
Radiation Transport in a Gas

By analogy to a particle gas, define a photon distribution function by,

�fν(ν, Ω;�r, t)dvdΩd3r = Number of photons of a frequency in (ν, ν + dν),

�in a volume at �r(d3r), with direction in (Ω, dΩ) (1)

A related quantity, which is actually the one used most often, is the Spectral Radiation Intensity,
defined as,

Iν = hνfνc (W/m2/sterad/Hz) or (J/m2/sterad) (2)

�so Iν = Energy crossing unit area per unit time, normal to Ω within a solid angle.
Another related quantity is the Energy Density:

uν =

ˆ
fνhvdΩ (J/m3/Hz) (3)

which can also be written as,

uν =

ˆ
Iν

c
dΩ (4)

Finally, the Energy Flux Vector (or radiant heat flux) is defined as,

�Sν =

ˆ
� �fνhνcΩdΩ =

ˆ
IνΩdΩ (5)

with units of W/m2/Hz. For isotropic �radiation, Sν = 0, even though uν may not be zero
(or Iν). For the definition (5), we count the individual energy fluxes of all photons, of any
direction, then we add them vectorially.

Equilibrium Distribution

This was derived from Bose-Einstein statistics, and it constitutes an example of an isotropic
radiation field that can be obtained, say, inside a blacked enclosure at constant temperature.
The various Equilibruim (or Black Body) quantities are

2ν2

fν =
c3

1

e
hν (6)
kT − 1

hν3

uν = 4πhνfν = 8π
c3

1

e
hν (7)
kT − 1

2hν3

Iν = cfνhν =
c2

1

e
hν B
kT − 1

≡ ν (8)
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Notice uν or Iν are maximum when,

λT = 2900(μm) × K (Wein’s Law) (9)

The total energy density in the radiation field is,

∞
5

u =

ˆ
8π

uνdν =

0
15

k4T 4

(10)
(hc)3

and the one-sided total energy flux is,

uc
q =

4
=

2π5

15

k4T 4

= σT 4 (σ = 5.67
h3c2

× 10−8 W/m2/K4) (11)

But, of course, the net (two-sided) energy flux is zero. The relevance of q is that it is the
power flux emitted from the surface of a black body, where only one side exists.

The Radiation Transport Equation

This is the analogue of the Boltzmann equation for photons. There are no forces on a photon,
so all we have is,

∂Iν

∂t
+ �c · ∇Iν =

(
∂Iν

(12)
∂t

)
collisions

(notice the equation could be in terms of fnu, but Iν is customary). Also, �c = cΩ. Comparing

the terms on the left, (∂Iν/∂t)
(�c·∇Iν)

∼ Δx
cΔt

<< 1 usually. So, ignore “photon accumulation”:

c�Ω · ∇Iν =

(
∂Iν

(13)
∂t

)
collisions

or, in terms of distance s along the beam (ds = cdt),

�Ω · ∇Iν =

(
∂Iν

∂t

)
collisions

(14)

Structure of the Collision Operator

Photons can be absorbed, scattered, or emitted along their paths. Absorption + Scattering
is also called Extinction. We ignore for now scattering.

Define the Spectral Absorption Coefficient kν , such that kνIν = Energy absorbed in the unit
�spectral range about ν, per unit length along the Ω-directed path, per steradian kν has

dimensions of inverse length. In fact, 1
kν

= λν is the Photon Mean Free Path. Including
scattering kν → Extinction coefficient. Define also the Spectral Emission per unit length

�and per unit frequency, into unit solid angle about Ω (Jν).
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With these definitions, (14) becomes

�Ω · ∇Iν = Jν − kνIν (15)

We must relate kν and Jν to atomic properties of the gas through which the photons prop-
agate.

