Homework 5: Thermochemistry Exploration Using CEA Code

The CEA output is very detailed and takes a total of 12 pages, so only one case (equilibrium, O/F=2.6) will be displayed here. The results are for $P_c = 70 \ atm, P_e = 0.4 \ atm \left(\frac{P_c}{P_e} = 175\right)$, using RP-1 fuel and 02L as oxidizer.

1)For all cases run, we need the "ground jet velocity," namely, that for $P_a = 1atm$. The code supplies only the jet velocity ("specific impulse") for <u>vacuum</u> and for <u>matched conditions</u>, which we will call c_0, c_{match} , respectively. In general:

$$F_{0} = F_{vac} - P_{a}A_{e}$$
(1)

$$c = \frac{F}{\dot{m}} = \frac{F}{P_{c}A_{t}}c^{*}$$
(2)

$$c_{0} = c_{vac} - \frac{P_{a}A_{e}}{P_{c}A_{t}}c^{*}$$
(3)

An alternative, more convenient formulation is:

$$c = \frac{F}{\dot{m}} = \frac{F}{\rho_e u_e A_e}$$
(4)
$$c_0 = c_{vac} - \frac{P_a}{\rho_e u_e} = c_{vac} - \frac{P_a}{P_e} \frac{(\mathcal{R}/M_e)T_e}{u_e}$$
(5)

All quantities are listed as output. Here, $\frac{P_a}{P_e} = \frac{1 \ atm}{0.4 \ atm} = 2.5$. Notice that the exit velocity u_e is actually equal to c_{match} , and can be read directly from the output.

For the Equilibrium case we then find:

O/F	$c_{vac}[m/s]$	$u_e[m/s]$	$T_e[K]$	$M_e[kg/mol]$	$c_0[m/s]$
2	3205.8	3030.6	1355.5	0.02123	2767.9
2.2	3286.0	3099.1	1577.5	0.02265	2818.9
2.4	3341.4	3142.3	1810.4	0.02406	2843.7
2.6	3374.2	3161.4	2051.0	0.02545	2844.4 (opt)
2.8	3384.5	3160.6	2278.1	0.02677	2824.9

Table 1: Equilibrium Case

For the <u>Frozen Flow</u> case (nfz=2, frozen after throat), we find:

O/F	$c_{vac}[m/s]$	$u_e[m/s]$	$T_e[K]$	$M_e[kg/mol]$	$c_0[m/s]$
2	3145.4	2891.7	1232.3	0.02099	2736.2
2.2	3188.0	3017.8	1364.2	0.02209	2762.7 (opt)
2.4	3196.1	3022.7	1451.9	0.02303	2762.6
2.6	3183.0	3008.5	1504.2	0.02382	2746.7
2.8	3159.1	2984.8	1531.8	0.02450	2723.2

Table 2: Frozen Flow Case

Some observations:

a) $(c_0)_{opt}$ is 2844 m/s for equilibrium and 2763 m/s for frozen flow, a difference of 2.8%. For a rocket of large dimensions and this high pressure, the actual performance is likely to be close to equilibrium.

b) $(O/F)_{opt}$ is about 2.52 for equilibrium, but only 2.3 for frozen flow. This can be understood qualitatively: the reason an optimum exists in any case is the trade-off between higher T_c at higher O/F (closer to stoichiometric), but also higher *M*at higher O/F (less extra H_2 around). There is a third effect, though: higher O/F, with its higher T_c , produces more dissociation in the chamber; if the flow is in equilibrium, most of this dissociation is reversed during the expansion, and the corresponding energy is recovered (partially) as kinetic energy. This does not happen in a frozen expansion, and so in the equilibrium case there is more of an incentive to go on to higher O/F, as observed.

