
16.55 Ionized Gases 

Electrostatic Probes 
 
Among plasma diagnostics tools, electrostatic probes provide with a relatively simple 
way to obtain measurements of plasma properties. Under some peculiar conditions, probe 
theory is also straightforward. However, when such conditions are not met, or very 
detailed and specific information is desirable, then the interpretation of measurements 
becomes a difficult task. Because of this, probe development can still be considered as a 
prolific research area. 
 
Langmuir developed the most simple of all examples in probe theory in 1924. Devices 
like the one he studied are referred to as Langmuir probes. They usually consist of a 
small electrode with an exposed conductive area Ap . This electrode is biased to some 
potential V with respect to a point in the system (for example, the vacuum tank where 
experiments are made). The probe is then immersed in the plasma and collected current I 
is measured through an amperimeter; in this way I − V  characteristics are generated and 
later analyzed to extract some plasma properties. 

 
Langmuir probe theory assumptions: 
 

1. The geometry of the probe is planar, i.e., the 
physical dimensions are much larger than the 
Debye length (locally). 

 
2. The plasma is collisionless 

λmfp >> dD  and λmfp >> R  
 

3. Quiescent plasma 
 
Because of condition (1) we make use of our previous results concerning particle flux to 
a biased wall. The electron current flux to a Langmuir probe is 
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The total current collected by the probe is then I = jAp = ( je + ji)Ap  
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where quasineutrality was assumed. We observe that for very large positive potentials the 
ion current is retarded to a point where it is practically stopped. In this situation, the 
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electron saturation current. The opposite is true for large negative potentials. In this case 
the electronic component is canceled and what remains is the ion saturation current 
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In general we note that the electronic current is much larger than the ion current. This can 
be seen after calculating the ratio 
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The floating potential φ fp  is defined as the voltage where the collected current is 
identically zero. This is equivalent to have a non-biased probe immersed in the plasma. In 
this configuration, more electrons will arrive to the surface than ions, charging it with a 
negative potential. Because of this, we solve I = 0 for the case when φ < 0 
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Experimentally, one would measure the floating potential with respect to, for example, 
the tank, Vfp . This last expression gives the floating potential with respect to the plasma 

potential φ p ; they are simply related by φ fp = Vfp − φ p .  

 
The plasma potential φ p  is defined as the probe potential in which the charges inside the 

sheath change from a positive cloud to a negative one. A positive cloud exists as long as 
ions reach the probe. Coming from the ion saturation condition, as the probe potential is 
increased, less and less ions reach the surface (but more electrons arrive, increasing the 
amount of negative current measured) and therefore the cloud gradually losses its positive 
charge. At some point, as the probe potential is increased further, the cloud becomes 
negative since the thermal motion of electrons start to dominate, even if some ions still 
reach the probe. Keep in mind that all the equations given above, where φ  appears, are 
given with respect to the plasma potential. 
 
One could subtract the ion current from the total current in the experimental 
measurements and obtain, after taking the natural logarithm: 
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Apart from a weak dependence on 
temperature inside of the logarithm for the 
case when φ < 0, the slope of the line is 

e
very close to 

kTe

. Therefore, from 

measuring the slope, the plasma 
temperature Te  can be estimated. 
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When the potential is increased to φ > 0 the measurement is proportional to the plasma 
density ne , which now can be calculated from our previous knowledge of Te , if we 
assume that Ti  is known. 
 
Method of Medicus 
 
Perhaps one of the most relevant features of electrostatic probes is that they can be used 
to measure the distribution function itself, provided it is isotropic, although not 
necessarily Maxwellian. 
 
Say that we want to find the distribution function of electrons fe ( )w . The first step is to 
compute the electronic current to a negatively biased Langmuir probe. In spherical 
coordinates the current is given by 
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Only those electrons with enough energy will be 
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The angular integral is obtained immediately 
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And the current is then 
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Experimentally one would measure the current as a function of the probe potential φw . 
The distribution function is inside of the integral symbol so we need to find a way to 
extract it from the current. The derivative of a definite integral can be written as (this is a 
consequence of Leibnitz law) 
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Considering that the distribution function vanishes when w → ∞, the first derivative of 
the current with respect to the probe potential is 
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The first term inside the bracket is zero from the definition of wmin . We are left we the 
integral in the right. Taking the second derivative of the current 
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We finally obtain the expression 
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This is a powerful technique, but also a difficult one, since one must be able to extract 
numerically with enough precision the two differentials from experimental data to 
reconstruct the shape of the distribution function. 
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