The Electron Energy Equation

Since \vec{v}_{e} is often very different from other species mean velocities, it makes sense to formulate the energy equation in terms of T_{e}^{\prime}, defined as $n_{e} \frac{3}{2} k T_{e}^{\prime}=\left\langle\frac{1}{2} m_{e} c_{e}^{2}\right\rangle_{e}, \vec{c}_{e}=\vec{w}-\vec{v}_{e}$. We found before (with no inelastic effects)

$$
\begin{equation*}
\frac{\partial}{\partial t}\left(n_{e} \frac{3}{2} k T_{e}^{\prime}\right)+\nabla \cdot\left(n_{e} \vec{v}_{e} \frac{3}{2} k T_{e}^{\prime}+\vec{q}_{e}^{\prime}\right)+\underset{P}{\Rightarrow}: \nabla \vec{v}_{e}=\sum_{r} E_{r e}^{\prime} \tag{1}
\end{equation*}
$$

and, at least for Maxwellian collision (but generalizable to others),

$$
\begin{gather*}
E_{r e}^{\prime}=n_{e} v_{e r} \mu_{r e}\left[\frac{3 k\left(T_{r}^{\prime}-T_{e}^{\prime}\right)}{m_{e}+m_{r}}+\frac{m_{r}}{m_{r}+m_{e}}\left(\vec{v}_{r}-\vec{v}_{e}\right)^{2}\right] \tag{2a}\\
E_{r e}^{\prime} \cong n_{e} v_{e r} m_{e}\left[\frac{3 k\left(T_{r}^{\prime}-T_{e}^{\prime}\right)}{m_{r}}+\left(\vec{v}_{r}-\vec{v}_{e}\right)^{2}\right] \tag{2b}
\end{gather*}
$$

where (2b) results from $m_{e} \ll m_{r}$.

One first observation is that the "heat transfer" portion of this, namely

$$
\begin{equation*}
E l=n_{e} v_{e r} \frac{2 m_{e}}{m_{r}} \frac{3}{2} k\left(T_{r}^{\prime}-T_{e}^{\prime}\right) \tag{3}
\end{equation*}
$$

can be thought of as transferring the mean thermal energy difference per particle, $\frac{3}{2} k\left(T_{r}^{\prime}-T_{e}^{\prime}\right)$, per collision, but with a very poor efficiency

$$
\begin{equation*}
n_{e l}=\frac{2 m_{e}}{m_{r}} \ll 1 \tag{4}
\end{equation*}
$$

In other words, while Maxwellian distributions about T_{e}^{\prime} and T_{r}^{\prime} established in a few e.g. e-e and r-r collisions, it takes about $\frac{m_{r}}{2 m_{e}}$ collisions (tens to hundreds of thousands) to drive T_{e}^{\prime}
toward T_{r}^{\prime}. In practice, a good approximation is that there are separate Maxwellian populations for electrons (at T_{e}^{\prime}) vs. the heavy species (at close to the same $\overline{T_{r}^{\prime}}$, since the collisional efficiency among them $\frac{2 \mu_{r s}}{m_{r}+m_{s}}$ is the of order 1).

We next examine the irreversible second term in (2b). The summation over r-species includes ions and neutrals, and we assume a single kind of each. We then have a dissipation

$$
\begin{equation*}
D=n_{e} m_{e}\left[v_{e i}\left(\vec{v}_{i}-\vec{v}_{e}\right)^{2}+v_{e n}\left(\vec{v}_{n}-\vec{v}_{e}\right)^{2}\right] \tag{5}
\end{equation*}
$$

The electron and ion current densities are

$$
\begin{gather*}
\vec{j}_{e}=-e n_{e} \vec{v}_{e} \tag{6a}\\
\vec{j}_{i}=e n_{e} \vec{v}_{1} \tag{6b}\\
\text { and so } D=n_{e} m_{e}\left[v_{e i}\left(\frac{\vec{j}}{e n_{e}}\right)^{2}+v_{e n}\left(\vec{v}_{n}+\frac{\vec{j}}{e n_{e}}\right)^{2}\right] \tag{7}
\end{gather*}
$$

