## Lecture \#8

## Examples Using Lagrange's Equations

## Example

Given: Catapult rotating at a constant rate (frictionless, in the horizontal plane)

Find the EOM of the particle as it leaves the tube.


## Derivatives:

$$
\frac{\partial T}{\partial \dot{r}}=m \dot{r}, \quad \frac{d}{d t}\left(\frac{\partial T}{\partial \dot{r}}\right)=m \ddot{r}, \quad \frac{\partial T}{\partial r}=m r \omega^{2}
$$

## External forces: None

Lagrange's equation gives the equation of motion as $\ddot{r}-r \omega^{2}=0$

## What do we get if we solve this via Newton's method?

## Example

Mass particle in a frictionless spinning ring.
Ring spins at constant rate $\omega$


## Spherical coordinate set (2-11)

Two holonomic constraints

- $\mathrm{r}=\mathrm{constant}$
- $\phi=\omega t+\phi_{0}$ which gives the spin rate of the tube

So only 1 DOF $\rightarrow$ use $\theta$ as the generalized coordinate

## Example

System of 3 "particles" suspended by pulleys.
(Neglect mass of pulleys.)


## Example

2 particles in a frictionless tube held by springs. Assume that
$\mathrm{s}=0$ and $\mathrm{a}=0$


