Homework 5: Thermochemistry Exploration Using CEA Code

The CEA output is very detailed and takes a total of 12 pages, so only one case (equilibrium, $O / F=2.6$) will be displayed here. The results are for $P_{c}=70 \mathrm{~atm}, P_{e}=0.4 \mathrm{~atm}\left(P_{c} / P_{e}=175\right)$, using RP-1 fuel and 02 L as oxidizer.
1)For all cases run, we need the "ground jet velocity," namely, that for $P_{a}=1$ atm. The code supplies only the jet velocity ("specific impulse") for vacuum and for matched conditions, which we will call $c_{0}, c_{\text {match }}$, respectively. In general:
$F_{0}=F_{v a c}-P_{a} A_{e}$
$c=\frac{F}{\dot{m}}=\frac{F}{P_{c} A_{t}} c^{*}$
$c_{0}=c_{v a c}-\frac{P_{a}}{P_{c}} \frac{A_{e}}{A_{t}} c^{*}$

An alternative, more convenient formulation is:

$c=\frac{F}{\dot{m}}=\frac{F}{\rho_{e} u_{e} A_{e}}$
$c_{0}=c_{v a c}-\frac{P_{a}}{\rho_{e} u_{e}}=c_{v a c}-\frac{P_{a}}{P_{e}} \frac{\left(\mathcal{R} / M_{e}\right) T_{e}}{u_{e}}$

All quantities are listed as output. Here, $\frac{P_{a}}{P_{e}}=\frac{1 \mathrm{~atm}}{0.4 \mathrm{~atm}}=2.5$. Notice that the exit velocity u_{e} is actually equal to $c_{\text {match }}$, and can be read directly from the output.

For the Equilibrium case we then find:

Table 1: Equilibrium Case

O / F	$c_{v a c}[\mathrm{~m} / \mathrm{s}]$	$u_{e}[\mathrm{~m} / \mathrm{s}]$	$T_{e}[\mathrm{~K}]$	$M_{e}[\mathrm{~kg} / \mathrm{mol}]$	$c_{0}[\mathrm{~m} / \mathrm{s}]$
2	3205.8	3030.6	1355.5	0.02123	2767.9
2.2	3286.0	3099.1	1577.5	0.02265	2818.9
2.4	3341.4	3142.3	1810.4	0.02406	2843.7
2.6	3374.2	3161.4	2051.0	0.02545	2844.4 (opt)
2.8	3384.5	3160.6	2278.1	0.02677	2824.9

For the Frozen Flow case ($n f z=2$, frozen after throat), we find:

Table 2: Frozen Flow Case

O / F	$c_{v a c}[\mathrm{~m} / \mathrm{s}]$	$u_{e}[\mathrm{~m} / \mathrm{s}]$	$T_{e}[\mathrm{~K}]$	$M_{e}[\mathrm{~kg} / \mathrm{mol}]$	$c_{0}[\mathrm{~m} / \mathrm{s}]$
2	3145.4	2891.7	1232.3	0.02099	2736.2
2.2	3188.0	3017.8	1364.2	0.02209	2762.7 (opt)
2.4	3196.1	3022.7	1451.9	0.02303	2762.6
2.6	3183.0	3008.5	1504.2	0.02382	2746.7
2.8	3159.1	2984.8	1531.8	0.02450	2723.2

Some observations:

a) $\left(c_{0}\right)_{o p t}$ is $2844 \mathrm{~m} / \mathrm{s}$ for equilibrium and $2763 \mathrm{~m} / \mathrm{s}$ for frozen flow, a difference of 2.8%. For a rocket of large dimensions and this high pressure, the actual performance is likely to be close to equilibrium.
b) $(O / F)_{o p t}$ is about 2.52 for equilibrium, but only 2.3 for frozen flow. This can be understood qualitatively: the reason an optimum exists in any case is the trade-off between higher T_{c} at higher $0 / F$ (closer to stoichiometric), but also higher Mat higher O / F (less extra H_{2} around). There is a third effect, though: higher O / F, with its higher T_{c}, produces more dissociation in the chamber; if the flow is in equilibrium, most of this dissociation is reversed during the expansion, and the corresponding energy is recovered (partially) as kinetic energy. This does not happen in a frozen expansion, and so in the equilibrium case there is more of an incentive to go on to higher O / F, as observed.
2) For $\frac{O}{F}=2.6$, equilibrium, we read off $T_{c}=3674.2 \mathrm{~K}$ and, $\underline{\text { at the throat, }} \gamma=1.1340, \mathcal{M}=$ $0.02382 \mathrm{~kg} / \mathrm{mol}$. Using these as constants, we can calculate:
$\Gamma=\sqrt{\gamma}\left(\frac{2}{\gamma+1}\right)^{\frac{\gamma+1}{2(\gamma-1)}}=0.6354$
$R=\frac{8.314}{0.02382}=349.0 \mathrm{~J} / \mathrm{kg} * \mathrm{~K}$
$c^{*}=\frac{\sqrt{R T_{c}}}{\Gamma}=1782.2$
CEA: $1793.8 \mathrm{~m} / \mathrm{s}$

