16.512, Rocket Propulsion Prof. Manuel Martinez-Sanchez Lecture 16: Solid Propellants: Design Goals and Constraints

Solid Propellants

Read Sutton's, Chapter 12

<u>Double Base</u> (DB) Nitrocellulose + Nitroglycerine + Additives (for opacity, plasticity, ...). Both NC and NG are explosives, dangerous sometimes

JPN NC 51.5%, NG 43%, Diethyl phthalate 3.2%, Ethyl centralite 1%, H_2SO_4 1.2% + carbon black + candelilla wax

<u>Composite Modified Double base (CMBD)</u> DB + Ammonium perchlorate (AP) or Aluminium (AI)

 $\underline{Composite} (C) AP (sometimes A Nitr) + Synthetic Rubber binder (fuel) + AI. Safer than DB$

Other Composite contain nitramine explosive (RDX, HMX), replacing some AP

Туре	I _{sp} (s) at 1000/14.7 psi	Т _с (К)	ρ _p (g/cm ³)	AI %	r (cm/s) @1000 psi	η	Fabrication
DB	220-230	2530	1.60	0	1.14	0.3	Extruded
DB-AP-AI	260-265	3866	1.79	20-21	1.98	0.4	Extruded
CTPB/AP/AI	260-265	3370-3490	1.76	15-17	1.14	0.4	Cast
HTPB/AP/AI	260-265	3370-3490	1.85	4-17	1.02	0.40	Cast

The addition of Aluminum is not necessarily beneficial, as the following example shows:

<u>Problem 3.</u> Adding Aluminum to the formulation of a solid rocket propellant increases the gas temperature, but incurs performance penalties related to the solid particles that are generated.

Consider a simple model for the effect of adding a mass fraction x_{Al} of Aluminium, of the form

$$\frac{T_c}{T_{c_o}} = 1 + rx \; ; \; x = \; 1.85 \, x_{AI} \tag{1}$$

where $r \approx 1.41$ is a separately calculated coefficient, T_{co} is the flame temperature without aluminum (~2500K), and x is the solids fraction in the gas (the 1.85 factor accounts for the oxygen in the Al₂O₃ particles).

Consider also a linearized model for the effect of the particulates, of the form

$$\frac{u_{e}}{u_{e_{o}}} = 1 - fx \qquad (at fixed T_{c})$$
(2)

where f is as derived in class:

(a) Show that the optimum loading is given by

$$x_{OPT} = \frac{r - 2f}{3rf}$$
; $(x_{AI})_{OPT} = \frac{x_{OPT}}{1.85}$ (3)

(b) For
$$\frac{P_e}{P_c} = 0.01$$
, $\gamma_g = 1.25$, $M_g = 18g / mol$, $c_s = 1260 \frac{J}{KgK}$, calculate $(x_{AI})_{OPT}$ for both small and large particulates. Comment on results.

Problem 3 – Solution

Ignoring the exit pressure effect (or at matched conditions),

$$g I_{sp} = v_e = \sqrt{2C_p T_c \left[1 - \left(\frac{P_e}{P_c}\right)^{\frac{\gamma-1}{\gamma}}\right]}$$

which is proportional to $\sqrt{T_c}$. The rest of the dependence (γ, c_p) are affected by particulates, but that is counted separately in the loss analysis. So we have (counting both effects)

(a)
$$v_{e} \sim (1 - fx)\sqrt{1 + rx}$$

To optimize, take the logarithmic derivative and equate to zero

$$\frac{-f}{1 - fx} + \frac{1}{2} \frac{r}{1 + rx} = 0$$

$$2f(1 + rx) = r(1 - fx) \qquad r - 2f = 3rfx$$

$$x_{OPT} = \frac{r - 2f}{3rf} \qquad \text{and then } (x_{AI})_{OPT} = \frac{x_{OPT}}{1.85}$$

(b) For small particulate $f = \frac{1}{2} \left\{ 1 - \frac{c_s}{c_{pg}} \left[1 + \frac{(1 - \eta) \ln(1 - \eta)}{\eta} \right] \right\}$, and using the given values,

$$\eta = 1 - (0.01)^{0.25/1.25} = 0.6012 \quad ; \qquad \qquad C_{pg} = \frac{1.25}{0.25} \quad \frac{8.314}{0.018} = 2309 \text{ J/Kg/K}$$

$$f = \frac{1}{2} \left\{ 1 - \frac{1260}{2309} \left[1 + \frac{0.3988 \text{ In}(0.3988)}{0.6012} \right] \right\} = 0.3934$$

$$x_{OPT} = \frac{1.41 - 2 \times 0.3934}{3 \times 1.41 \times 0.3934}$$
 $x_{OPT} = 0.3746$

and then the Aluminum fraction should be

 $(X_{AI})_{OPT} = \frac{0.3746}{1.85} = 0.2025$ 20.3% AI loading

For the case of larger particle, the class derivation showed f=1, and so

$$x_{OPT} = \frac{1.41 - 2 \times 1}{3 \times 1.41 \times 1} < 0$$

This nonsensical result simply means there is no good Al loading in this case. The losses due to the particles are stronger than the gains due to increased temperature, so <u>no Aluminum should be added</u>.

Fortunately, the particles are small, not large.