
� �Motion of Charges in Uniform E and B Fields

Assume an ionized gas is acted upon by a uniform (but possibly time-dependent) elec-
� �tric field E, and a uniform, steady magnetic field B. These fields are assumed to be

externally supplied, and to be unaffected by the presence or the motion of the charges
themselves. In reality, the charges may generate significant space charge, and modify the
potential according to Poisson’s equation (∇2φ = −ρ/ε0), or generate significant net current,

� � �
and hence modify B through Ampere’s equation (∇×B/μ0 = �j + ε ∂E

0 ). If so, the analysis
∂t

in this section would have to be viewed at most as part of a more complete formulation that
would incorporate these modifications in a self-consistent fashion.

For a particle of mass m and charge q, moving at velocity w� , the equation of motion is,

d�w
m �= q(E + w�

dt
× �B) (1)

�The projection on B(w , E ) is simply,|| ||
dw

m
||

= qE (2)
dt

||

�and this part of the motion is unaffected by B. We will concentrate here on the projection
� � �perpendicular to B(w� , E ). We can take advantage of the constancy of B and the fact that⊥ ⊥

�E is uniform, and use complex algebra to streamline the analysis. Take axis (O⊥ xyz), where
�B lies along Oz, and define,

w = wx + iwy (3)

E = Ex + iEy (4)

So that w� × �B = (wx + iwy) × Bîz = (wy − iwx)B = −iwB.

The perpendicular part of (1) is then,

dw
m = q(E

dt
− iwB)

or,
dw

dt
+ iωcw =

q
E (5)

m
where,

qB
ωc =

m
(6)

is the cyclotron frequency, or gyro frequency, of the particle.

(a) Case with no electric field

The general solution of (5) when E = 0 is,

w = Ae−iωct (7)

and since w = dz with z = x + iy, then
dt

A
z = i

ωc

e−iωct (8)
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y The constant A in (7) can be taken to be real (this de-
fines t = 0 as the time of crossing through the y = 0
axis), and can be identified as the constant

x

q > 0 q < 0

magni-
tude A = w of the perpendicular velocity. From⊥
(8), the position vector of the particle is 90◦ rotated
with respect to the velocity, and has a magnitude
rL = A

ωc
= w⊥ ,

qB/m

mw
rL =

⊥
qB

(9)

This is called the Larmor radius of the particle, for a velocity w . This is also called the⊥
gyro radius. Both vectors w and z are seen from (7) and (8) to rotate at angular velocity
ωc. The motion is in the sense shown in the figure above, depending on polarity.

The gyro frequency for electrons can be fairly high, usually second only to the plasma
frequency, among the important scales. For example, in a Hall thruster, with Te = 20eV =
20 e

k
= 20 × 11, 600 = 232, 000K, the mean thermal speed is,

c̄e =

√
8

π

kTe

me

=

√
8 1.38 × 10−23 × 2.32 × 105

π
= 2.99

9.11 ×−31
× 106ms−1

With a magnetic field of the order of 0.01 Tesla, we find,

eB
ωce =

me

=
1.6 × 10−19 × 0.01

9.11 × 10−31
= 1.8 × 109rad/s ; rL =

c̄e
= 1.7mm

ωce

The ions are much heavier, especially in propulsion devices using Xenon. From (6) and

(9), ωci/ωce = me/mi and rLi/rLe =
√

mi/me. In the Hall thruster example, with Xenon,

mi/me = 131×1850 = 2.42×105, so ωci = 7.4×103rad/s = 1.2kHz and rLi = 0.84m. Since
the device is only a few cm in typical dimension, the ion trajectories are nearly straight in it
(weak ion magnetization), but the electron trajectories (unless disrupted by collisions) are
dominated by very tight gyro rotations (strong electron magnetization). These conclusions
would be strongly modified if the ions were hydrogen and B were higher. For example, in
fusion, B ≈ 5T , and we find for H+ ions at 1 keV (c̄i = 5 × 105m/s), rLi = 1mm, meaning
that even the ions are now strongly magnetized.

