
The Electronic Partition Function for Atoms or Ions

Atoms (especially in the plasma) can exist in a number of electronically excited states, in
addition to the ground state. Measuring energy now from the ground state, the set of
energies is (0, ε1, ε2 . . .), and each may contain several identifiable quantum states, so their
degeneracies are (0, g1, g2 . . .). Typically, ε1 is from 1/2 to 3/4 of the ionization energy, and
then successive εj’s tend to cluster ever closer to the ionization energy. So, at least for the
lower excited levels, the energies are well separated (compared to kTe), and we cannot use
a continuum approximation as we did for the translational partition function. Instead, we
simply write,

Qelectr. = g0 + g1e
− ε1

kT + . . . (20)

and, since εj>0 � kT typically, we truncate the summation early on, most often using only,

Qelectr. � g0 (21)

i.e., the ground state degeneracy. Only at very high temperatures are other terms significant.
This is simple, but the complexity arises in calculating g0. For atoms, this is still reasonably
simple (it becomes much less so for molecules). The degeneracy of an atomic state arises from
the fact that the angular momentum of the electrons may not affect the energy. Specifically,

in the absence of very strong �B fields, the orientation of the overall angular momentum
of the atom does not affect the energy. In addition, for light atoms (to about Na) even
the magnitude of the overall angular momentum is insensitive. For heavy atoms, there are
appreciable spin-orbital interactions, and the magnitude of the total angular momentum does
matter. There are two sources of electronic angular momentum: spin and orbital motion.
Each of these characterized by a quantum number (s for spin, l for orbit), and their vector
sum, the overall angular momentum, is also quantized along any space direction (quantum
number J). The magnitude of the angular momentum of each kind is given by

L2
s = s(s + 1) 2

� (spin)

L2
l = l(l + 1) 2

� (orbit) (22)

L2 = J(J + 1) 2
� (overall)

and for a given magnitude, the component along any given axis can
only take some discrete values. For instance, for a total angular
momentum quantum number J, Jz can be (−J,−J +1, . . . 0, . . . J −
1, J) × �. The sketch shows the case with J = 2. The magnitude
of L is L =

√
2 × (2 + 1)� =

√
6� = 2.45�. The z-components can

be (−2,−1, 0, 1, 2)�, and if there is no strong B field, this means
a degeneracy of 5. More generally, for a given J the electronic
degeneracy is,

g = 2J + 1 (23)

� � �As stated, L = Ls + Ll, and the quantum sum rules are such that,
when the quantum numbers (s, l) are fixed, the quantum number
J can take values s + l, s + l − 1, . . . |s − l|. In heavy atoms, each
of these would have a different energy, and a degeneracy 2J + 1. In

1



light atoms, we can lump these states together into one (the energies are very close to each
other in this so-called “multiplet”), and its degeneracy is then,

s+l

g =
∑

(2J + 1) (24)
J=|s−l|

This sum can be evaluated using expressions for arithmetic sequences, but it is fairly clear
that the answer is,

g = (2s + 1)(2l + 1) (light atoms, multiplet) (25)

� �i.e., each Ls vector can take 2s + 1 orientations for each of the 2l + 1 orientations of the Ll

vector. The required information on s, l, J is contained in the Spectroscopic Notation for the
state in question. For the highest occupied principal quantum number n (roughly the size of
the electron orbit), the angular momentum situation is summarized by the symbol 2s+1AJ

where

s=spin quantum number (1/2 the number of unpaired electrons)
A=a letter designating the orbital quantum number:

A=s p d f g . . .
l=0 l = 1 l = 2 l = 3 l = 4 . . .

J=total angular momentum quantum number

Examples:

(1) 2S1/2 : s =
1 1

, l = 0 ; J =
2

; g = 2J + 1 = 2
2

This is for example the ground state of H or of any alkali atom (Na, Cs. . .), or of an alkaline
earth ion (Ca+ . . .). The g = 2 is because of the two possible spin orientations (up-down),
which are also those of J , since l = 0.

(2)

⎧
2P 1⎨ 1/2 : s =

⎩
2

, l = 1 ; J = 1 − 1
2

= 1
2

; g = 2J + 1 = 2

2P3/2 : s = 1
2

, l = 1 ; J = 1 + 1
2

= 3 ; g = 2J + 1 = 4
2

This is the 2P doublet. For H or Li, its total degeneracy is g = (2s + 1)(2l + l) = 2 × 3 = 6
(or g = 2 + 4).

For Na, the two components of the doublet begin to have noticeably different energies, but
may still be lumped together for some purposes. For Cs, they need to be considered as
different energy states, with g = 2 and g = 4 respectively.

Note: In a sodium atom (or K, or Cs...), the ground state has n = 0 as its principal quantum
number, and its configuration is, as noted 2S1/2 again. The radiative transitions from n = 1
to n = 0 are forbidden (at least the strong dipole transitions) unless Δl = ±1, so the 2S1/2
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state will not radiate, but the 2P1/2 and 2P3/2 will. The two resulting spectral lines are very
close to each other, but can be resolved with a reasonable spectrograph. They are the famous
D-lines of sodium, very intense in the yellow.

