Lecture AC-1

Aircraft Dynamics

Copyright 2003 by Jonathan How

Aircraft Dynamics

- First note that it is possible to develop a very good approximation of a key motion of an aircraft (called the Phugoid mode) using a very simple balance between the kinetic and potential energies.
- Consider an aircraft in steady, level flight with speed U_{0} and height h_{0}. The motion is perturbed slightly so that

$$
\begin{align*}
U_{0} & \rightarrow U=U_{0}+u \tag{1}\\
h_{0} & \rightarrow h=h_{0}+\Delta h \tag{2}
\end{align*}
$$

- Assume that $E=\frac{1}{2} m U^{2}+m g h$ is constant before and after the perturbation. It then follows that

$$
u \approx-\frac{g \Delta h}{U_{0}}
$$

- From Newton's laws we know that, in the vertical direction

$$
m \ddot{h}=L-W
$$

where weight $W=m g$ and lift $L=\frac{1}{2} \rho S C_{L} U^{2}$ (S is the wing area). We can then derive the equations of motion of the aircraft:

$$
\begin{align*}
m \ddot{h}=L-W & =\frac{1}{2} \rho S C_{L}\left(U^{2}-U_{0}^{2}\right) \tag{3}\\
& =\frac{1}{2} \rho S C_{L}\left(\left(U_{0}+u\right)^{2}-U_{0}^{2}\right) \approx \frac{1}{2} \rho S C_{L}\left(2 u U_{0}\right) \tag{4}\\
& \approx-\rho S C_{L}\left(\frac{g \Delta h}{U_{0}} U_{0}\right)=-\left(\rho S C_{L} g\right) \Delta h \tag{5}
\end{align*}
$$

Since $\ddot{h}=\Delta \ddot{h}$ and for the original equilibrium flight condition $L=W=$ $\frac{1}{2}\left(\rho S C_{L}\right) U_{0}^{2}=m g$, we get that

$$
\frac{\rho S C_{L} g}{m}=2\left(\frac{g}{U_{0}}\right)^{2}
$$

Combine these result to obtain:

$$
\Delta \ddot{h}+\Omega^{2} \Delta h=0 \quad, \quad \Omega \approx \frac{g}{U_{0}} \sqrt{2}
$$

- These equations describe an oscillation (called the phugoid oscillation) of the altitude of the aircraft about it nominal value. \diamond Only approximate natural frequency, but value very close.
- The basic dynamics are the same as we had before:

$$
\begin{gathered}
\vec{F}=m \dot{\vec{v}}_{c}^{I} \text { and } \vec{T}=\dot{\vec{H}}^{I} \\
\Rightarrow \frac{1}{m} \vec{F}=\dot{\vec{v}}_{c}^{B}+{ }^{B I} \vec{\omega} \times \vec{v}_{c} \quad \text { Transport Thm. } \\
\Rightarrow \vec{T}=\dot{\vec{H}}^{B}+{ }^{B I} \vec{\omega} \times \vec{H} \quad \text { Note the notation change }
\end{gathered}
$$

- Basic assumptions are:

1. Earth is an inertial reference frame
2. A / C is a rigid body
3. Body frame B fixed to the aircraft $(\vec{i}, \vec{j}, \vec{k})$

- Instantaneous mapping of \vec{v}_{c} and ${ }^{B I} \vec{\omega}$ into the body frame is given by

$$
\begin{gathered}
{ }^{B I} \vec{\omega}=P \vec{i}+Q \vec{j}+R \vec{k}
\end{gathered} \quad \vec{v}_{c}=U \vec{i}+V \vec{j}+W \vec{k},\left[\begin{array}{c}
P \\
Q \\
R
\end{array}\right] \quad \Rightarrow\left(v_{c}\right)_{B}=\left[\begin{array}{c}
U \\
V \\
W
\end{array}\right]
$$

