
Kinetic Theory

Distribution function:

f(w,� �x)d3wd3x ≡ # of particles in the element of phase space volume (�x, d3x), (w,� d3w)

Knowledge of f completely specifies the gas state.

Total number density:

n =

∫∫∫
fd3w

Average of a quantity φ(w�):
1

φ̄ = 〈φ〉 = φf
n

∫∫∫
d3w

The mean velocity:
1〈w�〉 = �u = wf�
n

∫∫∫
d3w

Random velocity:
�c = w� − �u = w� − 〈w�〉

note that 〈�c〉 = 〈w� − 〈w�〉〉 = 〈w�〉 − 〈w�〉 = 0.

Mean kinetic energy per particle:

1〈K〉 =
n

∫∫∫
1

2
mw2fd3w

〈K〉 =
1

2
m

〈
(�u + �c)2〉 =

1 1
m

2

〈
u2 + c2 + 2�u · �c〉 =

2
mu2 +

1

2
m

〈
c2

〉
Before proceeding further, we define temperature as the thermal energy equivalent to the
second term in the RHS of last equation, therefore,

3

2
kT =

1
m

2

〈
c2

for any

〉
distribution (could be non-equilibrium). In particular, for equilibrium, we use the

Maxwellian distribution:

1

2
m

〈
c2

〉
=

1

2
m

1

n

∫∫∫
c2fd3w =

1

2
m

∫ ∞

0

c2
( m

2πkT

)3/2

e−
mc2

2kT 4πc2dc =
3
kT

2

where integration by parts was used to obtain the result.

Following with properties of the random velocity, the random mass flux along i is mnci,
while the random momentum flux along j due to random motion along i is mncicj.

For all possible values of �c we have:

mn 〈cicj〉 ≡ momentum flux associated with random particle motions
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This is the definition of the pressure tensor Pij,⎡
〈c2〉 〈c c⎢ x x y〉 〈cxcz〉

�

⎤
⎢⎢ �� 〈 〉 ⎢ 〈

2

⎥〉 ⎥⎥⎥ �P = nm �c �c = 〈c c 〉 c 〈c c 〉 and the trace TrP = nm
〈
c2⎢ x y y y z

〉
= 3nkT

⎣⎢
〈cxcz〉 〈cyc

2
z〉 〈cz〉

⎦⎥⎥

��If f(�c) = f(c) (isotropic distribution), then TrP = 3P , where,

P = nm
〈
c2 2 2
x

hence

〉
=

〈
cx

〉
=

〈
cx

P = nkT for any isotropic distribution.

〉

For the non-diagonal elements (i �= j) of the pressure tensor, Pij = −τij. These are the shear
stresses. And once more, if the distribution is isotropic (for i = x and j = y),

∞ ∞ ∞
Pxy = −τxy = m

∫ ∫ ∫
cxcyf(c)dcxdcydcz = 0

−∞ −∞ −∞

since the integral is over odd functions in both cx and cy. If there are no shear stresses
present, then there is no viscosity.

Vlasov’s Equation

It should be possible, at least in principle, to compute the distribution function of particles
in phase space given information about the forces acting on them. In particular, if we do not
consider collisions, we can use Liouvilles theorem to find an equation for the distribution.

Consider the 6-dimensional phase space with �x, w� as coordinates, and take a group of points
initially occupying a volume d3xd3w in it (namely, particles which are grouped about �x in a
volume d3x, and of those only the ones with velocities in d3w about w�).

V6

A

We take the volume large enough to contain many particles,
and follow it for a certain time dt, always enclosing the same

�n

particles as they move in phase space. The rate of change of
volume V6 in this (or any) space is,

dV6
=

dt

∮
�v · �ndA

where �v is the velocity vector of points in the area element dA
with normal �n. This vector is also 6-dimensional,

x
v =

[
d�

�
dt

,
d�w

dt

]

Using Gauss’ theorem,

dV6 ∂
=

dt

∮
�v · �ndA =

∫
V6

∇6 · �vdV6 where ∇6 · �v =
∂xi

(
dxi

dt

)
+

∂ dw

∂wi

(
i

dt

)
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where the convention of summation over repeated indices is implied. In this expression we
note that dxi/dt = wi, and since the partial derivative ∂/∂xi is evaluated at wj ≡ constant for
any j, the first summation is identically zero. In the second summation, dwi/dt = ai = Fi/m
is the particle acceleration, which depends on the forces acting on the particle. Under some
conditions on the forces, this term could also be zero:

� �1. If the force is conservative (can be derived from a potential), then F = F (�x) and,(
�∂F

0
∂ �w

)
≡

�x

2. If there are, in addition to conservative forces, only magnetic forces coming from an
�external B(�x). In that case,

Fi = q
(
w� × �B

) ∂Fi
= qεijkwjBk and

i ∂wi

= qεijk
∂wj

Bk = qεijkδijBk = 0
∂wi

since δij = 1 only for i = j, but εijk = 0 for any index repetition.

