "" "" where axes x, y, z 

describe an inertial frame 
 
• Note that , ,x y zF F F  are the vector sum of all forces acting on 

the particle (applied and constraint forces) 
 
2. Apply Virtual Work:  
• Consider δs, which is an arbitrary displacement for the 

system, then the virtual work associated with this 
displacement is: 

 
x y zW F x F y F zδ δ δ δ= + +  

 
• Note that δs may violate the applied constraints, because F 

contains constraint forces 
 
• Combine Newton and Virtual Work 

 
x

y

z

F x mx x
F y my

F z mz z

y
δ δ
δ δ

δ δ

=
=

=

""
""
""

 

• Add the equations 
 

( ) x y zm x x y y z z F x F y F zδ δ δ δ δ+ + = + +"" "" "" δ  
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• Called D�Alembert�s equation: 
 

( ) x y zm x x y y z z F x F y F zδ δ δ δ δ+ + = + +"" "" "" δ  
 

• Observations: 
o Scalar relationship  
o LHS ≈ kinetic energy 
o RHS ≈ virtual work term 

 
3. Introduce generalized coordinates 
o Assumed motion on a sphere ! 1 stationary constraint 
o DOF = 3 - 1 = 2 generalized coordinates 

 
( ) ( ) ( )1 1 2 2 1 2 3 1 2, , , , ,x f q q y f q q z f q q= = =  

 
• Define virtual displacements in terms of generalized 

coordinates: 

1

n
j

j i
i i

x
x q

q=

∂ 
δ = δ ∂ 

∑     !    

1 2
1 2

1 2
1 2

1 2
1 1

x xx q
q q
y yy q
q q
z zz q
q q

q

q

q

∂ ∂
= +

∂ ∂
∂ ∂

= +
∂ ∂
∂ ∂

= +
∂ ∂

δ δ δ

δ δ δ

δ δ δ

 

 
• Note:  these virtual displacements conform to the constraints, 

because the mapping of the generalized coordinates conforms 
to the surface of the sphere. 
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• Substitute virtual displacements into D�Alembert�s equation 
 

1 2
1 2

1 2
1 2

1 2
1 1

x xx q
q q
y yy q
q q
z zz q
q q

q

q

q

∂ ∂
= +

∂ ∂
∂ ∂

= +
∂ ∂
∂ ∂

= +
∂ ∂

δ δ δ

δ δ δ

δ δ δ

 

 
 

( ) x y zm x x y y z z F x F y F zδ δ δ δ δ+ + = + +"" "" "" δ  
 
 
 

1 2
1 1 1 2 2 2

1 2
1 1 1 2 2 2

x y z x y z

x y z x y zm x y z q m x y z q
q q q q q q

x y z x y zF F F q F F F
q q q q q q

  ∂ ∂ ∂ ∂ ∂ ∂
+ + + + +  ∂ ∂ ∂ ∂ ∂ ∂  

  ∂ ∂ ∂ ∂ ∂ ∂
= + + + + +  ∂ ∂ ∂ ∂ ∂ ∂  

"" "" "" """" ""δ δ

q









δ δ

 

 
• Facts: 
o Virtual displacements 1qδ  and 2qδ conform to constraints 
o Virtual work Wδ  is work that conforms to constraints 
o 1qδ  and 2qδ  are independent and can be independently 

moved without violating constraints 
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• Conclusion: 
o Force of the constraint has been eliminated by selecting 

generalized coordinates that enforce the constraint  
(Reason 2 for Lagrange, pg 24) 

o Further, we can split the equation into two equations in two 
unknowns due to independence of 1qδ  and 2qδ . 