This expression simplifies several limits:
(a) $v_{n} \ll v_{i}, v_{e}$

$$
D \cong n_{e} m_{e}\left[v_{e i} \frac{j^{2}}{e^{2} n_{e}^{2}}+v_{e n} \frac{j_{e}^{2}}{e^{2} n_{e}^{2}}\right]=\frac{j^{2}}{\left(\frac{e^{2} n_{e}}{m_{e} v_{e i}}\right)}+\frac{j_{e}^{2}}{\left(\frac{e^{2} n_{e}}{m_{e} v_{e n}}\right)}
$$

The quantities in the denominator are the conductivities if only ei or en collisions occurred:

$$
\begin{equation*}
D \cong \frac{j^{2}}{\sigma_{e i}}+\frac{j_{e}^{2}}{\sigma_{e n}} \tag{8}
\end{equation*}
$$

and, in particular
(a.1) For a neutral-dominated gas $\left(v_{e n} \gg v_{e i}\right)$ (Hall Thruster), $D \cong \frac{j_{e}^{2}}{\sigma}$
(a.2) For a Coulomb-dominated gas $\left(v_{e i} \gg v_{e n}\right) D \cong \frac{j^{2}}{\sigma}$
(a.3) If $j_{i} \ll j_{e}, j_{e} \cong j$ and $D \cong \frac{j^{2}}{\sigma}$, with $\left.\sigma=\frac{e^{2} n_{e}}{m_{e}\left(v_{e n}+v_{e i}\right.}\right)$.
(b) When density is relatively high, ions and neutrals couple strongly and $\vec{v}_{n} \cong \vec{v}_{i}$ (as in MPD thrusters or MHD generators). In that case (5) yields

$$
\begin{equation*}
D \cong n_{e} m_{e}\left(v_{e i}+v_{e n}\right)\left(\vec{v}_{i}-\vec{v}_{e}\right)^{2}=\frac{j^{2}}{\sigma} \tag{11}
\end{equation*}
$$

with

$$
\begin{equation*}
\sigma=\frac{e^{2} n_{e}}{m_{e}\left(v_{e i}+v_{e n}\right)} \tag{12}
\end{equation*}
$$

One approximation which is routinely made is to neglect the viscous dissipation of the electron gas, i.e., the contribution of the off-diagonal terms in $\underset{P}{\Rightarrow}: \nabla \vec{v}_{e}$:

$$
\begin{equation*}
\underset{P_{e}^{\prime}}{\Rightarrow} \cdot \nabla \vec{v}_{e} \cong P_{e}^{\prime} \nabla \cdot \vec{v}_{e} \tag{13}
\end{equation*}
$$

where $P_{e}^{\prime}=n_{e} k T_{e}^{\prime}$ is the scalar pressure (the trace of $\left.\underset{P_{e}^{\prime}}{\Rightarrow}\right)$. Breaking this into $\nabla \cdot\left(n_{e} k T_{e}^{\prime} \vec{v}_{e}\right)-$ $\vec{v}_{e} \cdot \nabla P_{e}^{\prime}$ and substituting in (1), we get

$$
\begin{equation*}
\frac{\partial}{\partial t}\left(n_{e} \frac{3}{2} k T_{e}^{\prime}\right)+\nabla \cdot\left(n_{e} v_{e} \frac{5}{2} k T_{e}^{\prime}+\vec{q}_{e}^{\prime}\right)=D+E l+\vec{v}_{e} \cdot P_{e}^{\prime} \tag{14}
\end{equation*}
$$

with D given by (7) and $E l$ given by (3).

Finally, although we will not prove it here, it stands to reason that the heat flux vector $\vec{q}_{e}^{\prime}=n_{e}\left\langle\frac{1}{2} m_{e} c_{e}^{2} \vec{c}_{e}\right\rangle_{e}$ will be expressible in the form of a Fourier law

$$
\begin{equation*}
\vec{q}_{e}^{\prime}=-K_{e}\left(T_{e}\right) \nabla T_{e}^{\prime} \tag{15}
\end{equation*}
$$

where K_{e} is the electron thermal conductivity. Note that a simple form like this may not be accurate when the alternative definition T_{e} of temperature is used.

MIT OpenCourseWare
http://ocw.mit.edu

16.55 Ionized Gases

Fall 2014

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

