
 

Moments of the Boltzmann Equation 
 
As was already discussed, finding solutions to Boltzmann’s equation can be formidably 
difficult, even in the simplest of cases. An important manipulation can be achieved by 
taking moments (or averages) of pertinent quantities and try to recover fluid-type 
conservation equations. On their own right, these fluid equations (like the Navier-Stokes 
equations) are also very difficult to solve analytically, unless special cases are treated, but 
at least they provide us with a useful physical picture of the system behavior. In what 
follows we will ignore the effects of inelastic collisions. 
 
As before, we write Boltzmann’s equation 
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We define a general function   φ = φ

� 
x ,

� 
w ,t( ) , multiply Boltzmann’s equation with it and 

then integrate over all velocities   
� 
w . One by one, the terms of Boltzmann’s equation will 

result in 
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Recalling the definition of the average of a quantity: φ =
1

n
∫ φfd 3w , and 

exchanging the integral and derivative symbols, we obtain 
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w ⋅ ∇fs∫ d3w = ∇ ⋅ φ
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x ( ) , the second term in the RHS vanishes. Then we have 
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From Liouville’s theorem,   
� 
F  is a conservative and/or magnetic force, therefore 

the second term in the RHS vanishes. The first term vanishes as well. To see why, 
we use the divergence theorem and write it as a surface integral in velocity space 

  
∇w ⋅ φ

� 
F s fs( )

s
∫ d3w = φ∫ fs

� 
F s ⋅ dSw . The volume integral is evaluated for every 

possible value in velocity space, therefore the surface boundary is located at 
infinity, where there are no particles at all (the distribution function vanishes 
there). 
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We can split this expression into two integrals. In the first one we exchange the � � 
coordinates after the collision with those before it (  w ↔ w ′ ). And since (as seen 
before) the Jacobian of the transformation is unity ( d3w ′ d3 3

1 w ′ = d w1d
3w ) and the 

magnitude of the relative velocity does not change, then 
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Adding all terms we have the general moment equation 
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Now let us obtain the moments for different values of the function φ = φ( )� � 

x ,w ,t    
 

a. φ = 1 (Mass) 
All the terms where derivatives of φ  appear will vanish, leading to 
 

∂ns

  ∂t
+ ∇ ⋅ ns

� 
u s( ) = 0        or        

  

∂ρs

∂t
( )� 

+ ∇ ⋅ ρsu s = 0 

 
where the expression in the right was obtained after multiplying both sides with 
the species mass ms . Finally, adding contributions of all species: ∑ ρs = ρ  (fluid 

∑ � � s

density) and ρsu s = ρu  (fluid mass flux), we write the continuity equation 
  s
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b.   φ = ms

� 
w  (Momentum) 

Note that   ns φ
� � � 

s
= ρsu s . Also, since   w  has no explicit dependence on t or   x , then 
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From the definition of random velocity for species s, w = u   s + c s , and as c s
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where P ′   s  is the partial pressure of species s across planes moving at u   s . The 
prime is to indicate that the quantity (in this case the pressure) is taken with 
respect to the random velocity of species s. � � � � 
Now, taking the electromagnetic force F 
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For the collision part, we write   ′ φ − φ = ms
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w ( ) . In terms of the center of mass 

and relative velocity,   
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and the collision integral can be written as 
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We observe from the diagram above, that the component of the   

� 
g −

� ′ g  vector 
perpendicular to   

� 
g  will cancel out after integrating over all angles ϕ . What 

survives is just the component parallel to   
� 
g . Given this, and the fact that the 

magnitude of the relative velocity is invariant, we write 
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Separating the angular contribution we obtain the momentum transfer cross 
section 

( )Q 1
rs ( )g = σrs( )χ,g ( )1− cosχ
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The collision integral becomes 
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which is the rate of momentum transfer from species s to species r per unit 
volume due to collisions. Adding up all terms, 
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Since we averaged absolute momentum, this is the Eulerian form, with 
∇ ⋅(momentum flux). 

 
c.   φ = ms

� 
w −

� 
u s( )  (Momentum with deviations from the species s mean velocity) 

Instead of repeating the process all over again, we recognize that such function 
can be separated in two additive terms, the first one   φ1 = ms

� 
w  will lead to the 

same momentum equation found in (b) while the second   φ2 = ms

� 
u s  is proportional 

to the result in (a) since   
� 
u s  is already an averaged quantity. Using the result in (a) 

for   φ2 = ms

� 
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then we subtract this from the result in (b) 
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For the second term in this expression, using tensorial notation 
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⎥ + ∇ ⋅
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or 

  
ρ s

Ds

� 
u s

Dt

� � � � � 
+ ∇ ⋅ P s′ − nsqs ( ) � 

E +u s × B = ∑M rs  
r

 
This is the Lagrangian form of the momentum equation for species s. Note that � � 
since we averaged deviations from u   s , we get substantial derivatives at u   s . 

