16.61 Homework Assignment \#8

1. The equations of motion of the mass on the spring pendulum in problem \#1 of HW\#4 are given by:

$$
\begin{align*}
r^{2} \ddot{\theta}+2 \dot{r} \dot{\theta}-\Omega^{2} \cos \theta(d+r \sin \theta) & =-g \sin \theta \tag{1}\\
\ddot{r}-r\left(\dot{\theta}^{2}+\Omega^{2} \sin ^{2} \theta\right)+\frac{k}{m}\left(r-r_{0}\right) & =g \cos \theta+d \Omega^{2} \sin \theta \tag{2}
\end{align*}
$$

Assume that $m=1, k=2, r_{0}=1$ is the undeflected length of the spring and $r(0)=2$, $\dot{r}(0)=0, \theta(0)=0, \dot{\theta}(0)=0.1$. Use the techniques discussed in class (ODE45) to solve these equations of motion numerically for $r(t)$ and $\theta(t)$. The arm attached to the rotating shaft has length $d=0.8 \mathrm{~m}$, as shown in the figure. The shaft is rotating with a constant angular velocity $\Omega=0.4 \mathrm{rad} / \mathrm{sec}$, but the pendulum is free to Look at page $6-8$ of the notes. Please submit all codes for this problem by email.
2. Show that a thin disc thrown up spinning about its major axis with a small nutation angle will make two wobbles to every cycle of spin. Try it - is it true?
3. Do problem 18.66 from Beer and Johnston Vector Mechanics for Engineers.