- By symmetry, we can show that $I_{x y}=I_{y z}=0$, but value of $I_{x z}$ depends on specific frame selected. Instantaneous mapping of the angular momentum

$$
\vec{H}=H_{x} \vec{i}+H_{y} \vec{j}+H_{z} \vec{k}
$$

into the Body Frame given by

$$
H_{B}=\left[\begin{array}{c}
H_{x} \\
H_{y} \\
H_{z}
\end{array}\right]=\left[\begin{array}{ccc}
I_{x x} & 0 & I_{x z} \\
0 & I_{y y} & 0 \\
I_{x z} & 0 & I_{z z}
\end{array}\right]\left[\begin{array}{l}
P \\
Q \\
R
\end{array}\right]
$$

- The overall equations of motion are then:

$$
\begin{aligned}
\frac{1}{m} \vec{F} & =\dot{\vec{v}}_{c}{ }^{B}+{ }^{B I} \vec{\omega} \times \vec{v}_{c} \\
\Rightarrow \frac{1}{m}\left[\begin{array}{c}
F_{x} \\
F_{y} \\
F_{z}
\end{array}\right] & =\left[\begin{array}{c}
\dot{U} \\
\dot{V} \\
\dot{W}
\end{array}\right]+\left[\begin{array}{rrr}
0 & -R & Q \\
R & 0 & -P \\
-Q & P & 0
\end{array}\right]\left[\begin{array}{c}
U \\
V \\
W
\end{array}\right] \\
& =\left[\begin{array}{c}
\dot{U}+Q W-R V \\
\dot{V}+R U-P W \\
\dot{W}+P V-Q U
\end{array}\right] \\
\vec{T} & =\dot{\vec{H}}^{B}+{ }^{B I} \vec{\omega} \times \vec{H} \\
\Rightarrow\left[\begin{array}{c}
L \\
M \\
N
\end{array}\right] & =\left[\begin{array}{cr}
I_{x x} \dot{P}+I_{x z} \dot{R} \\
I_{y y} \dot{Q} \\
I_{z z} \dot{R}+I_{x z} \dot{P}
\end{array}\right]+\left[\begin{array}{rr}
0 & -R \\
R & 0 \\
0 & -P \\
-Q & P
\end{array}\right]\left[\begin{array}{rrr}
I_{x x} & 0 & I_{x z} \\
0 & I_{y y} & 0 \\
I_{x z} & 0 & I_{z z}
\end{array}\right]\left[\begin{array}{l}
P \\
Q \\
R
\end{array}\right] \\
& =\left[\begin{array}{rrr}
I_{x x} \dot{P}+I_{x z} \dot{R}+Q R\left(I_{z z}-I_{y y}\right)+P Q I_{x z} \\
I_{y y} \dot{Q} \\
I_{z z} \dot{R}+I_{x z} \dot{P} & +P R\left(I_{x x}-I_{z z}\right)+\left(R^{2}-P^{2}\right) I_{x z} \\
\left.+I_{x x}\right)-Q R I_{x z}
\end{array}\right]
\end{aligned}
$$

- Clearly these equations are very nonlinear and complicated, and we have not even said where \vec{F} and \vec{T} come from. \Longrightarrow Need to linearize!!
- Assume that the aircraft is flying in an equilibrium condition and we will linearize the equations about this nominal flight condition.
- But first we need to be a little more specific about which Body Frame we are going use. Several standards:

1. Body Axes - X aligned with fuselage nose. Z perpendicular to X in plane of symmetry (down). Y perpendicular to XZ plane, to the right.
2. Wind Axes - X aligned with \vec{v}_{c}. Z perpendicular to X (pointed down). Y perpendicular to XZ plane, off to the right.
3. Stability Axes - X aligned with projection of \vec{v}_{c} into the fuselage plane of symmetry. Z perpendicular to X (pointed down). Y same.

