
The Equilibrium Distribution and its Properties 

In a previous lecture we derived the H theorem for a single species only, but it can be 
shown that the derivation also holds for mixtures of (non-reactive) species, for which the 
appropriate definition is, 
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If an equilibrium is reached (dH/dt = 0), H will then have attained its minimum value, 
consistent with the constraints that are implicit to the H theorem. These constraints are 

(a) Conservation of the number of particles of each species (p.u. volume). 

(b) Conservation of the overall momentum density (but species can exchange momentum, 
so it is not conserved species by species). 

(c) Conservation of overall kinetic energy density (again, not for each species). 

We therefore impose the following constraints: 
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We adjoin Lagrange multipliers and minimize the functional: 
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Notice that a single Lagrange multiplier β is associated with the total sum of energies, and 
also a single vector wγ is associated with the total sum of momenta; this is in fact the origin 
of the eventual fact that wui = wu and Ti = T . Differentiation relative to fi gives then, 
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where we have completed the square in the exponent. 

The constants αi, wγ and β will now be determined from the constraint equations; before 
doing the detailed algebra however, one can readily see that the mean velocities and the 
temperatures must indeed be common to all species. For species i, 
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since the first integration vanishes by symmetry. This result is independent of i, and so 
wui = wu, the same for all i. 

Similarly, once we know wu = −
β
γ (and recall wc = ww − wu), 
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The ratio of integrals turns out to be 3
2 , showing that, 
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and noticing that,
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Solving for K, 
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which is the Maxwellian or Equilibrium distribution function. 

We could re-derive the Maxwellian limit using an alternative argument to the optimization 
procedure discussed above. During our discussion of the H-theorem, we obtained, 
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and the equality (equilibrium) can only be true if, 

f 'f ' w
1 = ff1 for all ww, ww1, Ω 

Hence the quantity, 
ln f(ww) + ln f(ww1) 

is conserved in a collision between particles with velocities ww, ww1. This is an additive quantity. 
What other additive quantities are conserved? The list is short; assuming zero momentum, 
they are: 

(a) From number conservation, any constant quantity (the quantity 1, for instance) 

(b) From energy conservation, the quantity 1
2 mw2 

Hence ln f must be a linear combination of these: 
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If there is non-zero momentum, we should include it and write,
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The values of c1 and c3 (and wc2, if needed) come from imposing normalization such that, 
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The result, as with the minimization method, is, 
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This method can be generalized to multi-species situations, although in that case, since 
there are several kinds of collisions, there will be more than one necessary conditions like 
f ' f1 

' = ff1, and some care must be exercised with terms arising from unlike particles. 

Characteristic energies and velocities for a Maxwellian distribution 

In a frame in which the gas is at rest (wu = 0), the mean vector velocity is zero. More 
generally, (ww − wu)s = 0, for any species s. 

We generally define wcs = ww − wus, the velocity of a particle with regard to the mean of its 
species. This is sometimes called the “diffusion velocity”, but care must be taken not to 
confuse it with wc = ww − wu, where wu is the mean mass velocity of all the species present. 
We see from the definition that (wcs)s ≡ 0 , but (wcs) ≡ wus − wu, which, in a non-equilibrium 
situation, can be non-zero. 

An important velocity magnitude is cs ≡ (cs)s, where the magnitude, and not the vector, is 
involved. For a Maxwellian, 
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V
Another important velocity is the RMS velocity, or cRMS = (cs

2)s. This can be calculated 
more easily, in fact, for any distribution, because, 
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Sometimes the distribution of interest is where particles are classified by either velocity 
magnitude or by energies. Looking at the first of these, we define a different distribution 
(assumed to be isotropic) by, 
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The most probable velocity magnitude follows from, 
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