
Session 8 : Basic Electromagnetic Theory and Plasma Physics 

In a similar way as thermodynamics and thermochemistry are the core disciplines required to 
describe the fundamentals of chemical propulsion, electromagnetic theory and its extension 
to plasma physics are essential to understand the way in which most electric propulsion 
devices work. In this lecture we will review the basic formulation of electromagnetism, 
leading to Maxwells equations and will introduce the fundamentals of plasma physics. 

The theory behind electricity and magnetism (and the unification of these two, once sepa­
rate forces) is one of the major triumphs in the history of science. Its level of accuracy is 
extraordinary. Remarkable as it is, this fact is not surprising, since the origin of the theoret­
ical description of electric and magnetic fields is based on five well-identified experimental 
observations. 

The first of these experimental observations led eventually to Coulombs law, which says 
that electrically charged materials will exert forces on each other that vary with the inverse 
of the square of distance between the charges. This observation is then characterized by the 
force a mass of charge feels, 

q2/r2 
E EF = qE = r̂ (1)

4πε0 

when an identical charged mass produces a field EE. According to Helmoltz theorem, a vector 
is completely determined when both its divergence and curl are known. To find the div and 
curl of the electric field vector, we first note that,   

d(1/x) 1 q q 1E− = → E = r̂ = −  = − φ (2)
dx x2 4πε0r2 4πε0 r

where φ is the electric potential. The curl of the electric field is then,

 × EE = − × φ →  × EE = 0 (3) 

Now let us integrate the projection of the field over an arbitrary surface S,    
q cos θ q qEE · dSE = E cos θ dS = dS = dΩ = (4) 

S 4πε0r2 4πε0 ε0 

cos θ  
where we have used the definition of solid angle dΩ = dS, which integrates to dΩ = 4π 

2r
in all space (even though S is arbitrary, only projections along r are considered, i.e., the 
projected area is spherical). Now, form the divergence theorem,  

EE · dSE =  · EdVE (5) 
S V  

and since the net charge q in general could arise from a distribution, q =
V ρdV , we obtain,

ρ ρ · EE = (Gauss’ law) and  2φ = − (Poisson’s equation) (6)
ε0 ε0 
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In the second experimental observation, a magnetic dipole (any magnet for that matter) 
tends to align with an externally applied magnetic field after being subjected to a torque, 

TE = m × E (7)E B 

The third observation is that no isolated magnetic charges have been found in nature. The 
divergence of a field is a measure of the local density of sources of that field. Since there are 
no magnetic monopoles, we have, 

E· B = 0 (8) 

In the fourth experimental observation it is found that an electric current generates a 
magnetic field such that,  

E EB · dl = µ0I (9) 
C 

Applying Stoke’s theorem to this expression, 
BE · dlE = × BE · dSE (10) 

C S 

Eand for a current arising from a distribution I = 
S j · dSE, we obtain, 

× BE = µ0
Ej (11) 

So far, the equations above describe static situations. In the fifth and final experimental 
observation, a non-steady coupling between electric and magnetic fields appears. This cou­
pling is known as Faradays law, in which a time variation of magnetic flux induces an electric 
field,  

EE · dlE = − 
∂ 

BE · dSE (12)
∂t C S 

Using Stoke’s law, we notice that Eq. (3) is just an incomplete version of, 

∂BE× EE = − (Faraday’s law) (13)
∂t 

Up until the 1860’s, these equations described the experimental reality observed in the lab­
oratory. It was J.C. Maxwell who synthesized them into a well-known set of four equations, 
appropriately called Maxwell’s Equations. The key insight was noticing that the equations 
above are not consistent with conservation of charges. To see this, take the divergence of 
Eq. (11), 

· × BE = µ0 · Ej = 0 (14) 

But charge continuity requires that, 
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∂ρ E+ · j = 0 (15)
∂t 

To fix this contradiction, we take the time derivative of Gauss’s law Eq. (6), 

∂ρ ∂EE
= ε0 · (16)

∂t ∂t 

and add this to Eq. (14) so that Eq. (15) is satisfied, 

∂EE× E E· B = µ0 · j + µ0ε0 · = 0 (17)
∂t 

The conclusion is that Eq. (11) needs to be modified to read, 

∂EE× BE = µ0
Ej + µ0ε0 = 0 (18)

∂t 

where the second term is known as the displacement current, typically very small in magni­
tude at low frequencies, but essential in other situations, for example in the propagation of 
electromagnetic waves. 