For the exit Mach number, we use $\frac{P_{c}}{P_{e}}=\left(1+\frac{\gamma-1}{2} M_{e}^{2}\right)^{\frac{\gamma}{\gamma-1}}$, or $M_{e}=\sqrt{\frac{2}{\gamma-1}\left[\left(\frac{P_{c}}{P_{e}}\right)^{\frac{\gamma-1}{\gamma}}-1\right]}$, where $P_{c}=70 \mathrm{~atm}, P_{e}=0.4 \mathrm{~atm}$.

Therefore:
$M_{e}=3.543 \quad$ (CEA: 3.536)

For exit temperature:
$T_{e}=\frac{T_{c}}{1+\frac{\gamma-1}{2} M_{e}^{2}}=1996 \mathrm{~K}$
(CEA: 2051K)

For area ratio:
$\frac{A_{e}}{A_{t}}=\frac{1}{M_{e}}\left(\frac{1+\frac{\gamma-1}{2} M_{e}^{2}}{\frac{\gamma+1}{2}}\right)^{\frac{\gamma+1}{2(\gamma-1)}}=21.73$
(CEA: 20.67)

For exit velocity (or matched specific impulse):
$u_{e}=M_{e} \sqrt{\gamma R T_{e}}=3149 \mathrm{~m} / \mathrm{s}$
(CEA: $3162 \mathrm{~m} / \mathrm{s}$)

For vacuum specific impulse:
$c_{v a c}=u_{e}+\frac{P_{a} A_{e}}{P_{0} A_{t}} c^{*}=3370-\frac{1}{70} \times 21.73 \times 1782.2=2817 \mathrm{~m} / \mathrm{s}$
(CEA: $2844 \mathrm{~m} / \mathrm{s}$)

The simple model agrees to better than 5% in all the important quantities with the full equilibrium model. But you need hindsight in the choices of γ and M.
3) Atom conservation: The reactants are $\mathrm{CH}_{1.975}+\mathrm{XO}_{2}$, and imposing $\mathrm{O} / \mathrm{F}=2.6, \frac{32 x}{12+1.975}=2.6 \rightarrow$ $x=1.135$. Since the total quantity is arbitrary, only relative atomic amounts matter. We have then in the reactants:
$\frac{m_{H}}{m_{C}}=\frac{1.975}{12}=0.165$
$\frac{m_{0}}{m_{C}}=\frac{1.135 \times 32}{12}=3.027$
For the products we read for this case the mole fractions at exit:
$y_{C O}=0.2640$
$y_{\mathrm{CO}_{2}}=0.2419$
$y_{H_{2}}=0.0918$
$y_{H_{2} \mathrm{O}}=0.4006$
$y_{H}=0.0011$
$y_{\text {OH }}=0.0006$

With very minor amounts of other molecules. Thus, the mass fractions at exit are:
$\frac{m_{H}}{m_{C}}=\frac{y_{H_{2}} \times 2+y_{H_{2} O} \times 2+y_{H} \times 1+y_{O H} \times 1}{y_{C O} \times 12+y_{C O_{2}} \times 12}=0.162 \quad$ (compare to 0.165)
$\frac{m_{0}}{m_{C}}=\frac{y_{\mathrm{CO}} \times 16+y_{\mathrm{CO}_{2} \times 32+y_{\mathrm{H}_{2} \mathrm{O}} \times 16+y_{\mathrm{OH}} \times 16}^{y_{\mathrm{CO}} \times 12+y_{\mathrm{CO}_{2}} \times 32}=3.028 \quad \text { (compare to 3.027) }}{}$

