16.61

Prof. J. P. How
Prof. J. Deyst

Handout \#6
March 20, 2003
Due: April 3, 2003

16.61 Homework Assignment \#6

1. Consider a spherical pendulum with a spring and damper connected in parallel. In the figure, $\dot{\phi}$ is positive $u p$ the page, $\dot{\theta}$ is positive going into the page. Using spherical coordinates r, θ, ϕ derive the equations of motion for the mass. For the initial conditions listed, describe the motion of the pendulum after a long time. (Neglect air resistance.)

$$
r_{0}=L, \dot{r}_{0}=\dot{L}, \theta_{0}=\frac{3 \pi}{4}, \dot{\theta}_{0}=0, \phi_{0}=0, \dot{\phi}_{0}=0
$$

2. Do problem 2.6 on page 63 of Greenwood's Principles of Dynamics
3. Consider the 2 D system shown in the figure. The pivot point for the pendulum supporting the mass m is attached to the wheel that is rotating about a fixed point at a constant rate ω. Find the equations of motion of the system and show that when $\omega=0$ you recover the expected equations of motion for the pendulum.