Maxwell’s Equations (6, 8, 13 and 18) describe the way in which electric and magnetic 
fields behave in vacuum. They require further modification if the situation under consider­
ation contains matter. The atoms in materials react to applied electric and magnetic fields 
generating fields on their own that in turn modify the magnitude and direction of applied 
fields. The introduction of these modifications is relatively straightforward and because of 
its fundamental importance is discussed here. 

Start with the electric field. The charge density in Gauss’s law Eq. (6) can be decomposed 
into two parts, one containing the distribution of free charges and a second including the 
charge density introduced by the alignment of dipoles in materials when exposed to an 
electric field, 

ρf + ρdE· E = (19)
ε0 

We assume that this dipolar charge density arises from an electric vector field produced by 
the preferential alignment of dipoles. Clearly, such vector field acts in opposition to the 
applied field, and is known as the polarization vector, 

Eρd = − · P (20) 

Substituting into Gausss law gives, 

E· D = ρf (21) 

where the electric displacement vector is, 
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DE = ε0EE + PE or DE = εε0EE (22) 

where the second expression was found after expanding the polarization vector in a Taylor 
series with respect to the electric field. Only linear terms are considered with no permanent 
polarization, so PE ≈ χeEE . The linear constant is known as the electric susceptibility. The 
relative permittivity, or dielectric constant of the material, is ε = 1 + χe/ε0. 

In a similar way, the current density in Ampere’s law (ignoring the displacement current, for 
now) can be decomposed into current carried by free charges and secondary currents induced 
in the material, 

× BE = µ0 
Ejf + Ejm (23) 

In this case, we assume the induced currents are well localized at the atomic level and are 
produced through the appearance of some magnetization vector defined by, 

Ejm = × ME (24) 

Substituting into Ampere’s law results in, 

× E EH = jf (25) 

where, 

EH = 
B − EM or EH = 

EB 
(26) 

µ0 µ 

Once more, the second expression was found when expanding the magnetization vector in a 
Taylor series in HE and taking only linear terms with no permanent magnetization, so that 
E EM ≈ χmH. The constant is known as the magnetic susceptibility and µ = µ0(1 + χm) is the 
magnetic permeability of the material. 

In addition to a set of differential equations, boundary conditions are required to evaluate the 
fields. The most convenient boundaries are at the interfaces between materials with different 
magnetic and electric properties. Integrating the static version of Gausss and Amperes laws 
on a pillbox with vanishingly small volume, but non-zero area at the interface results in a 
set of four boundary conditions for the fields: 

= Eout1. The tangential component of the electric field is continuous Et
in 

t . 

2. The normal component of the displacement vector has a jump proportional to the free 
− Dinsurface charge at the interface or Dn

out 
n = σf . 

= Bout3. The normal component of the magnetic field is constant Bn
in 

n . 

4. The tangential component of the magnetic vector field HE has a discontinuity propor­
− H intional to the surface current at the interface Ht

out 
t = jf 
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Elementary Plasma Physics 
In Physics, a plasma is defined as a collection of positively charged ions, negatively charged 
electrons and neutral species. The main characteristic of the plasma is that, when looked 
as a macroscopic average is electrically neutral, i.e., same number of positive and negative 
charges. This neutrality eventually breaks down at the atomic scale. Because of this, it 
is said that a plasma is, by definition, quasineutral. In a general sense, a plasma is like a 
multi-component fluid, and in many instances its behavior can be described with the same 
set of tools used to describe regular fluids, with one exception: plasmas react to electric and 
magnetic fields, and as such we need to consider stresses in addition to the hydrodynamic 
ones regular fluids experience. 

A very important aspect in the description of plasmas pertains to the description of what 
occurs when perturbed by the application of fields. There are two important quantities that 
can be derived from such perturbation: the Debye length and the plasma frequency. 

To find these, start by considering a 1D plasma in equilibrium in which a force has been 
applied to separate the electrons in the region [−λ, λ] as shown below. 

