
� � 

Maxwellian Collisions 

Maxwell realized early on that the particular type of collision in which the cross-section 
varies at Q∗ ∼ 1/g offers drastic simplifications. Interestingly, this behavior is physicallyrs 

correct for many charge-neutral collisions and moderate energies: The charge q polarizes the 
neutral in proportion to the field (α ∼ q/r2) and the dipole α attracts the particle with a 
force F ∼ α/r3 ∼ q/r5 . From our work on power-law potentials, this is the interaction type 
that leads to Q∗ ∼ 1/g. 

The simplification stems from the fact that the group gQ∗ (g) appears in the integrals forrs
MMrs and Ers, and can now be moved outside as a constant. We put, 
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rs(g0)nrns(Mur − Mus) 

Define νsr as the collision frequency of one s-particle will all r-particles, 

νsr = nrgQ ∗ 
rs(g) constant for Maxwellian collisions 

" 

(1) 

Similarly, νrs = nsgQ∗ 
rs(g) (Note: νsr/nr = νrs/ns) 

MMrs = µrsnsνsr(Mur − Mus) = µrsnrνrs(Mur − Mus) (2) 

For other types of collisions the evaluation is much less straightforward, as it requires prior 
solution for fr and fs. However, the form MMrs = µrsnrνrs(Mur − Mus) can always be recovered, 
only the collision frequency νrs is generally not a constant, but a function of the electron 
temperature, and is calculated from some of the existing models for fr and fs. 
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For energy transfer, we will deal directly with the internal energy transfer rate,
 

 MErs = Ers − Mus · Mrs (3) 

From the definitions, 

E

 

rs = µrs

ˆ
ˆ

fr1 fsgQ ∗ (g)(GM − Mus) · Mgd3wd3 

rs w1 (4)
 

w w1 

and for Maxwellian collisions, the group gQ∗ (g) is a constant and moves outside the inrs

tegration. The velocity combination inside can be manipulated next. Define the random 
velocities Mcs = wM − Mus, Mcr = wM1 − Mur: 

ms(us+cs)+mr (ur +cr )(GM − Mus) · Mg = · (Mur + Mcr − Mus − Mcs) − Mus · (Mur + Mcr − Mus − Mcs)mr +ms 

msMus + mrMur mr 2 ms 2= − Mus ·(Mur − Mus) + c − c + (Terms linear in Mcr or Mcs)mr +ms r smr +msmr + ms " - " 
mr (ur−us)mr +ms 

Calling for short mr + ms = m, and ignoring the linear terms, because they integrate to zero 
(notice (Mcs)s = 0, (Mcr)r = 0), 

mr mrc
2 − msc
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Substitute into (4): 
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The first of the integrals is simply nrns. The second can be reorganized into d3wfs fr1 mrc

2 
r d

3w1, 
w w1 

of which the inner integral yields 3kTr nr, while the outer one gives ns. With a similar argu
ment for the third integral, we obtain 

E = 
µrs 

(gQ ∗ )[mr(M − M )2 + 3k(T − T )]rs nrns rs ur us r s m 
(6)
 

This has an interesting structure. The mr(Mur − Mus)
2 term represents an irreversible internal 

energy addition (heat) to species s from collisions with r, provided the two species drift at 
different mean velocities. The second term, in (Tr − Ts ) is the transfer of heat from r to s 
when the two species have different temperatures. It is reversible, depending on the sign of 
Tr − Ts. 

For completeness, we can now calculate the transfer of full kinetic energy, Ers = E +Mus · Mrs Mrs, 
with the result 

mrMur + msMus 3k 
Ers = µrsnrns(gQ ∗ 

rs) · (Mur − Mus) + (Tr − Ts ) (7) 
m m 

Some simple applications of the Momentum Equations 

Electrons Ohm’s Law - Except for high-frequency effects (of the order of the Plasma Fre
quency) or for very strong gradients (like in double layers), the inertia of electrons can be 
neglected in their momentum balance. Assume collisions of electrons happen with one species 
of ions and one of neutrals only: 

0 + Pe = −ene(EM + Mue × BM ) + neme[νei(Mui − Mue) + νen(Mun − Mue)] (8) 

∼ ∼where we used µei = me, µen = me. In many cases, ui « ue, un « ue, and we can simplify 
the equation by introducing the electron current density, 