2) For $\frac{o}{F} = 2.6$, equilibrium, we read off $T_c = 3674.2K$ and, <u>at the throat</u>, $\gamma = 1.1340$, $\mathcal{M} = 0.02382 \ kg/mol$. Using these as constants, we can calculate:

$$\Gamma = \sqrt{\gamma} \left(\frac{2}{\gamma+1}\right)^{\frac{J+1}{2(\gamma-1)}} = 0.6354 \quad (6)$$

$$R = \frac{8.314}{0.02382} = 349.0 \frac{J}{kg * K} \quad (7)$$

$$c^* = \frac{\sqrt{RT_c}}{\Gamma} = 1782.2 \quad (8)$$
CEA: 1793.8 m/s

For the exit Mach number, we use $\frac{P_c}{P_e} = \left(1 + \frac{\gamma - 1}{2}M_e^2\right)^{\frac{\gamma}{\gamma - 1}}$, or $M_e = \sqrt{\frac{2}{\gamma - 1}\left[\left(\frac{P_c}{P_e}\right)^{\frac{\gamma - 1}{\gamma}} - 1\right]}$, where $P_c = 70 \ atm, P_e = 0.4 \ atm$.

Therefore:

 $M_e = 3.543$ (CEA: 3.536)

For exit temperature:

$$T_e = \frac{T_c}{1 + \frac{Y - 1}{2}M_e^2} = 1996K$$
(9)
(CEA: 2051K)

For area ratio:

$$\frac{A_e}{A_t} = \frac{1}{M_e} \left(\frac{1 + \frac{\gamma - 1}{2} M_e^2}{\frac{\gamma + 1}{2}} \right)^{\frac{\gamma + 1}{2(\gamma - 1)}} = 21.73$$
(10)
(CEA: 20.67)

For exit velocity (or matched specific impulse):

 $u_e = M_e \sqrt{\gamma R T_e} = 3149 \ m/s$ (11) (CEA: 3162 m/s)

For vacuum specific impulse:

 $c_{vac} = u_e + \frac{P_a A_e}{P_0 A_t} c^* = 3370 - \frac{1}{70} \times 21.73 \times 1782.2 = 2817 \ m/s \tag{12}$ (CEA: 2844 m/s)

The simple model agrees to better than 5% in all the important quantities with the full equilibrium model. But you need hindsight in the choices of γ and M.

3) Atom conservation: The reactants are $CH_{1.975} + XO_2$, and imposing O/F = 2.6, $\frac{32x}{12+1.975} = 2.6 \rightarrow x = 1.135$. Since the <u>total</u> quantity is arbitrary, only <u>relative</u> atomic amounts matter. We have then in the reactants:

 $\frac{m_H}{m_C} = \frac{1.975}{12} = 0.165$ (13) $\frac{m_0}{m_C} = \frac{1.135 \times 32}{12} = 3.027$ (14)

For the products we read for this case the mole fractions at exit:

 $y_{CO} = 0.2640$ $y_{CO_2} = 0.2419$ $y_{H_2} = 0.0918$ $y_{H_2O} = 0.4006$ $y_H = 0.0011$ $y_{OH} = 0.0006$

With very minor amounts of other molecules. Thus, the mass fractions at exit are:

 $\frac{m_H}{m_C} = \frac{y_{H_2} \times 2 + y_{H_2O} \times 2 + y_H \times 1 + y_{OH} \times 1}{y_{CO} \times 12 + y_{CO_2} \times 12} = 0.162 \quad \text{(compare to 0.165)}$ $\frac{m_0}{m_C} = \frac{y_{CO} \times 16 + y_{CO_2} \times 32 + y_{H_2O} \times 16 + y_{OH} \times 16}{y_{CO} \times 12 + y_{CO_2} \times 32} = 3.028 \quad \text{(compare to 3.027)}$

Entropy conservation: Since $T_e = 2051K$, we need to <u>extrapolate</u> slightly from the given table of standard molar entropies; we get:

 $\tilde{s}_{CO}^{\circ} = 259.68 \frac{J}{mol * K}$

$$\begin{split} \tilde{s}^{\circ}_{CO_2} &= 310.93 \frac{J}{mol^{*K}} \\ \tilde{s}^{\circ}_{H_2} &= 189.32 \frac{J}{mol^{*K}} \\ \tilde{s}^{\circ}_{H_2O} &= 266.04 \frac{J}{mol^{*K}} \end{split}$$