2λ

x

φ

The plasma is quasineutral everywhere (ne ≈ ni) except in the region where a net positive 
charge exists. In general, Poisson’s equation Eq. (6) describes the electric potential for a 
given charge distribution, 

e2φ = − (ni − ne) (27) 
ε0 

In the quasineutral region we have Laplace’s equation 2φ = 0 which in 1D integrates easily 
to φout = Ax + B. Defining zero potential at −λ and λ, we find A = B = 0. In the 
non-neutral region, the ion density equals the plasma density ne, therefore, the integrals of 
Poisson’s equation result in, 

dφin ene ene 2 = − x + C and φin = − x + Cx + D (28)
dx ε0 2ε0 

dφin ene
At x = 0 we have = 0, then C = 0, while D = λ2 . The potential distribution is, 

dx 2ε0   
λ2 2ene x 

φin = 1 − (29)
2ε0 λ 

We now have defined a region in a plasma that is non-neutral in which a parabolic electric
 
potential develops. The potential tends to attract electrons back into the region, so for
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this to be a stable configuration in equilibrium, energy has to be provided to maintain the 
separation of charges. Let us compute the energy required to move one electron from x = 0 
to λ under this parabolic potential, 

λ λ λ 2dφ e neλ
2 

W = F dx = eEdx = e − dx = (30)
dx 2ε00 0 0 

This energy must be provided by the thermal motion of electrons in the plasma, or kTe/2. 
From here we solve for λ = λD, the Debye length,  

ε0kTe
λD = (31)

2e ne 

The Debye length provides an estimate for the size of non-neutral regions in a plasma and 
is critical to understand the effects of plasmas in contact with materials. For instance, a 
charged piece of material immersed in a plasma quickly becomes shielded by the production 
of a Debye layer, effectively nulling the fields produced by the charges on the material. 

In the previous statement, quickly is quite a vague term. The rate at which charges re­
distribute in a plasma are also of critical importance, specially when dealing with high 
frequency phenomena. Imagine the same situation described in the drawing above, but this 
time assume the electron cloud is mechanically shifted to produce the charge separation. 
The restoring force per unit volume is f = −eneE, so the equation of motion for electrons, 

d2x d2x 
mene + eneE = 0 → + ω2 x = 0 (32)

dt2 dt2 p

where, 

2e ne
ωp = (33) 

meε0 

is the plasma frequency, or the rate at which electrons oscillate about their equilibrium 
positions with respect to a practically immobile ion background. The plasma frequency 
is very relevant in the propagation of electromagnetic waves. It is intuitively clear that 
waves with frequencies lower than the plasma frequency will not propagate as their fields 
are shielded by the plasma, while waves of higher frequencies will propagate as electrons in 
the plasma do not have enough time to react to the varying fields. The plasma frequency is 
also of fundamental importance to describe the dynamics of Debye layer formation. In fact, 
taking the product of the Debye length and plasma frequency,  

kTe
ωpλD = (34) 

me 

we obtain the mean thermal velocity (speed of sound) of electrons in the plasma. 

Plasmas then become very dynamic conductive media that respond to electric and magnetic 
fields, producing fields of their own which then need to be self-consistently incorporated into 
the particle dynamics (though Poisson’s equation). A detailed description of the plasma 
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dynamics becomes very challenging. Nevertheless, in many cases, plasmas are dilute enough 
that charged particles behave almost independently of each other. In those cases, a relatively 
simple description of the motion of individual charges suffices to predict the behavior of the 
plasma. 

The generic dynamic interaction between electromagnetic fields and particles of charge is 
determined by the Lorentz force, 

FE = q EE + Ev × BE so that m
dEv 

= q EE + Ev × BE (35)
dt 

Restricting for now to planar motion (2D) and assuming BE is perpendicular to this plane, 
Eq. (35) could be decomposed into two equations, one for each direction in an orthogonal 
system of coordinates. Alternatively, we could make use of the intrinsic orthogonality of the 
complex plane to write a single differential equation, such that, 

dw 
m = q (E − iwB) (36)

dt 

where both w and E are complex quantities. Let us for now assume that E = 0. It is easy 
then to integrate Eq. (36) into, 