 

 

1 1 1 1 1 1

2 2 2 2 2

x y z

x y z

x y z x y zm x y z F F F
q q q q q q

x y z x ym x y z F F F
q q q q q q

  ∂ ∂ ∂ ∂ ∂ ∂
+ + = + +  ∂ ∂ ∂ ∂ ∂ ∂  

  ∂ ∂ ∂ ∂ ∂ ∂
+ + = + +  ∂ ∂ ∂ ∂ ∂ ∂  

"" "" ""

"" "" ""
2

z









 

 
5.  Finally, eliminate acceleration terms 
  
• Consider the total derivative 
 

1 1

d x x d xx x x
dt q q dt q

  ∂ ∂ ∂
= +  ∂ ∂ ∂  

" "" "
1




 

 
• Rearrange 
 

 
1 1

x d x d xx x x
q dt q dt q

  ∂ ∂
= −  ∂ ∂  

"" " "
1

∂
∂ 
 (1) 
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• Recall 

( ) ( )1 1 2 1 1 2, ,dx f q q x f q q
dt

 = ∴ =  "  

 
• Perform the derivative (chain rule): 
 

 1
1 2

x xx q
q q 2q∂ ∂

= +
∂ ∂

" " "  (2) 

 
• Partial derivative of (2) with respect to q  gives 1"
 

 
1 1

x
q q

x∂ ∂
=

∂ ∂
"
"

 (3) 

 

• Since ( ) (1 1 2 1 1 2
1

, , ,xx f q q g q q
q

)∂
= =

∂
 is a ftn of both q1 and q2 

the time derivative of 
1

x
q

∂
∂

 gives (chain rule again) 

 

 1
1 1 1 2 1

d x x xq
dt q q q q q

     ∂ ∂ ∂ ∂ ∂
= +     ∂ ∂ ∂ ∂ ∂     

" 2q"  (4) 

 
• Partial derivative of  (2) with respect to  gives x" 1q
 

 1
1 1 1 1 2

x x xq
q q q q q

   ∂ ∂ ∂ ∂ ∂
= +   ∂ ∂ ∂ ∂ ∂   

" " 2q"  (5) 
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• Note RHS of 4 and 5 are the same, thus 
 

 !  
1 1

x d x
q dt q

 ∂ ∂
=  ∂ ∂ 

"  (6) 

 
• Now, insert (3) and (6) into (1): 

 

 
1 1

x d x d xx x x
q dt q dt q

  ∂ ∂
= −  ∂ ∂  

"" " "
1

∂
∂ 
 (1) 

 

 
1 1

x
q q

∂ ∂
=

∂ ∂
"
"
x       

1 1

d x
dt q q

  x∂ ∂
= ∂ ∂ 

"  (3 and 6) 

 
• Results in: 

 
1 1

x d xx x
q dt q q

 ∂ ∂
= − ∂ ∂ 

""" " "
" 1

xx ∂
∂
"  (7) 

 
• Note that 

 

 

2

1 1

2
x

xx
q q

 
∂ ∂ =

∂ ∂

"
""
" "

      and   

2

1 1

2
x

xx
q q

 
∂ ∂ =

∂ ∂

"
""    
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• Finally 
 

 

2 2

1 1

2
x x

x dx
q dt q q

    
∂ ∂    ∂    = −

 ∂ ∂
 
 

" "

""
" 1

2 
∂

 (8) 

 
• The above process is identical for y and z. 
 
• Recall our virtual work equation for : 1q

 
 

1 1 1 1 1
x y z

x

1

y z x y zm x y z F F F
q q q q q q

  ∂ ∂ ∂ ∂ ∂ ∂
+ + = + +  ∂ ∂ ∂ ∂ ∂ ∂  

"" "" "" 


 

 
 
 
• Insert equations (8) for x, y and z and collect terms to 

eliminate acceleration terms.  (Reason 3 for Lagrange, pg 24) 
 

2 2 2 2 2 2

1 1

1 1 1

2 2

x y z

d x y z x y zm m
dt q q

x y zF F F
q q q

    ∂ + + ∂ + +
−    ∂ ∂    

 ∂ ∂ ∂
= + + ∂ ∂ ∂ 

" " " "" "
"
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• Observe that: 
 

( )2 2 21 1
2 2

T mv m x y z= = + +" " "2  

 
 

which is the kinetic energy of the particle 
 
• Finally: 
 