� �These two conditions cover the case of a collisionless plasma in external E and B fields, in
such cases dV6/dt = 0 and since we follow the same particles, it follows that the phase space
density (the distribution function f) is constant along particle trajectories. Noting that,

df

dt
=

∂f
+ w� · ∇xf + �a

∂t
· ∇wf

we obtain Vlasov’s equation governing f(�x, w�) in collisionless situations for a species s,

dfs

dt
=

∂fs

∂t
+ wi

∂fs

∂xi

+
Fi

ms

∂fs �= 0 where Fi = qs B
i

(
E + w� × �

∂w

)
i

� �If E and B are determined in a self-consistent way, as a result of the collective effect of all
the plasma particles, this Vlasov equation can still be used as an approximation in finding
the distribution function, f .

The Boltzmann Equation

Interactions between particles (like collisions) are excluded in the preceding formulation,
because if they exist, the last three components of �v (namely, the acceleration) are no longer
functions of position in phase space alone (�x, w�), but also of the position of the other particles
and then Gauss’ theorem does not apply. It is still true that,

dV6
=

dt

∮
�v · �ndA

but not equal to, ∫
V6

∇6 · �vdV6
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If we are willing to concentrate on binary collisions and on evolution times long compared
to the intercollision time, then the rate of change of fs can be calculated separately, thus
giving a RHS side to Vlasov’s equation.

dfs

dt
=

∂fs

∂t
+ wi

∂fs

∂xi

+
Fi

ms

∂fs

∂wi

=

(
dfs

Boltzmann
dt

)
Equation

coll

Earlier we studied binary collisions in the relative frame. The velocities of the target and
colliding particles can be written in terms of the center of mass and relative velocities,
respectively:

m� r
w� = G +

mr + ms

�g and �w1 = �G − ms

mr + ms

�g

s 
  w  

  
� ′ w 1  

r 

s   g  

b  
χ  

r 

� 

  
� 
w 1 

  
� ′ w  

Laboratory frame Relative frame 

� 
  
� ′ g  

φ  

The relative velocity after the collision �g′ is a rotation of �g through (χ, φ), so given those
angles (or the impact parameter b and φ) the resultant velocities in the laboratory frame w� ′

and w�1
′ are just linear functions of w� and w�1. The Jacobian of the transformation,

∂(w� ′, �w1
′ )

is unity.
∂(w,� w�1)

To see this, decompose into three Jacobians,

∂(w� ′, �w1
′ ) ∂(w� ′, �w′

= 1)

∂(w,� w�1) ∂(�G′, �g′)

∂(�G′, �g′)

∂(�G,�g)

∂(�G,�g)

∂(w,� w�1)

� �For the second term, note that G = G′,

�∂(G′, �g′)

∂(�G,�g)
=

∂�g′
= 1 , which is just a rotation.

∂�g

For the third term we write,

�∂(G,�g)

∂(�w, �w1)
=

∣∣∣∣∣∣∣∣
∂ �G
∂ �w

∂ �G
∂ �w1

∂�g
∂ �w

∂�g

∣∣∣Gx xw Gxw G∣ wx
Gxwy

Gxwz
G xw1x 1y 1z

∣
∣∣

G∣∣Gywx ywy
Gywz

Gyw G

∣
yw Gyw1x 1y 1z

∣∣∣∣
∣∣ ∣∣∣

∣
∣∣ Gzwx

Gzwy
Gzwz

Gzw Gzw Gzw1x 1y 1z

∣∣∣
∣∣∣ ∂Gx

=

g
∂ �1

∣ where G =∣ xwx

g g g g g
w

∣∣∣
∣∣∣ ∣∣ xwx xwy xwz xw xw xw1x 1y 1z∣

x
g wy

gy yw g∣∣∣ gyw y wz
gyw g yw1x 1y 1z

∣∣∣∣
∣∣∣
gzwx

gzwy
g

z

∣
∣ zw gzw gzw gzw1x 1y 1z

∣∣∣∣∣

∂wx
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and using the transformation equations (with m = ms + mr),

m� sw� + mrw�1
G =

m
and �g = �w − �w1

we obtain,

∂(�G,�g)

