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Lagrange’s Equations 
 
Joseph-Louis Lagrange  1736-1813 

•  http://www-groups.dcs.st-and.ac.uk/~history/Mathematicians/Lagrange.html 

•  Born in Italy, later lived in Berlin and Paris. 
•  Originally studied to be a lawyer 
•  Interest in math from reading Halley’s 1693 work on 

algebra in optics 
•  “If I had been rich, I probably would not have devoted 

myself to mathematics.” 
•  Contemporary of Euler, Bernoulli, Leibniz, D’Alembert, 

Laplace, Legendre   (Newton  1643-1727) 
•  Contributions 

o Calculus of variations 
o Calculus of probabilities 
o Propagation of sound 
o Vibrating strings 
o Integration of differential equations 
o Orbits 
o Number theory 
o … 

•  “… whatever this great man says, deserves the highest 
degree of consideration, but he is too abstract for youth”   -- 
student at Ecole Polytechnique. 

http://www-groups.dcs.st-and.ac.uk/~history/Mathematicians/Lagrange.html
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Why Lagrange (or why NOT Newton) 
•  Newton – Given motion, deduce forces 
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•  Or given forces – solve for motion 
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Great for “simple systems” 
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What about “real” systems?  Complexity increased by: 
•  Vectoral equations – difficult to manage 
•  Constraints – what holds the system together? 
•  No general procedures 

 
Lagrange provides: 

•  Avoiding some constraints 
•  Equations presented in a standard form 

 
� Termed Analytic Mechanics 

•  Originated by Leibnitz (1646-1716) 
•  Motion (or equilibrium) is determined by scalar 

equations 
 
Big Picture 

•  Use kinetic and potential energy to solve for the motion 
•  No need to solve for accelerations (KE is a velocity term) 
•  Do need to solve for inertial velocities 

 
Let’s start with the answer, and then explain how we get there. 
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Define: Lagrangian Function 
•  L = T – V  (Kinetic – Potential energies) 

 
Lagrange’s Equation 

•  For conservative systems 

0
i i

d L L
dt q q

 ∂ ∂− = ∂ ∂ �
 

•  Results in the differential equations that describe the 
equations of motion of the system 

 
Key point:  

•  Newton approach requires that you find accelerations in all 
3 directions, equate F=ma, solve for the constraint forces, 
and then eliminate these to reduce the problem to 
“characteristic size” 

•  Lagrangian approach enables us to immediately reduce the 
problem to this “characteristic size” � we only have to 
solve for that many equations in the first place. 

 
The ease of handling external constraints really differentiates the 
two approaches  
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Simple Example 
•  Spring – mass system 

Spring mass system
• Linear spring
• Frictionless table
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•  Lagrangian L = T – V 

2 21 1L  = T V 2 2mx kx− = −�  

•  Lagrange’s Equation 

0
i i

d L L
dt q q

 ∂ ∂− = ∂ ∂ �
 

•  Do the derivatives 
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•  Put it all together 

0
i i

d L L mx kx
dt q q

 ∂ ∂− = + = ∂ ∂ 
��

�
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Consider the MGR problem with the mass oscillating between 
the two springs.  Only 1 degree of freedom of interest here so, 
take qi=R 
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Degrees of Freedom (DOF) 
•  DOF = n – m 

o n = number of coordinates 
o m = number of constraints 

 
Critical Point:  The number of DOF is a characteristic of the 
system and does NOT depend on the particular set of 
coordinates used to describe the configuration. 

 
Example 1 

o Particle in space 

 
n = 3 
Coordinate sets:     x, y, z    or   r, θ, φ 

m = 0 
DOF = n – m = 3 
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Example 2 
o Conical Pendulum 
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Cartesian Coordinates Spherical Coordinates 
n = 3  (x, y, z) n = 2 (θ, φ) 
m = 1 (x2 + y2 + z2 = R2) m = 0 
DOF = 2 DOF = 2 

 
Example 3 

o Two particles at a fixed distance (dumbbell) 
Coordinates:       
n =    
m =    
EOC’s =       
DOF =    
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Generalized Coordinates 
•  No specific set of coordinates is required to analyze the 

system. 
•  Number of coordinates depends on the system, and not  

the set selected. 
•  Any set of parameters that are used to represent a system 

are called generalized coordinates. 
 

Coordinate Transformation 
•  Often find that the “best” set of generalized coordinates 

used to solve a problem may not provide the information 
needed for further analysis. 