1 1 1 1
x y z

d xT T F F F
dt q q q q q

  ∂ ∂ ∂ ∂ ∂
− = + +  ∂ ∂ ∂ ∂ ∂  " 1

y z 



 

 
• Similarly: 
 

2 2 2 2
x y z

d x

2

y zT T F F F
dt q q q q q

  ∂ ∂ ∂ ∂ ∂
− = + +  ∂ ∂ ∂ ∂ ∂  "





 

 
• The general form of Lagrange�s equation is thus: 
 

rq
r r

d T T
dt q q

 ∂ ∂
− = ∂ ∂ "

Q  

rq x y z
r r r

x y zQ F F F
q q

 
q

∂ ∂ ∂
= + + ∂ ∂ ∂   
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• Some observations: 
o One Lagrange equation needed for each DOF 
o Easily extendable for a system of particles 
o T � Expression of system kinetic energy 
o All inertial forces contained in the LHS 
o  only contains external forces 

qr
Q

• How to use this �. 

1. Determine number of DOF and constraints 

2. Identify generalized coordinates and equations of constraint 

a. Iterate on 1 and 2 if needed 

3. Write expression for T 

a. v inertial velocity that can be written in terms of the 
coordinates of any frame 

b. Find required derivatives of  T 

4. Find generalized forces Q  
rq

a. If forces are known in inertial coordinates, transform 
them to generalized coordinates 

b. Apply generalized force equation for each force 
 

rq x y z
r r

x

r

y zQ F F F
q q

 
q

∂ ∂ ∂
= + + ∂ ∂ ∂ 

 

5. Substitute into Lagrange�s equation 

6. Solve analytically or numerically 
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Example:  Projectile Problem: 

 

z

x

y

z

x

y

 
  
1, 2, 3.   DOF = 3, no constraints 
  

4. ( )2 2 21 1
2 2

T mv m x 2y z= = + +" " "  

 

5.  , ,T T Tmx my mz
x y z

∂ ∂ ∂
= = =

∂ ∂ ∂
" " "

" " "
 

, ,d T d T d Tmx my mz
dt x dt y dt z

 ∂ ∂ ∂   = =    ∂ ∂ ∂    
"" "" ""

" " "
=  

0T T T
x y z

∂ ∂ ∂
= = =

∂ ∂ ∂
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6. Generalized forces: 

   rq x y z
r r

x

r

y zQ F F F
q q

 ∂ ∂ ∂
= + + ∂ ∂ ∂ q  

�mg z= −F  

0,
x y zq q q z

zQ Q Q F mg
z

∂
= = = = −

∂
 

 
7. EOMs:  0, 0,mx my mz mg= = = = −"" "" ""  
8. Solve differential equations. 

 

 
• Comments:  
o Method is overkill for this problem 
o Inspection shows agreement with Newton 
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Example:  Mass moving along a frictionless track. 

θ

φ
X

Y

Z
ρ

z

θ

φ
X

Y

Z
ρ

z

 
  
• Track geometry defined such that: 

 azρ = , and bzφ = −  

 DOF = 3 � 2 =1  
• Constraint equations:  azρ = , and bzφ = −   
• Generalized coordinate:  z 

 

• Find 21
2

m=T , what is v? v
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• Define rotating coordinate frame such that mass remains in 
 plane. � �x − z

φ
X

Y

Z
ρ

�x

�y

�x

z

ρ

z

�z

 

r x zz azx zz= + = +ρ# # # #       and       ω φ= = −" # #z bzz  

" "# "# ( #) # #
"# " # "#

r azx zz bzz azx zz
azx abzzy zz

= + + − × +

= − +    !   

v r r

az abzz z

a a b z z

2

2 2

2 2 2 21

= •

= + +

= + +

" "

( ") ( " ) "

( )"

2

2
 

 