∣∣
ms mr/m 0 0

∣∣ /m 0 0∣∣∣∣ 0 m /m

∣
s/m 0 0 m

∣∣∣

0 0 ms/m 0 0 m

∣∣∣∣ r 0

r/m
= = 1

∂(w,� w�1)

∣∣∣∣ ∣∣∣∣∣∣ 1 0 0 −1 0 0
∣∣∣

∣∣
0 1 0 0 −1 0

∣∣∣∣∣∣∣∣
0 0 1 0 0∣∣ ∣

∣∣∣∣∣∣−1

Similarly, for the first term,

∂(w� ′, �w1
′ )

∂(�G′, �g′)
=

∣∣∣∣∣∣∣∣
∂ �w′

∂ �G′
∂ �w′
∂�g′

∂ �w′
1

∂ �G′
∂ �w′

1

∣∣

∂�g′

∣∣∣ = 1

and therefore,

∣∣

∂(w� ′, �w1
′ )

∣

= 1 , the Jacobian is unity.
∂(w,� w�1)

The effect of collisions on particles will be to remove or add them to the phase space volume
considered in Boltzmann’s equation.

Depopulation by collision depletion:

dw
� z  

  w  
dw

dwx  
y  

Consider a mixture of
species, and assume that every collision changes w� of the target
particle enough to instantaneously remove it from d3w (note
that it is removed from the phase space volume even though
it remains inside d3x), while the colliding particle (which must
have been originally outside d3w) will remain outside as well.
The problem then reduces to counting the number of collisions
in that volume, per unit time,(

dfs
d

dt

)
3w

dep.

This number will be proportional to the number of particles s contained in that volume
f 3

s(w�)d w, to the number of particles r that will collide with them and the magnitude of the
relative velocity, g. Given the differential cross section σrs, the number of depleting collisions
per unit time, per unit volume is,

fs(w�)d3w

∫ ∫
fr(w�1)d

3w1gσrsdΩ
w1 Ω
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therefore, (
dfs

= f f (w� )d3
s(w�) r 1 w1gσrsdΩ

dt

)
dep.

−
∫

w1

∫
Ω

Replenishing collisions: There are also collisions occurring (inside d3x) in which one of the
particles has a final velocity in d3w. To count these, we specify each one by the final velocity
w� of one particle (which is prescribed), and the final velocity w�1 of the other particle (which
will be summed over). To do this, we take the inverse of the collision, by first reversing in
time a “normal” collision and then reflecting through the origin:

s 

r 

  
� 
w  

  
� 
w 1 

  w  

  
� ′ w 1  

  
� 
w  

  
� 
w 1 

  
� ′ w  

  
� ′ w 1  

r 

Time reversal  

Reflect 
through 
the origin 

  
� 
w  

  
� 
w 1 

  
� ′ w  

  
� ′ w 1  

Inverse collision 

r 

� ′ 
s 

s 

In a similar way as before, we can count the number of collisions of this kind per unit time,
per unit volume, which is,

fs(w�
′)d3w′

∫ ∫
f 3

r(w�1
′ )d w1

′ g′σrsdΩ
w1

′ Ω

and since g = g′ and, as the Jacobian of the transformation is unity (d3w′d3w1
′ = d3wd3w1),

we have, (
dfs

)
=

∫ ∫
f )d3

s(w�
′)fr(w�1

′ w1gσrsdΩ
dt rep. w1 Ω

Adding both terms and counting all species r (including s), we obtain Boltzmann’s collision
integral,

(
dfs

)
=

∑ ∫ ∫
(f ′ fr1)gσ 3

sfr
′
1
− fs rsd w1dΩ

dt coll wr 1 Ω

where fs
′ = fs(w�

′), fr
′
1

= fr(w�1
′ ), fs = fs(w�), fr1 = fr(w�1) and σrs = σrs(g, Ω). Note that

Boltzmann equation becomes non-linear when r = s.

Recall limitations:

1. Only binary collisions considered.
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2. Since f(w�)f(w� ′) is taken to be proportional to the probability of finding molecules at
w� and w�1, the molecular motions are assumed uncorrelated (molecular chaos). Must
fail near the critical point of a gas, and also, in principle, in highly ionized gases, where
forces are collective.

3. No inelastic effects have been considered. In general, have to add a term,(
dfs

dt

)
inelastic

to include processes such as ionization or excitation.
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