−iωct w = w0e (37) 

This represents a clockwise rotation of the velocity vector (of constant magnitude w0). Eq. 
(37) can be integrated once more to obtain, 

w0 −iωct z = i e (38)
ωc 

The position vector z, is also a complex quantity. We observe this vector also rotates 
clockwise, although 90◦ out of phase with respect to the velocity vector. This means that 
the particle performs a circular motion around the magnetic field. A negative particle will 
gyrate in the opposite direction. The gyration rate ωc is known as the cyclotron frequency, 
and the gyration radius, 

w0 mw0 
rL = = (39)

ωc qB 

is known as the Larmor radius. The cyclotron motion is also known as the Larmor mo­
tion. Whenever a particle family in a plasma (electrons, or different types of ions) perform 
cyclotron motion, it is said that such charged species is magnetized . 

If E  = 0 (but constant), we still have the Larmor solution as the homogeneous part of Eq. 
(36), but in addition we have a particular solution, 

qE E EB EE × BE
wp = = −i = −i → Evp = (40)

imωc B B2 B2 

So the final solution is a cycloid, in which the Larmor motion is superimposed to a guiding-
center drift in the EE × BE direction. Not surprisingly this is called the EE × BE drift. Note that 
the drift is always in the same direction, regardless of the particle charge. 
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Increasingly complicated cases could be analyzed with the set of tools presented so far. Of 
particular relevance for some electric propulsion devices are particle drifts associated with 
gradients of the magnetic field, in particular the motion of charged particles inside a magnetic 
mirror. A schematic of this situation is shown below. 

v⊥

 v

B x( )

Bmin Bmax

 v0

v⊥0θ0

Through a more detailed analysis of magnetized particle motion, it is found that in addition 
to the conservation of energy (kinetic only in this case, if there is no electric potential), 

2
1 

there is a second motion (or adiabatic) invariant: the magnetic moment. In this case, the 
magnetic moment is defined as the product of current and area enclosed by the current loop, 

2 mv

2 2 
mv
⊥K
 (41)
+
=
 

or µ =
 1 
2

Er ×EjdV = IA. Assuming only one type of particle is magnetized, the current will
 
be given by the cyclotron current and the area will be defined by the Larmor radius so that,
 

2 

I
 = q
 
ωc 

2π
 
and A = πr
2 

L →
 µ =
 
mv
⊥ (42)

2B
 

EThe magnetic moment then becomes equal to the local value of the perpendicular (to B) 
component of the kinetic energy divided by the magnitude of the magnetic field. 

Combining Eqs. (41-42) we find, 

2mv
1
K = µB + (43)

2 

Since both K and µ are constant, it is then clear that the parallel velocity will decrease with 
B and vice versa. In the schematic shown above, particles will slow down as they approach 
regions at the edge of the device. But according to Eq. (41), as particles slow down in one 
direction, their velocity should increase in the other direction. This peculiar energy transfer 
is representative of drifts generated by gradients in the magnetic field. 

If particles slow down as they approach the regions of the highest fields, there must be a 
possibility for them to stop altogether and bounce back. From here that these B devices 
are also known as magnetic mirrors. Assume that particles stop and bounce at a particular 
value of the field B = BB and if B0 = Bmin, we have, 
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mv1
2 
0µB0 + = µBB (44)

2 

2mv
And from Eq. (42) we also have µ = ⊥0 . Combining these we find, 

2B0 

v10 

2 
BB 

= − 1 (45) 
v⊥0 B0 

Defining the pitch angle, 

v⊥0tan θ0 = (46) 
v10 

we finally write, 

BB 1 B0
= 1 + cot2 θ0 = → θ0 = arcsin (47)

B0 sin2 θ0 BB 

In conclusion, particles with angles lower than θ0 will continue beyond BB , while particles 
with larger pitch will bounce. The lowest possible pitch angle for bouncing is given by 
the maximum field BB = Bmax. Magnetic mirrors are important in fusion research as 
one of several devices able to confine hot plasma in a vessel. The theory also explains how 
ionospheric charges precipitate at the earth poles, and describes the performance of magnetic 
nozzles in plasma thrusters. 
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