
Relationship Between Drifts and the Fluid Picture

In the previous sections we have progressively collected a variety of effects which each can
yield a “drift current”: we have an Inertia Current, a ∇B-current and, if only one polarity
is magnetized, and E × B current, or Hall current. Additionally, we had earlier pointed out
that, even if the Guiding Centers do not drift, an inhomogeneous distribution of Larmor
rotations gives rise to a Magnetization Current.

On the other hand, very often we will think of the plasma as a fluid characterized by a
density n, a mean velocity �u, a current density �j and a temperature T (at least one such
fluid for each of the particle species present). What is the connection between these two
pictures? We will see that, if all drifts plus magnetization currents are properly accounted
for, the “fluid” does satisfy the fluid momentum balance, as it should. On the other hand,
any physical conclusion drawn from only one, or an incomplete subset of drifts can easily
be very misleading, because the various effects can cancel each other in complex ways. In
this sense, although the drift analysis is very useful in clarifying the mechanisms at work
(and can, for example, help devise effective plasma simulation techniques), the fluid picture
is safer, because all those cancellations are built-in from the start. One limitation of the
fluid picture is that the resulting equations are only simple if the “fluid” is microscopically
isotropic; others will become apparent later.

We now collect together all of the “currents” mentioned above:

-Magnetization Current:

�jM = ∇× �M = ∇× (n�μ) = −∇×
(

n
1
2
mv2

⊥
B

�B
(35)

B

)

-“Curvature” or “Inertia” current:

�jR = nq
mv2

‖ �bn (36)
qBRc

-Grad-B current:

�j∇B = nq
mv2

⊥�b
2qB2

×∇B (37)

-E × B current:

�jE×B = nq
�E × �B

(38)
B2

Starting with (35), we can carry out the ∇× (· · · ) operation:
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(39)

�Of the terms here, the first and last are clearly perpendicular to B. Since the whole magne-
�tization current arises from Larmor motion, which is perpendicular to B, we should exclude
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�from the ∇×B in term in (38) the parallel part, and write instead (∇× �B) in the middle⊥
term.

Add together all these currents:

�j = �jM +�jR +�j∇B +�jE×B =
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The first thing we notice is that the Grad-B current cancels out with 1/2 of a similar portion
of the magnetization current. The remainder of this term can be manipulated using,

�b×∇B
B =

�bn
Rc

− (∇× �B)⊥
B

to yield,
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and we now cancel out the bothersome (∇× �B) terms. Grouping terms,⊥
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(41)

To connect with the fluid viewpoint, we now recognize the existence of different values of v‖
and v within the one species of particle being considered, and perform a statistical average⊥
of (42) for all such particles. We use the definitions of press and temperature:〈

1
nmv2

2 ⊥

〉
≡ P⊥ ≡ nkT (42)⊥

〈
nmv2

‖

〉
≡ P‖ ≡ nkT (43)‖

And obtain, for “the fluid”,

�j = −∇P⊥ ×
�B nk(T

+
‖

B2

− T )⊥
BRc

�bn + nq
�E × �B

B2
(44)

�The force density due to B on the fluid is,〈
nq�v × �B

〉
= �j × �B
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�We there form �j × B from (44). For any vector �a,(
�a × �B

)
× �B

B2
= �B

�a · �B
�

B
− �a =

2
−a⊥

�and also (bn) × �B = �nB.

Hence,

nk T
�j × �

(
‖ − T⊥

)
B = +∇ (P ) +⊥ ⊥ ��n

Rc

− nqE⊥

or finally,

∇⊥P⊥ +
P‖ − P⊥ ��n = nqE +�j

Rc
⊥ × �B (45)

The first term on the left is the opposite of familiar fluid pressure gradient force (perpen-
dicular component). The two terms on the right are the electrostatic force density and the
magnetic force density, respectively. The term,

P⊥ − P‖
�n

Rc

is unfamiliar in fluid terms, because one normally assumes isotropy in a fluid (P⊥ = P‖), and
this “anisotropy force” would be absent then.

In summary, for an isotropic fluid, the full curvature and gradient drifts are cancelled out
�by the B − field gradient terms in the magnetization current. This confirms the statement

about how dangerous it may be to rely on one or other of the drifts in isolation.

For an example of this twist, consider a straight, long cable carrying a current I and embed-
ded in a plasma.

I

�B = B(r)�b

�b

�n

�bn

�From Ampere’s law, the B field set up by the current is,

μ0I
B =

2πr
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and so it has both, curvature (1/r) and a gradient,

μ∇ 0I
B =

2πr2
�n =

B
�n

r

According to (36) and (37), the drifts are,

nmv2

�jR =
‖ �bn (46)

Br

nmv2 /2�j∇B = ⊥
B2

B

r
�b × �n =

nmv2
⊥/2 �bn (47)

Br

Both (46) and (47) are currents parallel to the wire, for any polarity, and one would be
tempted to predict kind of “induced current” being “dragged along” by the main wire
current. However, reference to (41) tells us that, if the plasma is uniform and isotropic,
no such current exists.
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