Let Nn = Number of atoms in nth excitation level.
Let αnm = Cross section for a photon-induced n → m transition.

where the frequency ν is such that hν = εm − εn. Because of uncertainty and various
Broadening mechanisms (see later), the energy level difference εm − εn is spread over some
finite (although often narrow) part of the spectrum, rather than it being sharply defined,
and so several transitions may contribute to a particular frequency ν:

kν =
∑

knm =
∑

Nnαnm (with ν = (εm

n<m,all m n<m,m

− εn)/h) (16)

The emission can be spontaneous (independent of the radiation field), or it can be induced
or stimulated (proportional to Jv, and in the same direction). We introduce a spontaneous
emission coefficient, βmn, and an induced emission coefficient, γmn, and write,

Jν − kνIν =
∑

(−NnαnmIν + βmnNm + γmnNmIν) (17)
n<m,m

This would add up to zero for any (m, n) if the radiation were Black Body radiation (equi-
librium):

(Iν)equil. = Bν =
BmnNm

βmn

=
αnmNn − γmnNm

γmn

αnm

γmn

Nn
(18)

1
Nm

−

Comparing this to Bν = 2hν3

c2
1

ehν/kT−1
, we conclude that,

βmn

γmn

=
2hν3

c2
;

αnm N

γmn

(
n

Nm

)
equil.

(19a;19b)

Now, in equilibrium we already know that,

(
Nn

Nm

)
equil.

=
gn hν

e+

gm

kT (20)

and so (19b) simplifies to,
αnm

γmn

=
gm

gn

(21)

Equations (19a) and (21) are Einstein’s relationships, and, as usual, allow us to express all
three kinetic coefficients (α, β, γ) in terms of only one of them. This is sometimes chosen to
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be absorption (α), other times spontaneous emission (β). Substituting Einstein’s relations
into (17), and choosing to express everything in terms of absorption, we obtain,

�Ω · ∇Iν =
∑

n<m,m

αnmNn

[
Nm

Nn

gn

gm

(
2hν3

+ Iν
c2

)
− Iν

]
(22)

Particular Cases

(a) For low enough frequencies (ν �
(

c2Iν
1

2h

) /3

), or, at a given frequency, for strong enough

radiation, we can neglect the ν3 term (arising from spontaneous emission), and retain only
stimulated emission:

�Ω · ∇Iν =
n<m,m

∑
Nnαnm

(
Nm/gm

1
Nn/gn

−
)

Iν (23)

and if upper levels are more populated (in proportion to their degeneracy) than lower levels,
the intensity increases along the beam path. This is amplification, or LASER action. Notice
that UV lasers are more difficult that MW (MASER) or visible laster (higher ν requires
higher Iν), and X-ray lasers are only possible in the enormous radiation field of a nuclear

fireball. Notice also that Nm/gm would be e hν/kT , 1 if the levels were equilibrated at some
Nn/gn

−

“population temperature” T . An inversion is necessary that will over-populate the upper
levels; this is sometimes described as a “negative temperature”.

(b) Gas energy levels populated according to some T , any frequency. This implies a partial
equilibrium situation, in which the atomic/molecular levels are equilibrated among them-
selves, but the radiation field is out of equilibrium. This situation is very common, and is
called Local Thermodynamic Equilibrium (LTE). Of course, no lading is possible at LTE.
In this case, as noted,

Nmgn

Nngm

= e−
hν
kT , and so

�Ω · ∇Iν =

(
n<m,m

∑
Nnαnm

)
︸ ︷︷ ︸

kν

[(
2hν3

c2
+ Iν

)
e−

hν
kT − Iν

]
︸ ︷︷ ︸

2hν3

c2
e−

hν
kT −Iν(1−e−

hν
kT )

�Ω · ∇Iν = kν(1 − e−
hν
kT )

[
2hν3/c2

hν

e+
I

kT − 1
− v

]

The first term in brackets is Bν , the Black Body radiation intensity. Also, define a modified
absorption coefficient (absorption minus stimulated emission) by,

kν
′ hν

= kν(1 − e− kT ) (24)

and we obtain the LTE Radiation Transport Equation:

�Ω · ∇Iν = kν
′ (Bν − Iν) (25)
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Integrated relationships for a spectral line

For a line the absorption of the emission are concentrated, and the total spontaneous line
emission is an atomic property. The decay rate from m to n is Amn; it can be distributed
differently in ν, depending on T , collisions, etc., but the total is constant. Emission is
isotropic, so per atom, Amn per sterad. The net energy emission rate per unit volume, per

4π

sterad, for the whole line, is then N Amn
m hν. Comparing to the expression (Ω

4π
· Iν)sp.em. =∑

m,n<m βmnNm, which is per unit frequency, we see that,

ˆ
Amn

βmndν =
line 4π

hν (26)

and then, from the Einstein relation between βmn and αnm, the integral over the line of the
absorption cross-section is,