T m a a b z z= + +
2

1 2 2 2 2( ) "2    and  
2 2 2 2(1 )T m a a b z

z
z∂

= + +
∂

"
"  
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( )2 2 2 2 2 2 2(1 ) 2d T m a a b z z m a b z z
dt z

∂  = + + + ∂ 
"" "

"  

2 2 2( )T m a b z z
z

∂
=

∂
"  

 
• External force is gravity 

rq x y z
r r

x yQ F F F
q q

 

r

z
q

∂ ∂ ∂
= + + ∂ ∂ ∂   

�mg z= −F  

0,
x y zq q q z

zQ Q Q F m
z

g∂
= = = = −

∂
 

 
• Equation of Motion: 

( )2 2 2 2 2 2 21a a b z z a b z z+ + + ="" " g−  

 
• Comments: 
o Solution highly nonlinear 
o �Trick� was finding inertial velocity 
o Still need to use FARM approach 
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Extending Lagrange�s Equation to Systems  
with Multiple Particles 

 
• Assume a system of particles and apply Newton�s laws: 

1 1 11 1, ,

, ,
p p p

x y z 1

x p y p z p

F mx F my F mz

F mx F my F mz

= = =

= = =

"" "" ""

$ $ $
"" "" ""

 

 
• As before, the F�s contain both external and constraint forces. 
 
• Multiply both sides of each equation by the appropriate 

virtual displacement and add all the equations together. 

( ) ( )
1 1

i i i

p p

i i i i i i x i y i z i
i i

m x x y y z z F x F y F zδ δ δ δ δ δ
= =

+ + = + +∑ ∑"" "" ""  

 
• Recall that this is D�Alembert�s equation 
 
• Assume the system has n DOF, n p3≤  
 
• Select generalized coordinates,  that enforce the constraints: iq

( )
( )
( )

1 2

1 2

1 2

, , , ,

, , , ,

, , , ,

i i n

i i n

i i n

x f q q q t

y g q q q t

z h q q q t

=

=

=

…

…

…
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• Express virtual displacements in terms of generalized 
coordinates: 

1 2
1 2

1 2
1 2

1 2
1 2

i i i
i n

n

i i i
i n

n

i i i
i n

n

x x xx q q
q q q
y y yy q q
q q q
z z zz q q
q q q

∂ ∂ ∂
= + + +

∂ ∂ ∂

∂ ∂ ∂
= + + +

∂ ∂ ∂

∂ ∂ ∂
= + + +

∂ ∂ ∂

…

…

…

q

q

q

δ δ δ δ

δ δ δ δ

δ δ δ δ

 

• Substitute the relations into D�Alembert�s equation 

1

1
i i i

p
i i i

i i i r
i r r r

p
i i i

x y z
i r r r

x y zm x y z q
q q q

x y z
rF F F

q q q

=

=

 ∂ ∂ ∂
+ + ∂ ∂ ∂ 

 ∂ ∂ ∂
= + + ∂ ∂ ∂ 

∑

∑

"" "" "" δ

qδ

 

• As before, have used fact that the generalized coordinates 
automatically enforce the constraints.   
o Sum over the entire system of particles decouples for each 

of the generalized coordinates. 
o This leaves us n such equations. 

 
• Using the calculus relations (chain rule), one can show that 

rq
r r

d T T
dt q q

 ∂ ∂
− = ∂ ∂ "

Q  

• Once again, one Lagrange equation for each DOF. 
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Lagrange�s Equation for Conservative Systems 

 
• Conservative forces and conservative systems 
o Forces are such that the work done by the forces in moving 

the system from one state to another depends only on the 
initial and final coordinates of the particles (path 
independence). 

 
• Potential Energy, V 
o Work done by a conservative force in a transfer from a 

general configuration A to a reference configuration B is 
the potential energy of the system at A with respect to B. 

o Note:  V is defined as work from the general state to the 
reference state. 
 