•  Use a coordinate transformation to convert between sets 
of generalized coordinates. 

 
Example:  Work in polar coordinates, then transform to 
rectangular coordinates, e.g. 

sin cos
sin sin
cos

x r
y r
z r

θ φ
θ φ
θ

=
=
=
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General Form of the Transformation 
Consider a system of N particles � (Number of DOF =   ) 
 
Let:        
   iq  be a set of generalized coordinates. 

   ix  be a set of Cartesian coordinates relative to an inertial frame 
 
Transformation equations are: 
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Each set of coordinates can have equations of constraint (EOC)  

•  Let  l  = number of EOC for the set of ix  
•  Then DOF = n – m = 3N – l 

 
Recall:  Number of generalized coordinates required 
depends on the system, not the set selected. 
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Requirements for a coordinate transform 
•  Finite, single valued, continuous and differentiable 

•  Non-zero Jacobian             ( )
( )
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•  No singular points 
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Example:  Cartesian to Polar transformation 
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J r r n= ≠ ≠ ≠ ±2 0 0 0sinθ θ πfor and  



16.61 Aerospace Dynamics Spring 2003 

Massachusetts Institute of Technology © How, Deyst 2003 (Based on notes by Blair 2002) 12 

Constraints 
 
Existence of constraints complicates the solution of the problem. 

•  Can just eliminate the constraints 
•  Deal with them directly (Lagrange multipliers, more later). 
 

Holonomic Constraints can be expressed algebraically. 

( )1 2 3, , , , 0, 1, 2,j nq q q q t j mφ = =l l  

 
Properties of holonomic constraints 

•  Can always find a set of independent generalized 
coordinates 

•  Eliminate m coordinates to find n – m independent 
generalized coordinates. 

 
Example:  Conical Pendulum 
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Cartesian Coordinates Spherical Coordinates 
n = 3  (x, y, z) n = (r, θ, φ) 
m = 1 (x2 + y2 + z2 = L2) m = 1, r = L 
DOF = 2 DOF = 2 
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Nonholonomic constraints cannot be written in a closed-form 
(algebraic equation), but instead must be expressed in terms of 
the differentials of the coordinates (and possibly time) 

( )
1

1 2 3

0, 1, 2,

, , , ,

n

ji i jt
i

ji n

a dq a dt j m

a q q q q tψ
=

+ = =

=

∑ l

l

 

 
•  Constraints of this type are non-integrable and restrict the 

velocities of the system. 

�  
1

0, 1, 2,
n

ji i jt
i

a q a j m
=

+ = =∑ D l  

 
How determine if a differential equation is integrable and 
therefore holonomic? 
•  Integrable equations must be exact, i.e. they must satisfy  

the conditions: (i, k = 1,…,n) 

ji jk

k i

ji jt

i

a a
q q
a a
t q

∂ ∂
=

∂ ∂
∂ ∂

=
∂ ∂

 

 
Key point:  Nonholonomic constraints do not affect the number 
of DOF in a system. 

 
Special cases of holonomic and nonholonomic constraints 

•  Scleronomic – No explicit dependence on t (time) 
•  Rheonomic – Explicit dependence on t 
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Example:  Wheel rolling without slipping in a straight line 
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Example: Wheel rolling without slipping on a curved path. 
Define φ as angle between the tangent to the path and the x-axis. 

sin sin
cos cos

x v r
y v r
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sin 0
cos 0

dx r d
dy r d

φ θ
φ θ

− =
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Have 2 differential equations of constraint, neither of which can 
be integrated without solving the entire problem.  
� Constraints are nonholonomic 
 
Reason?  Can relate change in θ to change in x,y for given φ, but 
the absolute value of θ depends on the path taken to get to that 
point (which is the “solution”). 
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Summary to Date 
 
Why use Lagrange Formulation? 

1. Scalar, not vector 
2. Eliminate solving for constraint forces 
3. Avoid finding accelerations 

 
 
DOF – Degrees of Freedom 

•  DOF = n – m 
•  n is the number of coordinates 

– 3 for a particle 
– 6 for a rigid body 

•  m is the number of holonomic constraints 
 
 
Generalized Coordinates   iq  

•  Term for any coordinate 
•  “Acquired skill” in applying Lagrange method is choosing 

a good set of generalized coordinates. 
 
 
Coordinate Transform 

•  Mapping between sets of coordinates 
•  Non-zero Jacobian 

 


