16.540 CLASS FORMAT AND STRUCTURE

16.540 Notes Spring 2006

E. Greitzer, C. Tan

1

MESSAGE

- Active learning (active engagement of students with the material during class) is helpful and useful in the learning process
- The conduct of the class is built around this idea

OVERALL VIEW OF 16.540

- Grad-H subject
- "Industrial strength fluid mechanics done in a rigorous manner"
- Strong emphasis on concepts, attributes, features of internal flow
- Modeling of real flows
 - Loss generation mechanisms
 - Unsteady flow
 - Rotating flow
- Most of these are topics students have not seen before

OVERALL COURSE LEARNING OBJECTIVES

- Development of "physical insight" into the phenomena which characterize internal flow in fluid machinery
 - Not just *what* happened, but *why* it happened

 Ability to define, in a rigorous manner, the levels of modeling needed for useful descriptions of a number of internal flow situations

• Ability to interpret numerical simulations and experimental results in terms of concepts and principles (as enumerated below)

IMPETUS FOR PEDAGOGY

- In the past, subject was taught:
 - From notes, on blackboard (initially)
 - Using viewgraphs and handouts
 - Using draft book sections, viewgraphs, and handouts
- Book (Internal Flow: Concepts and Applications) Spring 2004
- Main point: Students had equations, basic ideas, applications
- What value does the instructor have?

APPROACH

- We will emphasize concepts
- We will not "lecture"
- We will engage students in defining explicitly what they know and what they don't
- We will engage students in helping define their own learning path

STRUCTURE

- Material will be assigned to be read before class
- "Concept questions" on material will be assigned before class
- You are urged to raise issues that are difficult
- We (students and instructors) will discuss concept questions in class
- There will be a number of "concept quizzes" to probe understanding

DIAGNOSTICS FOR STUDENT LEARNING

- Concept questions
- Concept quizzes
- Oral mid-term and oral final exam
 - Oral exams provide excellent insight into the degree to which concepts have been internalized
- Projects

SYLLABUS DESCRIPTION OF CONCEPT QUESTIONS

- In presenting the material from a different perspective, it is useful to pose Concept Questions which illustrate the points
- You will be asked to provide some of these
- You can work in groups of 3-4 so that there can be interchange and sharing of ideas
- Concept Questions (one per group per week) should be sent to us the week before we discuss the material in class
 - Questions to be submitted by 6pm on the Friday before the week in which the material is discussed

16.540

Spring Term 2006

WHAT IS A CONCEPT QUESTION?

WHAT IS A CONCEPT QUESTION?

- Examples are given in the next slides
- General attributes are:
 - The question is based on the direct application of a fluid dynamic principle or characteristic
 - The question has an answer which can be stated simply
 - The answer can be reasoned without calculation
 - The question and its answer serve as analogies, or springboards, to other situations or classes of fluid motions
 - The arguments (train of logic) by which you came to the answer involve some approximations so their validity has limitations
 - You can articulate these approximations and the limits clearly
 - YOU CAN DEFINE THE CONCEPT(S) WHICH THE QUESTION ILLUSTRATES

CONCEPT QUESTION CONCERNING FLOW AROUND SHARP EDGES

- Will a "real fluid" follow the geometry at a sharp edge (will the fluid flow round the sharp edge?)
- Why or why not?
- What implications might this have for modeling such a flow using an inviscid (ideal fluid) description
- Have you seen such a description?
- Have you seen such a description for an internal flow? (Give an example)

CONCEPT QUESTION CONCERNING FLOW THROUGH A BENT TUBE

- Freely rotating bent tube, constant area A, volume rate of flow Q
- Flow entering at center 0 and exiting through bent part

- What determines the rotation rate Ω ?
- What happens if there is inflow instead of outflow through bent tube?
- Does the device rotate? Why or why not?

WHAT IS NOT A CONCEPT QUESTION?

- How do I go from Equation (2.A) to Equation (2.B)?
- Is there a sign error in Equation (4.C)?
- Is there a ρ missing in Equation (4.D)?
- Should there be a subscript on the velocity, *u* ?
- I read a paper and there is something in there about vorticity. The figure looks interesting. I'll put the figure in as a concept question.
- Here is a fluid phenomena that I don't understand, but it looks as if it has something to do with upstream influence. I'll get the answer when we discuss it in class.

TAYLOR-PROUDMAN THEOREM

- An amazing result for strongly rotating flow
- Any steady motion is two-dimensional!

- Rotating container of fluid
- Moving object takes with it a Taylor column extending the height of the container

POSSIBLE CONCEPT QUESTION

- You are responsible for training a fish to swim in the Olympics
- Would it be helpful to train him/her in a rapidly rotating container?
- Why or why not?

- Concept Question: The picture is a top view of a fish swimming in a rotating water channel. The water is moving radially outward with a uniform relative velocity, w. The fish has the same density as the surrounding fluid.
 - 1. What does the fish need to do in order to swim upstream to location B, along the centerline, at a velocity w relative to the walls? When can rotation be neglected? (Non-dimensional criterion?)
 - 2. Will this fish beat Prof. Greitzer's fish in the Olympics?

BLOOM'S TAXONOMY OF EDUCATIONAL OBJECTIVES

HOW DO WE DEVELOP CONCEPT QUESTIONS?

- The comment made in previous classes is that finding good questions is hard. *Tan and Greitzer totally agree.*
- You can approach the problem several ways
 - One is to start with a fluid dynamic situation that *calls out to you* that here is an illustration of concept X or concept Y or even, concept x, concept Y and the linking between them
 - Another is to start with a concept and try to find an instructive illustration of this (I want to find an illustration of baroclinic torque and the creation of vorticity in an industrial situation--I know, velocity field exiting a combustor)
- This is not an exact science

THE BOTTOM LINE

- This is not about the number of questions submitted per student
- It is not necessarily about finding an interesting fluid dynamic "wrinkle" (although that might be helpful in making a concept stick
- It is about helping you be able to make an explicit statement (to yourself) about what and how well you have learned, and can use, the material
- It is about helping you define (for yourself) what you have and have not mastered
- It is about making the subject material your own