ˆ
line

αnmdν =
c2

2hν3

gm A
β

gn

ˆ
mn

mndν =
line 8π

gm

gn

c2

ν2
(27)

and also, the integrated cross-section for stimulated emission is,

ˆ
line

γmndν =
gm A

α
gn

ˆ
mn

nmdν =
line 8π

c2

ν2
(28)

Solution along a ray

Say x is the distance along which we want to calculate the evolution of Iν , and we know the
state of the gas along x(kν

′ (x), Bν(x)). The equation of propagation is,

dIν
= kν

′ (Bν − Iν) (29)
dx

and using variation of parameters, the solution is,

x x ε

− ´ kν
′ (ε)dε k ε

Iν( ) = e 0

[
ν
′ ( 1)dε1

x I +

ˆ
k′ (ε 0

ν(0) ν )Bν(ε)e

´
dε

]
(30)

0

The first factor is an attenuation factor. Inside the bracket, Iν(0) is the intensity of the ray
incident on the medium. The integral inside the brackets is the cumulative new radiation
that has accumulated along the ray’s path in (0 − x), at the rate kν

′ Bν per unit length,
except that the portions emitted “upstream” are attenuated only from their emission (ε) to
the observation point (x). If the gas is uniform (constant kν

′ , Bν), equation (30) reduces to,

Iν(x) = Bν + [Iν(0) − Bν ]e
−kν

′ x (31)
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Again, Iν(0)e−kν
′ x is the remaining part of the original radiation, and Bν(1 − e−kν

′ x) is the
accumulated gas emission.

Radiation “Signature” of a gas

If Iν(0) = 0, the intensity at x = L is purely emitted radiation, given by

′
Iν(L) = B k

ν(1 − e− νL) (32)

The quantity kν
′ L is called the “optical thickness” of the gas. Notice that this includes not

only the actual thickness L, but also the absorption coefficient kν
′ , which can depend very

strongly on frequency ν. Specifically, over some parts of the spectrum kν
′ L � 1, and the

gas is said to be optically thin there. Under these conditions, (32) can be approximated
(e−ε � 1 − ε) as,

Iν(L) � Bνkν
′ L (33)

This means we “see” a radiative spectrum that reflects proportionately the gas’ absorptivity
kν
′ (which can now be interpreted as “emissivity”), with a slowly changing “black body

envelope”, Bν :

On the other hand, in the vicinity of a strong absorption line, we may have, for the same L,
kν
′ L � 1 and the gas is “optically thick” there. In that case, Equation (32) gives,

Iν(L) � Bν (34)

and we see, over a limited part of the spectrum, a black body radiator. Any structure kν
′

may have in this spectral region is lost due to the black-body saturation.

Application-Line Reversal Pyrometer

The temperature of a flame (or a moderate temperature plasma) can be measured to within
±20K or so with the following arrangement: A calibrated tungsten ribbon, treated to emit as
a black body, is placed behind the flame, and heated by an electrical current. The calibration
must indicate the ribbon’s temperature, Tb, for a chosen current I. The ribbon is observed
through the flame, using a dispersive element (spectroscope), to generate an observable
spectrum. In this situation, Equation (31) applies, with Iv(0) = Bv(Tb). We observe

I kv
′ L

v(L) = Bv(T ) + [Bv(Tb) − Bv(T )]e− (35)

As we vary Tb (with I), when Tb = T we observe Iv(L) = Bv(Tb), i.e., literally as if the flame
were not there. When Tb < T , flame emission dominates, and in regions of the spectrum
where kv

′ L >> 1 (thick), we see Iν(L) � Bν(T ). Is is customary to see the flame with some
common salt, so that the yellow sodium doublet is definitively thick. As a consequence, when
Tb < T , the strong yellow line is seen clearly against a darker background Bν(Tb)+Bν(T )kν

′ L
in the “thin” regions.

Conversely, when Tb > T , the “yellow” line is actually dark (Bν(T )) against the thing back-
ground (∼ Bν(Tb)). The point of “inversion” is pretty sharply defined, and Tb = T is easily
found.
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