Entropy conservation: Since $T_{e}=2051 K$, we need to extrapolate slightly from the given table of standard molar entropies; we get:
$\tilde{s}_{C O}^{\circ}=259.68 \frac{\mathrm{~J}}{\mathrm{~mol} * \mathrm{~K}}$
$\tilde{s}_{\mathrm{CO}_{2}}^{\circ}=310.93 \frac{\mathrm{~J}}{\mathrm{~mol} * \mathrm{~K}}$
$\tilde{S}_{H_{2}}^{\circ}=189.32 \frac{\mathrm{~J}}{\mathrm{~mol} * \mathrm{~K}}$
$\tilde{S}_{\mathrm{H}_{2} \mathrm{O}}^{\circ}=266.04 \frac{\mathrm{~J}}{\mathrm{~mol} * \mathrm{~K}}$

Then, for each molecule $\tilde{\boldsymbol{s}}_{\boldsymbol{i}}=\tilde{s}_{i}^{0}-\mathcal{R} \ln P_{i}(\mathrm{~atm})=\tilde{s}_{i}^{0}-\mathcal{R} \ln \left(y_{i} P_{e}(\mathrm{~atm})\right)$. This gives:
$\tilde{s}_{C O}=278.37 \frac{\mathrm{~J}}{\mathrm{~mol} * \mathrm{~K}}$
$\tilde{S}_{\mathrm{CO}_{2}}=330.35 \frac{\mathrm{~J}}{\mathrm{~mol} * \mathrm{~K}}$
$\tilde{S}_{\mathrm{H}_{2}}=216.79 \frac{\mathrm{~J}}{\mathrm{~mol} * \mathrm{~K}}$
$\tilde{S}_{\mathrm{H}_{2} \mathrm{O}}=281.26 \frac{\mathrm{~J}}{\mathrm{~mol} * \mathrm{~K}}$

Finally, the specific entropy (per unit mass) is:
$S_{e}=\frac{\sum_{i} y_{i} s_{i}}{\sum_{i} y_{i} M_{i}}=\frac{\sum_{i} y_{i} s_{i}}{\bar{M}_{{ }_{\sim}}}$
Using $\bar{M}_{e}=0.02545 \frac{\mathrm{~kg}}{\mathrm{~mol}}(\mathrm{CEA})$ and the four mole fractions $\left(\mathrm{CO}, \mathrm{CO}_{2}, \mathrm{H}_{2}, \mathrm{H}_{2} \mathrm{O}\right)$, this gives:
$S_{e}=11,230 \frac{J}{k g * K}$
Compared to $S_{c}=S_{e}=11,068 \frac{J}{k g * K}$ from CEA. This is a bit high, not clear why.

THEORETICAL ROCKET PERPORMANCE ASSUNING EQUILIBRIUM
COMPOSITION DURING EXPANSION FROM INFINITE AREA COMBUSTOR

PERFORMANCE PARAMETERS

AB/At		1.0000	20.667
CSTAR, M/SEC		1793.9	1793.9
CF		0.6551	1.7629
IVAC, M/SEC		1175.1	3162.4
ISP, M/SEC			
HOLE PRACTIONS			
		$3.1594-1$	$3.0994-1$
*CO	$1.5096-1$	$1.6349-1$	$2.4187-1$
*CO2	$2.1034-5$	$1.2568-5$	$2.6919-8$
COOH	$2.9043-2$	$2.5303-2$	$1.0883-3$
*H	$2.8106-5$	$1.5873-5$	$3.6636-8$
HCO	$1.0280-4$	$6.2749-5$	$2.8532-9$
HO2	$8.0601-2$	$7.8728-2$	$9.1782-2$
*H2	$3.2823-1$	$3.4316-1$	$4.0063-1$
H2O	$1.5347-5$	$9.1073-6$	$1.6202-9$
日2O2	$1.2293-2$	$9.4170-3$	$4.4262-6$
*O	$6.3664-2$	$5.4067-2$	$5.8551-4$
*OH	$1.9095-2$	$1.5793-2$	$8.2751-6$

MIT OpenCourseWare
http://ocw.mit.edu

16.50 Introduction to Propulsion Systems

Spring 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

