16.55 Ionized Gases
 Problem Set \#2

Problem 1

Inertia-less Ideal Fluid Equation Parallel to the \vec{B} field

Derive a fluid momentum equation for the momentum along \vec{B} of a magnetized charged species in a collisionless plasma, ignoring mean inertia forces. The plasma can be anisotropic $\left(T_{\perp} \neq T_{\|}\right)$, and there can be an electric field \vec{E} with a parallel component $E_{\|}$.

For an inhomogeneous \vec{B}, a mirror force over a charged particle is implied:

$$
F_{\text {particle }}=-\frac{m v_{\perp}^{2}}{2 B} \frac{d B}{d z}
$$

In consequence, one expects to see in the parallel momentum equation a term,

$$
-\frac{P_{\perp}}{B} \frac{\partial B}{\partial z}
$$

Does your equation recover this term when the plasma is isotropic? Explain.

If one of the terms in your equation involves the pressure anisotropy $\left(P_{\|}-P_{\perp}\right)$, explain its origin in mechanical terms, i.e., with P meaning force per unit area.

Hints: Start from Eq. (28) of the Notes, that gives the magnetic mirror force density, and add to it an electrostatic force density. Derive the corresponding energy conservation equation along the \vec{B} direction. Manipulate this equation to isolate the axial derivative of $n m w_{\|}^{2}$. You will also see a term containing the axial derivative of $n m w_{\|}$; transform it using continuity and conservation of magnetic flux in a flux tube. Finally, average over all particle velocities to get the desired equation.

Problem 2

Consider two particles whose interaction is governed by the following rectangular-well potential:

$$
\begin{array}{lll}
V(r)=0 & \text { for } & r>a \\
V(r)=-V_{0} & \text { for } & r \leq a
\end{array}
$$

1. Calculate the differential scattering cross-section $\sigma(\chi)$, and show that it is given (for $b<a$) by,

$$
\sigma(\chi)=\frac{p^{2} a^{2}[p \cos (\chi / 2)-1][p-\cos (\chi / 2)]}{4 \cos (\chi / 2)\left[1-2 p \cos (\chi / 2)+p^{2}\right]^{2}}
$$

where,

$$
p=\left(1+\frac{2 V_{0}}{\mu g^{2}}\right)^{1 / 2}
$$

2. Calculate the total and the momentum-transfer cross-sections. Plot these sections (normalized by πa^{2}) as functions of p.

MIT OpenCourseWare
http://ocw.mit.edu

16.55 Ionized Gases

Fall 2014

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

