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Aircraft Dynamics

• First note that it is possible to develop a very good approximation of a key

motion of an aircraft (called the Phugoid mode) using a very simple balance
between the kinetic and potential energies.

– Consider an aircraft in steady, level flight with speed U0 and height h0.
The motion is perturbed slightly so that

U0 → U = U0 + u (1)

h0 → h = h0 + ∆h (2)

– Assume that E = 1
2mU

2 +mgh is constant before and after the pertur-
bation. It then follows that

u ≈ −g∆h
U0

– From Newton’s laws we know that, in the vertical direction

mḧ = L−W

where weight W = mg and lift L = 1
2ρSCLU

2 (S is the wing area). We
can then derive the equations of motion of the aircraft:

mḧ = L−W =
1

2
ρSCL(U 2 − U 2

0 ) (3)

=
1

2
ρSCL((U0 + u)2 − U 2

0 ) ≈ 1

2
ρSCL(2uU0) (4)

≈ −ρSCL

(
g∆h

U0
U0

)
= −(ρSCLg)∆h (5)

Since ḧ = ∆ḧ and for the original equilibrium flight condition L = W =
1
2(ρSCL)U 2

0 = mg, we get that

ρSCLg

m
= 2

(
g

U0

)2

Combine these result to obtain:

∆ḧ+ Ω2∆h = 0 , Ω ≈ g

U0

√
2

– These equations describe an oscillation (called the phugoid oscillation)

of the altitude of the aircraft about it nominal value.

� Only approximate natural frequency, but value very close.
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• The basic dynamics are the same as we had before:

�F = m�̇vc
I

and �T = �̇H
I

⇒ 1

m
�F = �̇vc

B
+ BI�ω × �vc Transport Thm.

⇒ �T = �̇H
B

+ BI�ω × �H Note the notation change

• Basic assumptions are:
1. Earth is an inertial reference frame

2. A/C is a rigid body

3. Body frame B fixed to the aircraft (�i,�j,�k)

• Instantaneous mapping of �vc and BI�ω into the body frame is given by

BI�ω = P�i +Q�j +R�k �vc = U�i+ V�j +W�k

⇒ BIωB =



P

Q
R


 ⇒ (vc)B =



U

V
W




• By symmetry, we can show that Ixy = Iyz = 0, but value of Ixz depends on
specific frame selected. Instantaneous mapping of the angular momentum

�H = Hx
�i+Hy

�j +Hz
�k

into the Body Frame given by

HB =



Hx

Hy

Hz


 =



Ixx 0 Ixz

0 Iyy 0
Ixz 0 Izz





P

Q
R
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• The overall equations of motion are then:

1

m
�F = �̇vc

B
+ BI�ω × �vc

⇒ 1

m



Fx

Fy

Fz


 =



U̇

V̇

Ẇ


 +




0 −R Q
R 0 −P

−Q P 0





U
V

W




=



U̇ +QW −RV

V̇ +RU − PW

Ẇ + PV −QU




�T = �̇H
B

+ BI�ω × �H

⇒


L
M

N


 =



IxxṖ + IxzṘ

IyyQ̇

IzzṘ + IxzṖ


 +




0 −R Q
R 0 −P

−Q P 0





Ixx 0 Ixz

0 Iyy 0

Ixz 0 Izz





P
Q

R




=



IxxṖ + IxzṘ +QR(Izz − Iyy) + PQIxz

IyyQ̇ +PR(Ixx − Izz) + (R2 − P 2)Ixz

IzzṘ + IxzṖ +PQ(Iyy − Ixx) −QRIxz




• Clearly these equations are very nonlinear and complicated, and we have
not even said where �F and �T come from. =⇒ Need to linearize!!

– Assume that the aircraft is flying in an equilibrium condition and we will
linearize the equations about this nominal flight condition.
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• But first we need to be a little more specific about which Body Frame we
are going use. Several standards:

1. Body Axes - X aligned with fuselage nose. Z perpendicular to X in
plane of symmetry (down). Y perpendicular to XZ plane, to the right.

2. Wind Axes - X aligned with �vc. Z perpendicular to X (pointed down).

Y perpendicular to XZ plane, off to the right.

3. Stability Axes - X aligned with projection of �vc into the fuselage plane
of symmetry. Z perpendicular to X (pointed down). Y same.

• Advantages to each, but typically use the stability axes.

– In different flight equilibrium conditions, the axes will be oriented dif-

ferently with respect to the A/C principal axes ⇒ need to transform
(rotate) the principal Inertia components between the frames.

– When vehicle undergoes motion with respect to the equilibrium, the

Stability Axes remain fixed to the airplane as if painted on.
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• Can linearize about various steady state conditions of flight.

– For steady state flight conditions must have

�F = �Faero + �Fgravity + �Fthrust = 0 and �T = 0

� So for equilibrium condition, forces balance on the aircraft

L = W and T = D

– Also assume that Ṗ = Q̇ = Ṙ = U̇ = V̇ = Ẇ = 0

– Impose additional constraints that depend on the flight condition:

� Steady wings-level flight → Φ = Φ̇ = Θ̇ = Ψ̇ = 0

• Key Point: While nominal forces and moments balance to zero, motion
about the equilibrium condition results in perturbations to the forces/moments.