From the sense of the gyro motion of both the electrons and ions, we see that this motion
will induce in both cases some magnetic field in a direction opposite the original �B. This is

called diamagnetism �. For a general distribution of current densities �j, the induced B is,

�Bind =
par

∑
(μ0μ�) (10)

ticles

where μ0 = 4π × 10−7Hy/m is the permeability of vacuum and μ� is the magnetic moment,
defined as,

1
μ� =

2

∫ ∫ ∫
�r ×�jdV (11)
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For an isolated gyrating charge, the current is concentrated along the circular path, and has
a mean value q/(period) = qωc/2π. Dividing by the infinitesimal area δA swept by q, we get
j, the current density, and so,

�r ×�j = rL
qωc 1

2π δA

⎛
⎝− �B

B

⎞
⎠

The volume to be integrated over is 2πrLδA, therefore,

1
μ� = −

2
r2
L

qωc

2π

1

δA
2πδA

⎛
⎝ �B

B

⎞
⎠ = −1

2

(
mw⊥
qB

)2

q
(

qB

m

) ⎛
⎝ �B

B

⎞
⎠

or in magnitude,
1

μ =
mw2

2 ⊥ (12)
B

where the numerator is the kinetic energy of the perpendicular motion of the particle.

Assume n particles per unit volume are magnetized (usually, in Electric Propulsion, this is
ne, the electron density, but in a fusion plasma, n = ne + ni, as we saw). Then, from (10),

B�
ind = −nμ0μ

⎛
�

B ⎝
B

⎞
⎠

and, from the definition of temperature,
〈

1
2
mw2

⊥
〉

particles
= 21kT , with the factor of 2

2 ⊥
accounting for the two dimensions involved in w� ,⊥

∣∣ �B∣ ind

∣ kT∣ = μ∣ 0n
⊥

B

or, ∣∣∣ �Bind

∣∣∣
B

=
nkT⊥ (kinetic pressure)

=
⊥

B2/μ0

(13)
magnetic pressure

For the Hall thruster example, with n = n ≈ 1018m−3
e , T = 20eV , B = 0.01T , B⊥ ind/B ≈

4 × 10−3, which can be ignored. For fusion, n ≈ 1019m−3, T 10⊥ ≈ 3eV , B ≈ 5T , so
Bind/B ≈ 8×10−5, also weak diamagnetism. Diamagnetic effects could be large in an electric
propulsion plume propagating relatively far from the source, under the effect of the geomag-
netic B-field (≈ 3 × 10−5T ). Assuming n ≈ 1015m−3, T ≈ 1eV , we find Bind/B 0⊥ ≈ .2, so
that the plume will tend to exclude the ambient field.

A non-uniform distribution of magnetic moments, such as from a density gradient, gives rise
collectively to a macroscopic current, called magnetization current or diamagnetic current.

An illustration is shown in the figure below: the elementary gyro currents in the vertical
direction cancel pairwise inside the box, but there is a net upwards current on the left edge,
and a greater downwards current on the right edge. Overall, a region with a positive dn/dx,
as indicated, sees a negative jy due to this effect. A more detailed analysis follows.
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We begin by recasting the magnetic moment in the form,

1
μ� = −

y

x

2
r2
LI2π

⎛
⎝ �B

B

⎞
⎠ = −IA

�B �= +IA (14)
B

where A = πr2
L is the area of the small gyro loop, and, as be-

fore, I = q/(gyro period).

Consider a macroscopic surface Σ containing a contour C, and
let us calculate the net current which crosses Σ due to the gyro
motion of the particles lying near Σ. Only particles actually
near the contour C itself contribute, since otherwise the current

�loops come into and out of the enclosed portion of Σ. When A is parallel to the line element
� �d	, the particle contributes a net passing current I (case (a) in the figure). When A is

�perpendicular to d	 (case (b)) there is no contribution.

�dS

− �B

�A

�A

�A

�d�

− �B

CΣ
(a) 

(b) b)

� �Overall, any particle in the volume element A · d	 = A⊥Cd	 contributes I to I ,crossing

� � � �I = d	crossing

∮
nIA · d	 =

∮
M · (15)

� �where M = n�μ = nIA is the so-called Magnetization vector. Converting to a surface integral,

I =crossing

∫ ∫
Σ

(
∇× �M

)
· �dS (16)

�where dS is a surface element on Σ, and the vector dS points perpendicular to Σ. Clearly,
the magnetization current density is then,

�jM = ∇× �M (17)

This is in addition to other currents which may arise when the “guiding centers”, i.e., the
centers of the Larmor circuits, move about. These guiding-center motions are called drifts,

�and will be examined later. A physical interpretation of M is provided by rewriting the
induced magnetic field as,

� �Bind = +μ0M (18)

4



� �so that +μ0M is the contribution to B due to elementary gyro motions.

