16.61 Homework Assignment \#10

1. Assume that a satellite can be modeled as a homogeneous cylinder shown below with a mass $M=200 \mathrm{~kg}$, axial moment of inertia $5 \mathrm{M}\left(\mathrm{kg}-\mathrm{m}^{2}\right)$ and transverse moment of inertia $20 \mathrm{M}\left(\mathrm{kg}-\mathrm{m}^{2}\right)$. Initially the (force free) satellite is moving such that the component of angular velocity ${ }^{i} \vec{\omega}^{R}$ parallel to the body axis of symmetry is $15 \mathrm{rev} / \mathrm{hr}$ and the nutation angle is 30°. Given this information, determine the following:

(a) H_{3}, H_{T}, and the total magnitude of H
(b) The precession rate and the spin rate.
(c) The magnitude of ${ }^{i} \vec{\omega}^{R}$
(d) The body cone and space cone angles.
(e) Sketch the body and space cones for this system. In your sketch include ${ }^{i} \vec{\omega}^{R}, H$, and the axis of symmetry of the satellite.
2. Consider a paddle-wheeler steam boat moving forward downstream on the Mississippi River. The captain has commanded a very sharp turn to the left to avoid the other boat. What direction does the boat lean (in roll) as a result of the gyroscopic effects of the paddle-wheel?
3. A proposed space station is closely approximated by four uniform spherical shells, each of mass m and radius r. The mass of the connection structure and internal equipment can be neglected. Station designed to rotate about its z-axis once every 4 sec, determine:
(a) The number n of complete cycles of precession for each revolution about the z-axis if the plane of rotation deviates only slightly from a fixed orientation.
(b) The period τ of the precession if the spin axis makes an angle of 20° with respect to the axis of fixed orientation about which the precession occurs.
(c) Draw the space/body cones for the condition in part (b).
4. Do problem 18.84 from Beer and Johnston Vector Mechanics for Engineers.