– Recall from basic flight dynamics that lift Lf
0 = Clα0 , where:

� Cl = lift coefficient, which is a function of the equilibrium condition

� α0 = nominal angle of attack (angle that the wing meets the air flow).

– But, as the vehicle moves about the equilibrium condition, would expect

that the angle of attack will change

α = α0 + ∆α

– Thus the lift forces will also be perturbed

Lf = Cl(α0 + ∆α) = Lf
0 + ∆Lf

• Can extend this idea to all dynamic variables and how they influence all
aerodynamic forces and moments
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Gravity Forces

• Gravity acts through the CoM in vertical direction (inertial frame +Z)

– Assume that we have a non-zero pitch angle Θ0

– Need to map this force into the body frame

– Use the Euler angle transformation (2–15)

F g
B = T1(Φ)T2(Θ)T3(Ψ)




0
0

mg


 = mg




− sinΘ
sinΦ cosΘ

cos Φ cosΘ




• For symmetric steady state flight equilibrium, we will typically assume that

Θ ≡ Θ0, Φ ≡ Φ0 = 0, so

F g
B = mg



− sinΘ0

0
cos Θ0




• Use Euler angles to specify vehicle rotations with respect to the Earth frame

Θ̇ = Q cosΦ − R sinΦ

Φ̇ = P +Q sinΦ tanΘ + R cosΦ tanΘ

Ψ̇ = (Q sinΦ +R cos Φ) secΘ

– Note that if Φ ≈ 0, then Θ̇ ≈ Q

• Recall: Φ ≈ Roll, Θ ≈ Pitch, and Ψ ≈ Heading.
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Recall: 

x′

y′

z′


 =



cψ sψ 0
−sψ cψ 0

0 0 1





X
Y

Z


 = T3(ψ)



X
Y

Z






x′′

y′′

z′′


 =








x′

y′

z′


 = T2(θ)



x′

y′

z′






x

y
z


 =








x′′

y′′

z′′


 = T1(φ)



x′′

y′′

z′′
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Linearization

• Define the trim angular rates and velocities

BIωo
B =



P
Q

R


 (vc)

o
B =



Uo

0

0




which are associated with the flight condition. In fact, these define the type
of equilibrium motion that we linearize about. Note:

– W0 = 0 since we are using the stability axes, and

– V0 = 0 because we are assuming symmetric flight

• Proceed with the linearization of the dynamics for various flight conditions

Nominal Perturbed ⇒ Perturbed
Velocity Velocity ⇒ Acceleration

Velocities U0, U = U0 + u ⇒ U̇ = u̇

W0 = 0, W = w ⇒ Ẇ = ẇ

V0 = 0, V = v ⇒ V̇ = v̇

Angular Rates P0 = 0, P = p ⇒ Ṗ = ṗ

Q0 = 0, Q = q ⇒ Q̇ = q̇

R0 = 0, R = r ⇒ Ṙ = ṙ

Angles Θ0, Θ = Θ0 + θ ⇒ Θ̇ = θ̇

Φ0 = 0, Φ = φ ⇒ Φ̇ = φ̇

Ψ0 = 0, Ψ = ψ ⇒ Ψ̇ = ψ̇
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• Linearization for symmetric flight U = U0 + u, V0 = W0 = 0, P0 =
Q0 = R0 = 0. Note that the forces and moments are also perturbed.

1

m

[
F 0

x + ∆Fx

]
= U̇ +QW −RV ≈ u̇+ qw − rv ≈ u̇

1

m

[
F 0

y + ∆Fy

]
= V̇ + RU − PW ≈ v̇ + r(U0 + u) − pw ≈ v̇ + rU0

1

m

[
F 0

z + ∆Fz

]
= Ẇ + PV −QU ≈ ẇ + pv − q(U0 + u) ≈ ẇ − qU0

⇒ 1

m




∆Fx

∆Fy

∆Fz


 =




u̇
v̇ + rU0

ẇ − qU0




1
2
3

• Attitude motion:

L

M
N


 =



IxxṖ + IxzṘ +QR(Izz − Iyy) + PQIxz

IyyQ̇ +PR(Ixx − Izz) + (R2 − P 2)Ixz

IzzṘ+ IxzṖ +PQ(Iyy − Ixx) −QRIxz




⇒



∆L

∆M
∆N


 =



Ixxṗ+ Ixzṙ

Iyyq̇
Izzṙ + Ixzṗ




4

5
6

Key aerodynamic parameters are also perturbed:

Total Velocity VT = ((U0 + u)2 + v2 + w2)1/2 ≈ U0 + u

Perturbed Sideslip angle β = sin−1(v/VT ) ≈ v/U0

Perturbed Angle of Attack αx = tan−1(w/U) ≈ w/U0

• To understand these equations in detail, and the resulting impact on the

vehicle dynamics, we must investigate the terms ∆Fx . . . ∆N .
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• We must also address the left-hand side ( �F , �T )

– Net forces and moments must be zero in the equilibrium condition.

