16.61 Homework Assignment \#5

1. Consider the catapult problem covered in class, but this time include the effect of gravity and add a twist. The catapult shown has a constantly increasing elevation angle, θ, and a constant rotation rate, Ω about the vertical axis. Derive the equations of motion for the particle.

2. A particle moves in space subject to the constraint: $d z=(x+y) d y+(y+3 x) d x$. Is this constraint holonomic? How many degrees of freedom does the particle have? Find $z=f(x, y)$ or if you can not, explain why there is no solution.
3. Consider a spherical pendulum with a spring and damper connected in parallel. In the figure, $\dot{\phi}$ is positive up the page, $\dot{\theta}$ is positive going into the page. Using spherical coordinates r, θ, ϕ derive the equations of motion for the mass. For the initial conditions listed, describe the motion of the pendulum after a long time. (Neglect air resistance.)

$$
r_{0}=L, \dot{r}_{0}=\dot{L}, \theta_{0}=\frac{3 \pi}{4}, \dot{\theta}_{0}=0, \phi_{0}=0, \dot{\phi}_{0}=0
$$

4. Do problem 6.8 of Greenwood's Principles of Dynamics