• Examples of conservative forces: 
o Springs (linear elastic) 
o Elastic bodies 
o Gravity force 

 
• Non-conservative forces 
o Friction 
o Drag of a fluid 
o Any force with time or velocity dependence 
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• General Expression for V, the potential energy 

( )
1

i i i

A P

x i y i z i
iB

V F dx F dy F
=

= − + +∑∫ dz  

• Note the ��� sign since the path is from B to A.  The sum is 
over the P particles in the system. 

 
• For path independence, integrand must be an exact 

differential.  Thus: 

 i i ix y z
i i

V VF F F
x i

V
y z

∂ ∂
= − = − = −

∂ ∂
∂
∂  (C1) 

• Observe that: 

3

4

2

4 4 3 3

2

3 3 4 3

x

y

F V V
y y x x

F V V
x x y x

∂  ∂ ∂ ∂
= − = − ∂ ∂ ∂ ∂ ∂ 

∂  ∂ ∂ ∂
= − = − ∂ ∂ ∂ ∂ ∂ 

4

4

y

y

 

 
• Thus, in general 

 
i rx y

r i

F F
y x

∂ ∂
=

∂ ∂  (C2) 

 
• Equation (C1) represents a necessary condition for a force to 

be conservative, Equation (C2) is a sufficient condition. 
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• Recall expression for generalized forces: 

1
i i i

p
i i

qr x y z
i r r

x yQ F F F
q q=

 i

r

z
q

∂ ∂ ∂
= + + ∂ ∂ ∂ 

∑  

o Separate forces into conservative and non-conservative 

1

p
Ni i i

qr qr
i i r i r i r

N
qr

r

x y zV V VQ Q
x q y q y q

V Q
q

=

 ∂ ∂ ∂∂ ∂ ∂
= − + + + ∂ ∂ ∂ ∂ ∂ ∂ 

∂
= − +

∂

∑
 

• Lagrange�s Equation: 

rq
r r

d T T
dt q q

 ∂ ∂
− = ∂ ∂ "

Q  

• Substitute in generalized force: 

( )

N
qr

r r r

N
qr

r r

d VT T Q
dt q q q

d T T V
dt q q

 ∂ ∂ ∂
− = − + ∂ ∂ ∂ 

 ∂ ∂
− − =  ∂ ∂

"

"

 
Q⇒

 
• Since conservative forces are not functions of  

velocities: 0
r

V
q
∂

=
∂ "
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• Thus, can define the Lagrangian L T V= −  to obtain the 

final form of Lagrange�s equation: 

qr
r r

d L L F
dt q q

 ∂ ∂
− = ∂ ∂ "

 

 

Example:  Planar pendulum with an inline spring. 

m
θ

y

x

k
r

m
θ

y

x

k
r

 
 

 
• DOF = 3 � 1 = 2 
• Constraint equation:  z = 0 
• Generalized coordinates:  r, θ 
• Coordinate mapping:  cos , sinx r y rθ θ= =  
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• Kinetic energy 

( )2 21 1
2 2

T mv m x y= = +" " 2  

• Derivatives of coordinates: 

cos sin , sin cosx r r y r rθ θ θ θ θ= − = +" "" " " " θ  
• Substitute into kinetic energy equation 

( )2 2 21
2

T m r r θ= + ""  

• Potential energy 

( )21 cos
2 oV k r r mgr θ= − −  

• Lagrangian 

( ) ( )22 2 21 1 cos
2 2 oL T V m r r k r r mgrθ θ= − = + − − +""  

• Derivatives of L (note need to do this for each GC) 

( )2, , o
L d L Lmr mr mr k r r mg
r dt r r

cosθ θ∂ ∂ ∂ = = = − − + ∂ ∂ ∂ 
"" ""

" "
 

2 2, 2 ,L d L Lmr mr mrr mgr
dt

sinθ θ θ
θ θ θ

∂ ∂ ∂ = = + = − ∂ ∂ ∂ 
" "" """ " θ  

 
• Substitute into Lagrange�s Equation: 

( )2

2

cos

2 sin 0
omr mr k r r mg

mr mrr mgr

− + − =

+ − =

"""
"" ""

θ θ

θ θ θ
 