�
Consider now a “quasi-static” situation, where frequencies are low enough that

∣∣ε ∂E∣ 0 << �j.
∂t

This turns out to be applicable to all our problems of interest, except EM wave propagation.

∣∣
We then have,

∣

�B∇×
μ0

= �j (19)

where �j is the total current density. If we separate this into the drift current �jd and the
magnetization current,

�B∇×
μ0

= �jd + ∇× �M

or

∇×
⎛
⎝ �B �

μ0

− M

⎞
⎠ = �jd

�This prompts the introduction of a vector H (the magnetic field strength) such that,

�H =
�B �
μ0

− M (20)

and then,
∇× �H = �jd

� �Since in our situation M is itself proportional to B,

�B� ind
M = +

μ0

= −nμ
�B

B
= −n

〈
1
2
mw2

⊥
〉

�B
B2

we can define a modified permeability of the medium, μm, such that (20) can be written,

�B�H =
μm

(21)

where,

1

μm

=
1

μ0

+
n

〈
1mw2
2 ⊥

〉
B2

=
1

μ0

+
P⊥

(22)
B2

so, in this (diamagnetic) case, μm << μ0. The opposite is true of ferromagnetic media,
� �where Bind is in the same direction as B. More directly, we can still use μ0, but remember

to count both drift and magnetization currents.

(b) Effect of a uniform electric field (steady)

Returning to Eq. (1) d�w/dt = q � �E + w� B , we notice that for that velocity w� = �vDm

�suc

(
×

h that E + �vD

)
× �B = 0, the electrostatic and the magnetic force cancel each other, and

d�vD/dt = 0, which is consistent with that cancellation. To solve for �vD, we write,

(
�E + �vD × �B

)
× �B = 0
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�E × � �B + B
(
�vD · �B

)
− �vD

(
�B · �B

)
= 0

� �The part of �vD parallel to B is non-zero only if E = 0 (otherwise the particles accelerate||
�along B so �vD is no longer constant). So, assume �vD is ⊥ � �to B, and �vD · B = 0, with the

result that,
�E B

�v =
× �

D (23)
B2

� �which is a constant drift velocity perpendicular to both E and B, and independent of the
charge, the mass or the charge’s sign. In magnitude,

E|�vD| = (24)
B

This result can also be obtained from the complex formulation of Eq. (5). With E =
constant, the equation admits a particular solution,

q
iωcw = E

m

q
w = vD = −i E

mωc

and since ω = qB/m then,
E

vD = −i (25)
B

which is equivalent to (23). Adding to this an arbitrary amount of the homogeneous solution
wH = e−iωct, the general solution is,

w = Ae−iωct E− i (26)
B

�which is a superposition of the E × �B drift and Larmor rotations.

The nature of this total motion is best understood for a simple case when E = iEy, giving
w = Ae−iωct + Ey/B, with a real, positive drift along x (real Ey/B). Suppose we impose

w = 0 at t = 0, then A = −Ey/B and w = Ey (1
B

− e−iωct).

Real part:
Ey

wx =
E

[1
B

− cos(ωct)] → y
x = [ωct

ωcB
− sin(ωct)]

Imaginary part:
Ey

wy =
B

sin(ωct) → y =
Ey

[1
ωcB

− cos(ωct)]

2Ey
ymax =

ωcB
=

2mEy

qB2

So, wx is always positive, except it becomes zero at ωct = 0, 2π, 4π, ... and wy is zero at
ωct = 0, π, 2π, 3π, 4π, ... and oscillates (+) and (−). For q > 0 (heavy ion) and q < 0 (light
electron), the motion is sketched below:
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�vD

�B

�E

The figure shows why the drift is in the same direction regardless of the charge’s sign.
Ions and electrons start out under �E alone (zero velocity gives zero magnetic force) in
opposite directions. Then, as the vertical velocity develops (with opposite signs), the mag-

netic force q �w × �B turns the trajectories to the right in both cases, since qvy > 0 for both.
We can also see that the penetration in the y direction is much greater for the ions, and that
the Ey field does separate the charges, as one would expect, but only to a finite extent (with

no �B field, they would simply accelerate away from each other forever).

