
16.55 Ionized Gases
Problem Set #5

Problem 1: A probe in a non-Maxellian plasma

The theory of cold probes, as explained in class, applies to plasmas with Maxwellian elec-
tron and ion distributions. However, probes can also be useful in more general situations,
especially if the distribution can be still assumed to be isotropic. This problem is concerned
with one such situation.

The attached figure, taken from a book on electric lamps, shows voltage-current curves
(electrons only) obtained with a small (0.16 mm2 surface) planar probe at different distances
from the cathode of a fluorescent lamp. Some of the curves imply a Maxwellian distribution
(curve D), while others, especially those taken very near the cathode, seem to indicate an
extra number of high energy electrons. Since there is a 15 V potential drop through the
cathode sheath, electrons emitted by the hot filament are expected to have mostly energies
of about 15 eV after having been accelerated in the sheath and scattered directionally into
an isotropic distribution, and before additional elastic and inelastic collisions bring them
into equilibrium with the general electron background. A reasonable model for the electron
distribution function near the cathode is therefore a Maxwellian distribution of density ne2
and temperature Te, superimposed on an isotropic and mono-energetic population ne1 (the
“primaries”) characterized by a single velocity w0. Show that the measurements in case A
are consistent with this model, and devise a way to extract from the data the approximate
values of ne1 , ne2 , Te and w0. It is suggested that a linear plot of I vs. V will help separate
the primary and secondary populations. You can verify this by using Medicus’ method for
a mono-energetic plus Maxwellian population.
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Problem 2: Charging of a small drop in a plasma

A small spherical droplet of radius R is surrounded by a neutral plasma of temperature T
and electron density ne. The drop is much smaller than the Debye length, which in turn
is smaller than the electron and ion mean free paths. Starting from neutrality, the drop
collides more frequently with electrons than with ions, and a negative charge accumulates
on it, eventually leading to a steady state negative charge. Calculate the droplet charge as
a function of time, including t→∞. Assume any electron arriving at the drop is absorbed,
and any ion arriving is neutralized. Ignore the effects of image forces and the motion of the
drop.
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Problem 3: He4 as a Bose-Einstein condensate

Take a system of N atoms of He4 contained in a “box” of volume V . These atoms have a
resultant spin of zero and therefore do not obey Pauli’s exclusion principle. The intermolec-
ular forces in He4 are weak enough, so that its boiling point (TB = 4.21 K) is the second to
lowest in nature (only the isotope He3 is lower) and it remains as a liquid even at T = 0 K,
at least for moderate pressures. Liquid He4 however, suffers an extraordinary transition at
some temperature Tλ < TB at which exhibits practically no flow resistance at all, i.e., zero
viscosity. It is said that the liquid becomes a “superfluid”. He4 atoms start to condense
(Bose-Einstein condensation) in the lowest energy state once Tλ is reached.

Assume that He4 atoms could be described as a dilute, non-interacting system (not exactly
true for a liquid) with translational degrees of freedom only, such that,

π2h̄2

εnxnynz = n2 where n2 = n2 + n2 + n2 and [nx, ny, nz] = 1, 2, 3...
2mL2 x y z

Define the lowest level (where particles condense) with zero energy. The system energy is
then ε = εnxnynz − ε111. At a given temperature, N will be distributed among the ground
state N0 and excited levels Nexc such that N = N0 +Nexc.

Assume that, as the temperature decreases, no particles will move into the ground state
until Tλ is reached and the maximum possible number of particles in excited states Nmax

exc

(note that for high temperatures, Nmax
exc � N) is precisely equal to N . Once this maximum

number of particles reaches a value less than N , particles will have to move into the ground
state, thus triggering the condensation process.

1. Find Tλ, taking the liquid density as ρLHe = 124.91 kg/m3.

2. Comment on the Bose-Einstein condensation in the gas phase. Assume the density to
be equal to ρGHe = 0.178 kg/m3.

Hints:
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2. Note from Bose-Einstein statistics that the number of particles in the ground state
will depend only on the chemical potential, and that this number is maximum when
µ→ 0. Equivalently, the maximum number of particles in excited levels Nmax

exc will be
reached when the chemical potential vanishes.
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