- Advantages to each, but typically use the stability axes.
- In different flight equilibrium conditions, the axes will be oriented differently with respect to the A/C principal axes \Rightarrow need to transform (rotate) the principal Inertia components between the frames.
- When vehicle undergoes motion with respect to the equilibrium, the Stability Axes remain fixed to the airplane as if painted on.
- Can linearize about various steady state conditions of flight.
- For steady state flight conditions must have

$$
\vec{F}=\vec{F}_{\text {aero }}+\vec{F}_{\text {gravity }}+\vec{F}_{\text {thrust }}=0 \text { and } \vec{T}=0
$$

\diamond So for equilibrium condition, forces balance on the aircraft

$$
L=W \text { and } T=D
$$

- Also assume that $\dot{P}=\dot{Q}=\dot{R}=\dot{U}=\dot{V}=\dot{W}=0$
- Impose additional constraints that depend on the flight condition:
\checkmark Steady wings-level flight $\rightarrow \Phi=\dot{\Phi}=\dot{\Theta}=\dot{\Psi}=0$
- Key Point: While nominal forces and moments balance to zero, motion about the equilibrium condition results in perturbations to the forces/moments.
- Recall from basic flight dynamics that lift $L_{0}^{f}=C_{l} \alpha_{0}$, where:
$\diamond C_{l}=$ lift coefficient, which is a function of the equilibrium condition $\diamond \alpha_{0}=$ nominal angle of attack (angle that the wing meets the air flow).
- But, as the vehicle moves about the equilibrium condition, would expect that the angle of attack will change

$$
\alpha=\alpha_{0}+\Delta \alpha
$$

- Thus the lift forces will also be perturbed

$$
L^{f}=C_{l}\left(\alpha_{0}+\Delta \alpha\right)=L_{0}^{f}+\Delta L^{f}
$$

- Can extend this idea to all dynamic variables and how they influence all aerodynamic forces and moments

Gravity Forces

- Gravity acts through the CoM in vertical direction (inertial frame +Z)
- Assume that we have a non-zero pitch angle Θ_{0}
- Need to map this force into the body frame
- Use the Euler angle transformation (2-15)

$$
F_{B}^{g}=T_{1}(\Phi) T_{2}(\Theta) T_{3}(\Psi)\left[\begin{array}{c}
0 \\
0 \\
m g
\end{array}\right]=m g\left[\begin{array}{c}
-\sin \Theta \\
\sin \Phi \cos \Theta \\
\cos \Phi \cos \Theta
\end{array}\right]
$$

- For symmetric steady state flight equilibrium, we will typically assume that $\Theta \equiv \Theta_{0}, \Phi \equiv \Phi_{0}=0$, so

$$
F_{B}^{g}=m g\left[\begin{array}{c}
-\sin \Theta_{0} \\
0 \\
\cos \Theta_{0}
\end{array}\right]
$$

- Use Euler angles to specify vehicle rotations with respect to the Earth frame

$$
\begin{aligned}
\dot{\Theta} & =Q \cos \Phi-R \sin \Phi \\
\dot{\Phi} & =P+Q \sin \Phi \tan \Theta+R \cos \Phi \tan \Theta \\
\dot{\Psi} & =(Q \sin \Phi+R \cos \Phi) \sec \Theta
\end{aligned}
$$

- Note that if $\Phi \approx 0$, then $\dot{\Theta} \approx Q$
- Recall: $\Phi \approx$ Roll, $\Theta \approx$ Pitch, and $\Psi \approx$ Heading.

Recall:

$$
\begin{aligned}
& {\left[\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
z^{\prime}
\end{array}\right]=\left[\begin{array}{ccc}
c \psi & s \psi & 0 \\
-s \psi & c \psi & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
X \\
Y \\
Z
\end{array}\right]=T_{3}(\psi)\left[\begin{array}{l}
X \\
Y \\
Z
\end{array}\right]} \\
& {\left[\begin{array}{l}
x^{\prime \prime} \\
y^{\prime \prime} \\
z^{\prime \prime}
\end{array}\right]=\left[\begin{array}{l}
\\
\end{array}\right]\left[\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
z^{\prime}
\end{array}\right]=T_{2}(\theta)\left[\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
z^{\prime}
\end{array}\right]} \\
& {\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
x^{\prime \prime} \\
y^{\prime \prime} \\
z^{\prime \prime}
\end{array}\right]=T_{1}(\phi)\left[\begin{array}{l}
x^{\prime \prime} \\
y^{\prime \prime} \\
z^{\prime \prime}
\end{array}\right]}
\end{aligned}
$$