In a Hall thruster, where rLi >> rLe and rLi >> L, only the electrons drift. In a fusion
plasma, both ions and electrons do, and as a consequence the �E × �B drift current is zero. In
the Hall thruster case, the ion current in the �E× �B direction is nearly zero, but electrons drift
at the full E/B, and there is a nonzero �E × �B drift current, which is called the Hall current:

�jHall = −ene

�E × �B

B2
(27)

(c) Effect of a time-varying (but uniform) �E field

Returning to Eq. (5), if E = E(t), the general solution can be obtained by the method of
variation of the “constant” in the homogenous part. The result is,

w =
[
A +

∫ t q

m
Eeiωct′dt′

]
e−iωct (28)

The integral can be evaluated explicitly for sinusoidal E(t) of any frequency. But before
looking at that case, consider the case where E(t) has any shape, but has a slow variation,
when compared to the cyclotron motion. Since ωc is very high for electrons in general, these
“slow” changes may not be very slow after all. A formal solution can then be obtained using
integration by parts in (28). Using,

eiωctdt =
m

iqB
d

(
eiωct

)
then,

w =

[
A +

E

iB
eiωct − 1

iB

∫ t

eiωct′ dE

dt′
dt′

]
e−iωct

and repeating the process,

w = Ae−iωct − i
E

B
+

i

B

m

iqB

dE

dt
+ ...
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w = Ae−iωct − i
E

B
+

m dE

qB2
+ ... (29)

dt

Higher terms would contain higher derivatives of E, and are neglected for these “slow”
� �variations. The first two terms are familiar (gyro motion, E ×B drift). The third term is a

new drift, called Polarization drift,

�vp =
m �dE

qB2
(30)

dt

The reason of this name is the following: As seen from (30), ions and electrons will drift in
opposite directions, and so there will always be a current associated with this drift. Assuming
ne = ni, qe = −e, and qi = e, this current is,

m�j
(

i
p = e�vpine − e�vpene = ene

eB2
+

me

eB2

)
d �E

dt

The me part is negligible, so the ion polarization current dominates. The overall plasma
mass density is ρp = ne(mi + me) ≈ nemi, so,

ρ� p
jp =

B2

d �E
(31)

dt

This is the same form as Maxwell’s polarization (or displacement) current � �jMaxw = ε0∂E/∂t,
hence the name. It is natural to ask whether �jp is or is not much larger than �jMaxw, since
�j 2 18 3

Maxw is usually negligible. Their ratio is ρp/ε0B ; for a Hall thruster plasma (ne ≈ 10 m− ,
mi = m 25

Xe = 2.2 × 10− kg, B ≈ 0.01T ) we find,

∣∣ �j∣ p∣∣�jMaxw

∣∣∣∣∣ =
ρp

ε0B2
≈ 1018 × 2.2 × 10−25

= 2.5
8.854 10−12 (10−2)2

× 108

× ×
This is a clear warning that the displacement current (31) may not be negligible, even when
Maxwell’s is. Carrying the thought forward, since we know that, in vacuum, Maxwell’s
currents are responsible for EM waves, we now realize that in a plasma, where �jp replaces
�jMaxw, there should be formally identical waves due to �jp. To see this, assume �jp is the only

current present, and ignore �jMaxw:

�B∇×
μ0

� ρp

B2

∂ �E
(32)

∂t

� � �For small perturbations, B = B0 + B′ and ρp = ρp0 + ρ′
p. Since B′ << B0 and assuming

� �� �there is no electric field in the background E = �E0 + E ′ , Eq. (32) reads,

�B′
∇×

μ0

=
ρp0

B2
0

∂ �E ′

∂t

∇× �Take the curl of this equation, and use Faraday’s law E ′ �= −∂B′/∂t,

∇×
⎛

�B′⎝∇×
μ0

⎞
⎠ = −ρp0

B2
0

∂2 �B′

∂t2
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���
and ∇× �since (∇× B′) = ∇�(∇ ·� �B′) −∇2 �B′, we obtain the wave equation,

∂2 �B′

∂t2
=

B2
0 2

μ0ρp0

∇ �B′ (33)

with a propagation velocity,

vA =

√√√√ B2
0

μ0ρp0

(34)

which is called the Alfven velocity. These waves are, like ordinary EM waves, transverse, in
�the sense that E ′ �and B′ are perpendicular to the propagation vector, and to each other.

Since we found that ρp0/ε0B
2
0 >> 1, we can put,

μ0ρp0/B
2
0

ε0μ0

>> 1 or
c2

>> 1
v2

A

i.e., the Alfven velocity is generally well below the speed of light.

�Note: If we include the charge motion along B0, we can obtain a different type of “compres-
sive” Alfven waves.
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