Mje = −eneMue (9) 

me 
eneEM + Pe = Mje × BM + (νei + νen)Mje 

e 

Divide by m
e 
e (νei + νen) and define, 

2e ne
σ = (Electrical conductivity) (10) 

me(νei + νen) 

eB 
βe = (Hall parameter) (11) 

me(νei + νen) 
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PM e M + M × Mso that σ	 E + = je je βe (12) 
ene 

Notice: 

(a) Electron pressure gradients can drive electron current. This is sometimes called a “dia
magnetic current”. 

vP = −vPe	 e(b) As a limit, if boundary conditions forbid currents, je = 0, then EM + = 0, EM ,
ene ene ∼which means density gradients can set up a field − the Ambipolar field. If Te = const. 

kTe ne kTe ne− 	φ = − → φ = φ0 + ln (13) 
e	 ne e ne0 

Which strongly resembles the kinetic Boltzmann relationship (except this time we only look 
at averages). 

(c) The Hall parameter is the ratio β = ωce of election gyro frequency to electron collision 
νe 

frequency. It can be large in low-density plasmas, even with moderate B fields. 

(d) The current is not aligned with the driving fields. Additional deviations from the electric 
efield result from EM ∗ = EM + vP

ene 

e(e) Eq.	 (12) can be solved for Mje in terms of EM ∗ = EM + v
en
P

e 
. Start by multiplying (cross 

products) times βMe: 

σβMe × EM ∗ = βMe × Mje + βMe × (Mje × βMe)" - " 
β2je−βe(βe ·je)e 

consider only the current perpendicular to BM , so that BMe · Mje = 0: 

Mje × βMe = βMe 
2Mje⊥ − σβMe × EM ∗ 

and substitute this into (12): σEM ∗ = Mje⊥ + βe 
2Mje⊥ − σβMe × EM ∗ , or 

M	 EM ∗ E ∗ je⊥	 = 
σ 

⊥ + βMe × M plus Mje = σEM ∗	 (14) 1 + βe 
2	 ⊥ 
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This is sometimes organized as a tensor equation. With z taken along BM :
 ⎫⎧⎫⎧ 
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⎪⎪⎪⎪⎪⎪⎭ 

⎪⎪⎪⎪⎪⎪⎭

E ∗ 

zjez 

which makes the anisotropy of the situation more clear. In Ionospheric Physics, this is also 
put as a conductivity tensor ⎞⎛ 

σP σH 0 
M σEM ∗ je = MM ·
 MMσ
 =
⎝
 −σH σP 0 ⎠
 (16)
 

"" 

0 0 σ 

σP = “Pedersen conductivity” (very small in the ionosphere, βe » 1)
 
σH = “Hall conductivity” (intermediate)
 
σ = σ “Parallel conductivity” (very large in the ionosphere)
 

Ambipolar Diffusion
 
Consider a simple case with B = 0, negligible inertia. Write both, electron and ion momen
tum equations:
 

DMui Mmine + Pi = eEne + ne[meνie(Mue − Mui) + µinνin(Mun − Mui)]
Dt
 

M
P = −eEne + mene ui − M ) + νen(M − M )]e [νei(M ue un ue

Add together, note neνei = niνie (and also ne = ni), 

DMui 
mine + (Pi + Pe) = neiµinνin(Mun − Mui) + meneνen(Mun − Mue)

Dt -
  

me me

usually smaller ∼ or
mi mi 

Also, normally Te
�/Te

� « ne/ne. In addition let us assume that ion inertia can be also 
neglected in comparison with the other terms in the momentum balance (although keeping 
the term would be more general), 

k(Te + Ti ) ne = − neµinνin(Mui − Mun) 

or, 
k(Te + Ti ) ne(Mui − Mun) = − ne 

µinνin 
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Sometimes neutrals return from recombination of ions, so, 

ne ne 
neMui = −nnMun then ne(Mui − Mun) = Mui + Mui ne = (nn + ni) Mui 

nn nn 

nn k(Te + Ti ) ρ mi 
neMui = − ne νin = nnginQin ni + nn = ; µin = 

ni + nn µinνin mi 

� k(Te + Ti )nn
neMui = − 

mi ρ ne�
2 mi 

� Qinginnn

neMui = −Da ne 

2k(T i e + Ti )Da = Ambipolar diffusivity 
ρQingin 

Back to the electron equation, if we neglect both collision forces, 

ne
Pe 
∼= −e MEne kTe 

∼= e φ 
ne 

(eφ − kTe ln ne) = 0 

φ − φ0 = 
kTe ln 

ne 
Equivalent Boltzmann equilibrium 

e ne0 
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