 � � 
d. φ = m  s ( )w − u  (Momentum with deviations from the fluid mean velocity) 

Start by noting that n  s φ
� 

( )� � � 
s

= ρ s u s − u = ρ sV s , where V   s  is the diffusion velocity 
of species s. Then, one by one, the terms of the moment equation will be 
 

∂
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∂
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� 
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s

 � � � � 
Defining the fluid random velocity   c = w − u , and noting that c   s

=
� 
u s −

� 
u =

� 
V s , 

the last term can be written as 
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s
= ∇ ⋅ P s + ρsV s u  

 � � � � 
after defining the pressure tensor P   s = ρs c c 

� � 
s
, which can be written in terms of 

the partial pressure P ′   s . To see this, we use the definition of the random velocity 
� � � � � � � � � � � 

of species s, c s = w − u s , so that c − c =    s u s − u = V s  and c = c   s + V s , therefore 
 � � ( )� � � 

P 
  s = ρs c s + V s ( )� 

c s + V s
s

= ρs

� 
c s

� 
c s s

+ ρs

� 
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� 
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and we get 
  

� � 
P s =

� � 
′ P s + ρ s

� 
V s

� 
V s . In many cases the mean velocity of individual 

s

species is not that different from the mean fluid velocity, so that the diffusion 
contribution to the pressure tensor is usually small. 
 
Now, for the remaining parts of the moment equation 
 � 

n  s w ⋅ ∇φ
s

= −ρ s

� 
u +

� 
c ( ) ⋅ ∇

� 
u 

� � � � 
ss

= −ρ u ⋅ ∇u − ρ sV s ⋅ ∇u  

 
and the force term is similar to what we obtained in (b)  
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F s
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⋅ ∇ wφ
s
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� 
F s ⋅

� � 
I ( )� � � 

= nsqs E + u s × B  
s

 
Using the definition of the diffusion velocity, we rewrite the term as 
 � 

F 
n s

s m  s

⋅ ∇ wφ ( )� � � 
= ns qs E + ( ) � 

u + V s × B = nsqs [ ]( )� � � � � � � � 
E + u × B + V s × B = ns qs [ ]E ′ +V s × B 

s

 � 
Where   E ′  is the electric field as seen in the frame of reference of the fluid moving � 
at a mean velocity   u . The collision integral in this case is the same as the one 
found in (b), therefore the complete moment equation is 
 

∂
∂t  

ρs

� 
V s( ) + ∇ ⋅

� � 
P s + ρs

� 
V s

� 
u ( ) + ρs

∂
� 
u 

∂t
+

� 
u ⋅ ∇

� 
u +

� 
V s ⋅ ∇

� 
u 

⎡ 
⎣ 
⎢ 

⎤ � � � 
⎥ − nsqs [ ]E ′ + V s × B = ∑

� 
M  
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r

 
Now we add for all species, such that the fluid density, charge and pressure are 
 

∑ ρs = ρ             ∑
� � � � 

nsqs = ρch          ∑P s = P  
s s   s

 
The summation of collision terms cancels out given de symmetry of momentum � � 
transfer M   rs = − M sr , while the one over the diffusion velocities is zero by 
definition 
 

∑∑
� � 

M rs = ∑ � � � 
= 0                   ∑ � 

ρsV s ρs ( )u s − u = ρu − ρu = 0 
  s r   s s

 � � 
We also define the diffusion current density as j D = ∑nsqsV s . The total current 

  s

density would be this plus the contribution of charges moving with the fluid � � � 
j = j   D + ρchu . The momentum moment equation for the fluid is finally 

 � 
∂u 

ρ
∂t  

+
� 
u ⋅ ∇

� 
u 

⎡ 
⎣ 
⎢ 

⎤ � � � � � 
⎥ + ∇ ⋅ P = ρ
⎦ chE ′ + j D × B  

 
or in the absence of net charge, ρch = ∑ns qs = 0  

s

 � 
∂u 

ρ
∂t  

+
� 
u ⋅ ∇

� 
u 

⎡ 
⎣ 
⎢ 

⎤ 
⎦ 
⎥ + ∇ ⋅

� � 
P =

� 
j ×

� 
B  
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e. φ =
1

2
msw

2  (Kinetic energy) 