The Vibrational Partiton Function

Molecules (unlike atoms) can vibrate, each atom being elastically restrained by the oth-
ers. To linear order, these are harmonic vibrations. One can do a classical modal analysis
and identify the normal modes and their frequencies νi (for a dynamic molecule, only one
mode, with frequency ν =

√
k/m). The vibrational energy for each mode is then quantified

according to,

εn = hν

(
1

n +
2

)
; n = 0, 1, 2 . . . (26)

(notice the “zero point energy” 1hν) and these are singly degenerate states. The vibrational
2

partition function is then,
∞

Qv =
∑ 1hν(n+

e−

n=0

2 )

kT (27)

Define a characteristic “vibrational temperature”,

hν
θv = (28)

k

then

Qv = e−
θv
2T

∞∑
n=0

e−
θv θn
T = e−

v
2T

1
θ

1 − e−
v

T

θ

or Qv e
v

=
2T

e
θv
T − 1

(29)

Following are a few common θv values:

Molecule H2 N2 O2

θv(K) 6100 3340 2230

These are fairly high values, so in T ranges where molecules dominate the composition, one
θ

can neglect the 1 in (29) and approximate Qv � e−
v

2T .

The Rotational Partition Function

Molecules can also rotate as a solid body. Diatomic molecules have nearly zero moment of
inertia about the inter-atomic axis, so they have two independent rotations, with the same
moment of inertia I. Polyatomic molecules have in general three distinct moments of inertia,
about their three principal directions.

For each rotation,
H2

ε =
2I

where H, the angular momentum, is quantized as,

H2 = J(J + 1) 2
� (J = 0, 1, 2 . . .)
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Define a “Rotational Temperature”
�

2

θr = (30)
2Ik

�Since the H vector can take 2J + 1 orientations, we have g = 2J + 1, and,

Qr 1
=

σ

∞∑
J=0

(2J + 1)e−J(J+1) θr
T (31)

The factor σ is 2 for symmetric A-A molecule, and it accounts for the fact that the two
atoms are indistinguishable, so a rotation through 180◦ reproduces the same configuration.
For an asymmetric diatomic molecule (A-B), σ = 1. For a polyatomic molecule σ is the
number of rotational coordinate sets that correspond to a single orientation, remembering
that atoms of the same species are indistinguishable. Some θr’s for diatomic molecules are
listed below:

Molecule H2 N2 O2

θv(K) 85.4 2.86 2.07

Thus, except for H2 possibly, θr 1
T

� and we can convert the summation in (31) to an
integral:

Qr 1�
σ

∞̂

0

(2J + 1)e−J(J+1) θr
T

dJ

=
1

σ

T
∞

θr

ˆ
e−tdt

(
θr

t = J(J + 1)

0
T

)

Qr =
1

σ

T

θr

(diatomic or linear polyatomic) (32)

The calculation for non-linear polyatomic molecules is a little more involved. The result is,

1
Qr =

σ

(
πT 3 1

θr1θr2θr3

) /2

(33)

Energy for the various cases

We had E = NkT 2 ∂ ln Q for the energy of all the particles in a distribution. Since lnQ is
∂T

additive, we can apply for this translation, excitation, etc. separately:

(a) Translation

2
Qtr =

(
πmkT

3

h2

) /2

V

Etr = NkT 2 3

2

1 3
=

T
NkT

2
(34)
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This is an example of the classical “equipartition of energy”. Translation has three quadratic
pieces (in velocity), along x, y, z, and each carries and energy 1kT per particle.

2

(b) Excitation

∞
Qexc. =

∑
gie

− εi

i=0

kT � g0

Eexc. = 0 (35)

Clearly, this is only true when εi � kT ; the vast majority of the atoms are then not excited.
To the next approximation (high T ), Qexc. � g0 + g1e

− ε1
kT , and,

∂ ln Qexc.

∂T
=

g1
ε1

kT 2

go + g1e
− ε1

kT

� g1

g0

e−
ε1
kT

ε1
and so,

kT 2

Eexc. g� 1
Nε1

g0

e−
ε1
kT (36)

(c) Vibration

θ

e
v

Qv =
2T

e
θv 1
T
−

Ev = NkT 2

(
θ− v

2T 2
+

e
θv
T

e
θv
T − 1

θv θ
=

T 2

)
v

Nk
2

e
θv
T + 1

e
θv
T − 1

(37)

which can also be written as,

Ev Nkθv/2
=

tanh( θv
(38)

)
2T

This is clearly for each vibrational mode. For near-room temperatures, θv

T
� 1, tanh θv

2T
� 1,

and Ev � Nk θv

2
. This is a temperature-independent zero-point energy, and the vibrational

specific heat is zero. The vibration is said to be “not excited”.

For very high temperatures, such that θv 1,
T

� tanh θv

2T
� θv

2T
, and (28) gives Ev � NkT .

This is the “classical” limit (no quantum effects), and it indicates two 1kT contributions
2

per particle. These come from two quadratic parts of the vibrational energy, one in velocity
(kinetic energy) and one in displacement (potential energy).

(d) Rotation

For diatomics or linear polyatomics, ∂ ln Qr

∂T
= 1 r

, whereas for other molecules, ∂ ln Q
T ∂T

= 3
2

1 .
T

Hence

Erot = NkT (diatomics) ; Erot 3
= NkT (polyatomics)

2
(39)

These are also classical, because we assumed T � θr. Diatomic molecules have 1
2
kT contri-

butions, one per axis of rotation. Polyatomics have similarly three 1kT contributions.
2
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