Linearization

- Define the trim angular rates and velocities

$$
{ }^{B I} \omega_{B}^{o}=\left[\begin{array}{c}
P \\
Q \\
R
\end{array}\right] \quad\left(v_{c}\right)_{B}^{o}=\left[\begin{array}{c}
U_{o} \\
0 \\
0
\end{array}\right]
$$

which are associated with the flight condition. In fact, these define the type of equilibrium motion that we linearize about. Note:

- $W_{0}=0$ since we are using the stability axes, and
$-V_{0}=0$ because we are assuming symmetric flight
- Proceed with the linearization of the dynamics for various flight conditions
$\left.\begin{array}{lcccr} & \begin{array}{c}\text { Nominal } \\ \text { Velocity }\end{array} & \begin{array}{c}\text { Perturbed } \\ \text { Velocity }\end{array} & \Rightarrow & \Rightarrow\end{array} \begin{array}{r}\text { Perturbed } \\ \text { Acceleration }\end{array}\right]$
- Linearization for symmetric flight $U=U_{0}+u, V_{0}=W_{0}=0, P_{0}=$ $Q_{0}=R_{0}=0$. Note that the forces and moments are also perturbed.

$$
\begin{aligned}
& \frac{1}{m}\left[F_{x}^{0}+\Delta F_{x}\right]=\dot{U}+Q W-R V \approx \dot{u}+q w-r v \approx \dot{u} \\
& \frac{1}{m}\left[F_{y}^{0}+\Delta F_{y}\right]=\dot{V}+R U-P W \approx \dot{v}+r\left(U_{0}+u\right)-p w \approx \dot{v}+r U_{0} \\
& \frac{1}{m}\left[F_{z}^{0}+\Delta F_{z}\right]=\dot{W}+P V-Q U \approx \dot{w}+p v-q\left(U_{0}+u\right) \approx \dot{w}-q U_{0} \\
& \Rightarrow \frac{1}{m}\left[\begin{array}{c}
\Delta F_{x} \\
\Delta F_{y} \\
\Delta F_{z}
\end{array}\right]=\left[\begin{array}{c}
\dot{u} \\
\dot{v}+r U_{0} \\
\dot{w}-q U_{0}
\end{array}\right] \begin{array}{c}
1 \\
2 \\
3
\end{array}
\end{aligned}
$$

- Attitude motion:

$$
\begin{aligned}
{\left[\begin{array}{c}
L \\
M \\
N
\end{array}\right] } & =\left[\begin{array}{cl}
I_{x x} \dot{P}+I_{x z} \dot{R} & +Q R\left(I_{z z}-I_{y y}\right)+P Q I_{x z} \\
I_{y y} \dot{Q} & +P R\left(I_{x x}-I_{z z}\right)+\left(R^{2}-P^{2}\right) I_{x z} \\
I_{z z} \dot{R}+I_{x z} \dot{P} & +P Q\left(I_{y y}-I_{x x}\right)-Q R I_{x z}
\end{array}\right] \\
\Rightarrow\left[\begin{array}{c}
\Delta L \\
\Delta M \\
\Delta N
\end{array}\right] & =\left[\begin{array}{cl}
I_{x x} \dot{p}+I_{x z} \dot{r} \\
I_{y y} \dot{q} \\
I_{z z} \dot{r}+I_{x z} \dot{p}
\end{array}\right] \begin{array}{l}
4 \\
5 \\
6
\end{array}
\end{aligned}
$$