∂φ
As before, start by noting that 

∂t
= 0 and ∇φ = 0 . For the first term of the 

moment equation 
 

∂
∂t  

ns φ
s( ) =

∂
∂t

ρs

2
w2

s

⎡ 
⎣ 
⎢ 

⎤ 
⎦ 
⎥ =

∂
∂t

ρs

2

� 
c s +

� 
u s( ) ⋅

� 
c s +

� 
u s( )

s

⎡ 
⎣ 
⎢ 

⎤ 
⎦ 
⎥ =

∂
∂t

ρs

2
cs

2

s
+ us

2( )⎡ 
⎣ 
⎢ 

⎤ 
⎥  
⎦ 

 
1

and from the definition of temperature 
2

ms cs
2

s
=

3

2
kT s′  we obtain 

 
∂
∂t

ns φ
s( ) =

∂
∂t

ρs

2
us

2 +
3

2
nsk ′ T s

⎡ 
⎣ 
⎢ 

⎤ 
⎥  
⎦ 

 
Recall that the prime denotes that the quantity (in this case the temperature) is 
taken with respect to the random velocity of species s. For the next term we have 
 

� 
∇ ⋅ ns φw 
  

s
= ∇ ⋅ ρs

1

2
w2 � 

w 
s

= ∇ ⋅
ρs

2
cs

2 + us
2 + 2

� 
c s ⋅

� 
u s( ) � 

c s +
� 
u s( )

s
 

  
= ∇ ⋅

ρs

2
cs

2� c s s
+

ρs

2
cs

2

s

� 
u s +

ρs

2
us

2� u s + ρs

� 
c s

� 
c s ⋅

� 
u s( )

s

⎡ 
⎣ 
⎢ 

⎤ 
⎥  
⎦ 

 
Defining the heat flux (also with respect to the random velocity of species s)  
 

� ρ
q ′ 
  

s = s

2
cs

2� c s  
s

 
and noting that (using index notation) 
 

� � � 
ρ
  s c s( )c s ⋅ u s s

= ρs cic j u j s
= ρs cic j

� � � 
u j = P ij′ u j = P s′ u s  s

 
Therefore we have 
 

� 
∇ ⋅ ns φw 
  

s
= ∇ ⋅ ′ � 

q s + ns

� 
u s

3

2
k ′ T s + ρs

2
us

2� 
u s + ′ 

� � 
P s

� 
u s

⎡ 
⎣ ⎢ 

⎤ 
⎥  ⎦ 

 
For the force term of the moment equation, we have 
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ns

� 
F s
ms

⋅ ∇wφ
s

= ns

� 
F s ⋅

� 
w 

s
= nsqs

� 
E +

� 
w ×

� 
B ( ) ⋅

� 
w 

s
= nsqs

� 
E ⋅

� 
w 

� � � � 
= nsqsE ⋅ u s = E ⋅ j s

s

 
 � 

Where j   s  is the mean current carried by species s. Finally, for the collision term 
we observe that (keep in mind that the magnitude of the relative velocity vector 
does not change) 
 

1
φ ′ − φ =

2
  

ms
′ w 2 − w2[ ] =

1

2
ms

� 
G −

mr

mr + ms

� ′ g 
⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

2

−
� 
G −

mr

mr + ms

� 
g 

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

2⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥  

  
=

msmr

mr + ms

� � � � 
G ⋅ ( ) � � 

g − g ′ = μsrG ⋅ ( )g − g ′  

 
We write the collision integral as 
 � � � 

Ers = μrs fs fr1
gd3wd3w1 σ rsG ⋅ ( )g − g ′ 

  Ω
∫

w

∫
w1

∫ dΩ 

 
Following the same reasoning as in case (b), we obtain for the momentum transfer 
cross section 
 

( )Q 1
rs ( )g = σrs( )χ,g ( )1− cosχ

Ω
∫ dΩ  

 
So that the collision integral reduces to 
 � � 

Ers = μ ( )
rs fs fr1

gG ⋅ g Q 1
rs ( )g d3wd3w1

  w

∫
w1

∫  

 
Putting all the terms together we find the Eulerian form of the kinetic energy 
moment equation 
 

∂
∂t  

ρs

2
us

2 + 3

2
nsk ′ T s

⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ + ∇ ⋅ ′ � 

q s + ns
� 
u s

3

2
k ′ T s + ρs

2
us

2� 
u s + ′ 

� � 
P s

� 
u s

⎡ 
⎣ ⎢ 

⎤ � � 
⎥ − E ⋅ j 
⎦ s = ∑ Ers  

r

 
Rearranging to put it in a more interesting way 
 

∂
∂t  

ns
1

2
msus

2 + 3

2
k ′ T 

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 

s

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ + ∇ ⋅ ns

� 
u s

1

2
msus

2 + 3

2

⎡ ⎛ ⎞ ⎤ ⎡ � � � � ⎤ � � 
⎢ ⎜ kT s′ ⎟ ⎥ + ∇ ⋅ ′ ⎢ q s + P s′ u 
⎣ ⎠ ⎦ ⎣ s =

⎝ ⎦ ⎥ E ⋅ j s + ∑ Ers
r

 
In this way, the two terms in the RHS can be considered as “inputs” to the energy 
equation described in the LHS. 
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