– Aerodynamic and Gravity forces are a function of equilibrium condition
AND the perturbations about this equilibrium.

• Predict the changes to the aerodynamic forces and moments using a first

order expansion in the key flight parameters

∆Fx =
∂Fx

∂U
∆U +

∂Fx

∂W
∆W +

∂Fx

∂Ẇ
∆Ẇ +

∂Fx

∂Θ
∆Θ + . . .+

∂F g
x

∂Θ
∆Θ + ∆F c

x

=
∂Fx

∂U
u +

∂Fx

∂W
w +

∂Fx

∂Ẇ
ẇ +

∂Fx

∂Θ
θ + . . .+ +

∂F g
x

∂Θ
θ + ∆F c

x

– ∂Fx

∂U
called a stability derivative. Is a function of the equilibrium con-

dition. Usually tabulated.

– Clearly an approximation since there tend to be lags in the aerodynamics
forces that this approach ignores (assumes that forces only function of

instantaneous values)

– First proposed by Bryan (1911), and has proven to be a very effective
way to analyze the aircraft flight mechanics – well supported by numer-

ous flight test comparisons.
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Stability Derivatives

• The forces and torques acting on the aircraft are very complex nonlinear
functions of the flight equilibrium condition and the perturbations from

equilibrium.

– Linearized expansion can involve many terms u, u̇, ü, . . . , w, ẇ, ẅ, . . .

– Typically only retain a few terms to capture the dominant effects.

• Dominant behavior most easily discussed in terms of the:

– Symmetric variables: U , W , Q and forces/torques: Fx, Fz, and M

– Asymmetric variables: V , P , R and forces/torques: Fy, L, and N

• Observation – for truly symmetric flight Y , L, and N will be exactly zero
for any value of U , W , Q

⇒ Derivatives of asymmetric forces/torques with respect to the symmetric
motion variables are zero.

• Further (convenient) assumptions:

1. Derivatives of symmetric forces/torques with respect to the asymmetric

motion variables are zero.

2. We can neglect derivatives with respect to the derivatives of the motion
variables, but keep ∂Fz/∂ẇ and Mẇ ≡ ∂M/∂ẇ (aerodynamic lag in-

volved in forming new pressure distribution on the wing in response to
the perturbed angle of attack)

3. ∂Fx/∂q is negligibly small.
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• Note that we must also find the perturbation gravity and thrust forces and
moments

∂F g
x

∂Θ

∣∣∣∣∣
0

= −mg cos Θ0
∂F g

z

∂Θ

∣∣∣∣∣
0

= −mg sin Θ0

• Typical set of stability derivatives.

Figure 2: • corresponds to a zero slope - no dependence for small perturbations. No means no dependence for
any size perturbation.
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• Aerodynamic summary:

1A ∆Fx =
(
∂Fx
∂U

)
0
u +

(
∂Fx
∂W

)
0
w ⇒ ∆Fx ∼ u, w

2A ∆Fy ∼ v, p, r

3A ∆Fz ∼ u, w, ẇ, q

4A ∆L ∼ β, p, r

5A ∆M ∼ u, w, ẇ, q

6A ∆N ∼ β, p, r

• Result is that, with these force, torque approximations,
equations 1, 3, 5 decouple from 2 4, 6

– 1, 3, 5 are the longitudinal dynamics in u, w,
and q 



∆Fx
∆Fz
∆M


 =




mu̇
m(ẇ − qU0)

Iyyq̇




≈




(
∂Fx
∂U

)
0
u +

(
∂Fx
∂W

)
0
w +

(
∂F

g
x

∂Θ

)
0
θ + ∆Fc

x(
∂Fz
∂U

)
0
u +

(
∂Fz
∂W

)
0
w +

(
∂Fz
∂Ẇ

)
0
ẇ +

(
∂Fz
∂Q

)
0
q +

(
∂F

g
z

∂Θ

)
0
θ + ∆Fc

z(
∂M
∂U

)
0
u +

(
∂M
∂W

)
0
w +

(
∂M
∂Ẇ

)
0
ẇ +

(
∂M
∂Q

)
0
q + ∆Mc




– 2, 4, 6 are the lateral dynamics in v, p, and r
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Summary

• Picked a specific Body Frame (stability axes) from the
list of alternatives

⇒ Choice simplifies some of the linearization, but the in-
ertias now change depending on the equilibrium flight
condition.

• Since the nonlinear behavior is too difficult to analyze,
we needed to consider the linearized dynamic behavior
around a specific flight condition

⇒ Enables us to linearize RHS of equations of motion.

• Forces and moments also complicated nonlinear func-
tions, so we linearized the LHS as well

⇒ Enables us to write the perturbations of the forces and
moments in terms of the motion variables.

– Engineering insight allows us to argue that many of
the stability derivatives that couple the longitudinal
(symmetric) and lateral (asymmetric) motions are small
and can be ignored.

• Approach requires that you have the stability derivatives.

– These can be measured or calculated from the aircraft
plan form and basic aerodynamic data.