Then, for each molecule $\tilde{s}_i = \tilde{s}_i^{\circ} - \mathcal{R}lnP_i(atm) = \tilde{s}_i^{\circ} - \mathcal{R}ln(y_iP_e(atm))$. This gives: $\tilde{s}_{CO} = 278.37 \frac{J}{mol*K}$ $\tilde{s}_{CO_2} = 330.35 \frac{J}{mol*K}$ $\tilde{s}_{H_2} = 216.79 \frac{J}{mol*K}$ $\tilde{s}_{H_2O} = 281.26 \frac{J}{mol*K}$

Finally, the specific entropy (per unit mass) is:

$$S_e = \frac{\sum_i y_i s_i}{\sum_i y_i M_i} = \frac{\sum_i y_i s_i}{\bar{M}_{\sim_4}}$$
(15)

Using $\overline{M}_e = 0.02545 \frac{kg}{mol}$ (CEA) and the four mole fractions (CO, CO_2, H_2, H_2O) , this gives: $S_e = 11,230 \frac{J}{kg^{*K}}$

Compared to $S_c = S_e = 11,068 \frac{J}{kg*K}$ from CEA. This is a bit high, not clear why.

THEORETICAL ROCKET PERFORMANCE ASSUMING EQUILIBRIUM

COMPOSITION DURING EXPANSION FROM INFINITE AREA COMBUSTOR

Pin = 1028.7 PSIA CASE = HWK41288

REA	CTANT		WT FRAM	CTION	ENERGY	TEMP
			(SEE 1	NOTE)	KJ/KG-MOL	K
FUEL RP-	1		1.0000	0000	-24717.700	298.150
OXIDANT 02(L)		1.000	0000	-12979.000	90.170
0/F= 2.60000	%FUEL= :	27.77778	R,EQ.RATIO=	1.3098	72 PHI,EQ.RA	TIO= 1.309872
	CHAMBER	THROAT	EXIT			
Pinf/P	1.0000	1.7309	175.00			
P, BAR	70.927	40.978	0.40530			
T, K	3674.23	3489.38	2050.99			
RHO, KG/CU M	5.4548 0	3.3647 0	6.0497-2	- St -		
H, KJ/KG	-784.21	-1474.64	-5784.48			
U, KJ/KG	-2084.48	-2692.53	-6454.44			
G, KJ/KG	-42114.8	-40725.9	-28855.6			
S, KJ/(KG)(K)						
M, (1/n)	23.494	23.822	25.454			
(dLV/dLP)t	-1.04090	-1.03547	-1.00043			
(dLV/dLT)p	1.7024	1.6436	1.0125			
Cp, KJ/(KG)(K) GAMMAS	6.3458	6.1418	2.0549			
GAMMAS	1.1373	1.1338	1.1941			
SON VEL, M/SEC						
MACH NUMBER	0.000	1.000	3.536			

http://cearun.grc.nasa.gov/OFILES/HWK41288.html

PERFORMANCE PARAMETERS

Ae/At	1.0000	20.667
CSTAR, M/SEC	1793.9	1793.9
CF	0.6551	1.7629
Ivac, M/SEC	2211.5	3374.2
Isp, M/SEC	1175.1	3162.4

MOLE FRACTIONS

*C0	3.1594-1	3.0994-1	2.6403-1
*CO2	1.5096-1	1.6349-1	2.4187-1
COOH	2.1034-5	1.2568-5	2.6919-8
*H	2.9043-2	2.5303-2	1.0883-3
HCO	2.8106-5	1.5873-5	3.6636-8
HO2	1.0280-4	6.2749-5	2.8532-9
*H2	8.0601-2	7.8728-2	9.1782-2
H2O	3.2823-1	3.4316-1	4.0063-1
B202	1.5347-5	9.1073-6	1.6202-9
*0	1.2293-2	9.4170-3	4.4262-6
*OH	6.3664-2	5.4067-2	5.8551-4
*02	1.9095-2	1.5793-2	8.2751-6

Page 4 of 6

16.50 Introduction to Propulsion Systems Spring 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.