
�Time-varying B field. Adiabatic invariants.

�We have dealt so far with steady fields. When B varies in time, an additional effect comes
into play, namely, the generation of electric fields according to ∇ × �E = − �∂B/∂t. If these
variations are slower than the particle gyrations, orbit-averaging methods similar to those
used for steady non-uniform fields can then be used, and the net energy added to the parti-

�cles by the E field is small; the effects are called “adiabatic”.

The second adiabatic invariant

We first consider the time dependent version of the steady conservation of the magnetic
moment, that we analyzed in the previous lecture. A formally simple treatment consists of
changing our reference frame to that of the parallel flow, v , in which we see no flow, but‖
a time variation of B. To see this, call z′ the coordinate following v , so that z′ = z‖ − v t,‖
and therefore ( ∂

∂t)z′ = v‖( ∂
∂z). Since we had in the original frame

∂μ = 0, simple mul-∂z

tiplication times v gives for the new, time-dependent situation, (∂μ
‖ )z∂t

′ = 0, which is the
mw2

time-dependent “adiabatic invariance”. The magnetic moment μ = ⊥
2B is called “the

second adiabatic invariant”.

This formal treatment actually hides from view the real physics, so we next look at the
� �situation in some more detail. As we noted above, the time variation of B produces an E

� � �field, and it is easy to see from ∇×E = −∂B/∂t, this field circles around B. As the particle
executes its “quasi-Larmor orbit”, its perpendicular kinetic energy K increases at the rate⊥

�dK /dt = w� q⊥ · E, and the increase in one orbit is,

δK = q⊥

∮ �∂B�E · � �l = q

∫ ∫
∇× �d E · dA = −q

∫ ∫
�d

∂t
· A

� �where dl is a path element along the Larmor circle, and dA = − �
dAB is a surface element

B

vector that points against the magnetic direction for a positive q. The integration can now
be performed as,

∂B
δK = +q⊥

mw
πr2

∂t L = πq

(
2
⊥

qB

)2
∂B

∂t
= 2π

K⊥
ωc

1

B

∂B

∂t

Now, 2π/ωc is the gyro time, and so the change in B over one gyration is (2π/ωc)(∂B/∂t) =
δB. We thus have,

δK⊥
K⊥

=
δB

B
→ δ

(
K⊥

= 0
B

)

which proves the invariance of μ.

The first adiabatic invariant

� � �We have already seen that, in an inhomogeneous B field, averaging the Lorentz force E+w�×B
over a Larmor orbit generates non-zero mean forces, which give wrist to the guiding center
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drifts. Once characteristic of these drifts is that they are generally slow enough that the
inertia forces mdvD/dt are negligible, so that drifting motion is“quasi-static”, like the ascent
of a balloon or the fall of a raindrop, where to a good approximation, there is a force
balance, even when the velocity may change with time. Thus, leaving aside the effects of
strong enough Larmor-averaged forces to cause appreciable acceleration, we can write,

�E + �vD × �B � 0

�and we repeat here that in a non-steady situation, E is caused by the time-dependence
�of B. Consider now a piece Σ of drifting material surface, meaning a surface that moves

�everywhere at the local drift velocity. Let dA be a surface element on Σ. The magnetic flux
linked by Σ is then,

Φ =

∫ ∫
�B · �dA

�and its rate of change is due to two effects: (a) the local rate of change of B, and (b) the
addition to new elements of surface to Σ along its edges as the piece of surface drifts; since
the local velocity of the surface is �vD, the new surface enclosed due to the motion of an

�element dl, and so,
dΦ

dt
=

∫ ∫
Σ

∂ �B � � �dA + B (�vD dl)
∂t

·
∮

· ×

�We not replace ∂B/∂t by −∇ × �E in the first term and use Stokes’ theorem. We also
rotate the terms and flip the sign in the second integral, after which the two integrals can
be combined into one:

dΦ �
dt

− �=

∮
(E + �vD × B) · �dl � 0

The flux linked by a drifting material curve is therefore called the first adiabatic invariant.

A simple consequence of these two invariants is the possibility of heating and compressing
a plasma by placing it in a rapidly increasing magnetic field (a so-called Z-pinch). The
perpendicular temperature T is proportional to the perpendicular mean kinetic energy,⊥
which, by the invariance of the magnetic moment, will increase with B. At the same time,
from the first invariant, the plasma as a body will move with the magnetic lines of force,
which will be squeezed together as B increases; hence the compression. In a purely cylindrical
geometry, the plasma density will now increase in proportion to B, like T , and so, if we⊥
represent the density-temperature relationship as a polytropic formula (ρ ∼ T 1/(γ−1)), we
see that the appropriate “γ” is 2 for this compression process.
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