Key aerodynamic parameters are also perturbed:
Total Velocity $\quad V_{T}=\left(\left(U_{0}+u\right)^{2}+v^{2}+w^{2}\right)^{1 / 2} \approx U_{0}+u$
Perturbed Sideslip angle $\quad \beta=\sin ^{-1}\left(v / V_{T}\right) \approx v / U_{0}$ Perturbed Angle of Attack $\quad \alpha_{x}=\tan ^{-1}(w / U) \approx w / U_{0}$

- To understand these equations in detail, and the resulting impact on the vehicle dynamics, we must investigate the terms $\Delta F_{x} \ldots \Delta N$.

Figure 1: Perturbed Axes. The equilibrium condition was that the aircraft was angled up by Θ_{0} with velocity $V_{T 0}=U_{0}$. The vehicle's motion has been perturbed ($X_{0} \rightarrow X$) so that now $\Theta=\Theta_{0}+\theta$ and the velocity is $V_{T} \neq V_{T 0}$. Note that V_{T} is no longer aligned with the X-axis, resulting in a non-zero u and w. The angle γ is called the flight path angle, and it provides a measure of the angle of the velocity vector to the inertial horizontal axis.

- We must also address the left-hand side (\vec{F}, \vec{T})
- Net forces and moments must be zero in the equilibrium condition.
- Aerodynamic and Gravity forces are a function of equilibrium condition AND the perturbations about this equilibrium.
- Predict the changes to the aerodynamic forces and moments using a first order expansion in the key flight parameters

$$
\begin{aligned}
\Delta F_{x} & =\frac{\partial F_{x}}{\partial U} \Delta \mathbf{U}+\frac{\partial F_{x}}{\partial W} \Delta \mathbf{W}+\frac{\partial F_{x}}{\partial \dot{W}} \Delta \dot{\mathbf{W}}+\frac{\partial F_{x}}{\partial \Theta} \Delta \Theta+\ldots+\frac{\partial F_{x}^{g}}{\partial \Theta} \Delta \Theta+\Delta F_{x}^{c} \\
& =\frac{\partial F_{x}}{\partial U} \mathbf{u}+\frac{\partial F_{x}}{\partial W} \mathbf{w}+\frac{\partial F_{x}}{\partial \dot{W}} \dot{\mathbf{w}}+\frac{\partial F_{x}}{\partial \Theta} \theta+\ldots++\frac{\partial F_{x}^{g}}{\partial \Theta} \theta+\Delta F_{x}^{c}
\end{aligned}
$$

$-\frac{\partial F_{x}}{\partial U}$ called a stability derivative. Is a function of the equilibrium condition. Usually tabulated.

- Clearly an approximation since there tend to be lags in the aerodynamics forces that this approach ignores (assumes that forces only function of instantaneous values)
- First proposed by Bryan (1911), and has proven to be a very effective way to analyze the aircraft flight mechanics - well supported by numerous flight test comparisons.

Stability Derivatives

- The forces and torques acting on the aircraft are very complex nonlinear functions of the flight equilibrium condition and the perturbations from equilibrium.
- Linearized expansion can involve many terms $u, \dot{u}, \ddot{u}, \ldots, w, \dot{w}, \ddot{w}, \ldots$
- Typically only retain a few terms to capture the dominant effects.
- Dominant behavior most easily discussed in terms of the:
- Symmetric variables: U, W, Q and forces/torques: F_{x}, F_{z}, and M
- Asymmetric variables: V, P, R and forces/torques: F_{y}, L, and N
- Observation - for truly symmetric flight Y, L, and N will be exactly zero for any value of U, W, Q
\Rightarrow Derivatives of asymmetric forces/torques with respect to the symmetric motion variables are zero.
- Further (convenient) assumptions:

1. Derivatives of symmetric forces/torques with respect to the asymmetric motion variables are zero.
2. We can neglect derivatives with respect to the derivatives of the motion variables, but keep $\partial F_{z} / \partial \dot{w}$ and $M_{\dot{w}} \equiv \partial M / \partial \dot{w}$ (aerodynamic lag involved in forming new pressure distribution on the wing in response to the perturbed angle of attack)
3. $\partial F_{x} / \partial q$ is negligibly small.

- Note that we must also find the perturbation gravity and thrust forces and moments

$$
\left.\frac{\partial F_{x}^{g}}{\partial \Theta}\right|_{0}=-\left.m g \cos \Theta_{0} \quad \frac{\partial F_{z}^{g}}{\partial \Theta}\right|_{0}=-m g \sin \Theta_{0}
$$

- Typical set of stability derivatives.

Figure 2: - corresponds to a zero slope - no dependence for small perturbations. No means no dependence for any size perturbation.

Spring 2003

16.61 AC 1-15

- Aerodynamic summary:

IA
$\Delta F_{x}=\left(\frac{\partial F_{x}}{\partial U}\right)_{0} u+\left(\frac{\partial F_{x}}{\partial W}\right)_{0} w \Rightarrow \Delta F_{x} \sim u, w$
2 A
$\Delta F_{y} \sim v, p, r$
BA
$\Delta F_{z} \sim u, w, \dot{w}, q$
4A
$\Delta L \sim \beta, p, r$
5 A
$\Delta M \sim u, w, \dot{w}, q$
6 A
$\Delta N \sim \beta, p, r$

- Result is that, with these force, torque approximations, equations 1, 3,5 decouple from $\mathbf{2 4 , 6}$
$-1,3,5$ are the longitudinal dynamics in u, w, and q
$\left[\begin{array}{c}\Delta F_{x} \\ \Delta F_{z} \\ \Delta M\end{array}\right]=\left[\begin{array}{c}m \dot{u} \\ m\left(\dot{w}-q U_{0}\right) \\ I_{y y} \dot{q}\end{array}\right]$
$\approx\left[\begin{array}{c}\left(\frac{\partial F_{x}}{\partial U}\right)_{0} u+\left(\frac{\partial F_{x}}{\partial W}\right)_{0} w+\left(\frac{\partial F_{x}^{g}}{\partial \Theta}\right)_{0} \theta+\Delta F_{x}^{c} \\ \left(\frac{\partial F_{z}}{\partial U}\right)_{0} u+\left(\frac{\partial F_{z}}{\partial W}\right)_{0} w+\left(\frac{\partial F_{z}}{\partial W}\right)_{0} \dot{w}+\left(\frac{\partial F_{z}}{\partial Q}\right)_{0} q+\left(\frac{\partial F_{z}^{g}}{\partial \Theta}\right)_{0} \theta+\Delta F_{z}^{c} \\ \left(\frac{\partial M}{\partial U}\right)_{0} u+\left(\frac{\partial M}{\partial W}\right)_{0} w+\left(\frac{\partial M}{\partial \tilde{W}}\right)_{0} \dot{w}+\left(\frac{\partial M}{\partial Q}\right)_{0} q+\Delta M^{c}\end{array}\right]$
$-2,4,6$ are the lateral dynamics in v, p, and r

Summary

- Picked a specific Body Frame (stability axes) from the list of alternatives
\Rightarrow Choice simplifies some of the linearization, but the inertias now change depending on the equilibrium flight condition.
- Since the nonlinear behavior is too difficult to analyze, we needed to consider the linearized dynamic behavior around a specific flight condition
\Rightarrow Enables us to linearize RHS of equations of motion.
- Forces and moments also complicated nonlinear functions, so we linearized the LHS as well
\Rightarrow Enables us to write the perturbations of the forces and moments in terms of the motion variables.
- Engineering insight allows us to argue that many of the stability derivatives that couple the longitudinal (symmetric) and lateral (asymmetric) motions are small and can be ignored.
- Approach requires that you have the stability derivatives.
- These can be measured or calculated from the aircraft plan form and basic aerodynamic data.

