
SBE 2006 Dynamics Homework Solutions

Preamble

Imagine you are a test director at Johnson Space Center (JSC). You are
interested in testing a training version of SAFER (Simplified Aid For EVA
Rescue) to be used on the Precision Air Bearing Floor (PABF).

The training version of the SAFER is designed to work only in one plane (i.e., the
plane of motion parallel to the plane of the floor). The SAFER can be controlled
in two ways: translation or rotation, depending on which jets are active at any
time. Balanced jets in one direction will result in a force applied in the opposite
direction. Counteracting jets on either side of the SAFER will result in a torque
about the center of mass of the SAFER. The SAFER uses “bang-off-bang”
control, meaning each jet is either fully on or fully off. A diagram of the training
SAFER can be found below.

In order to evaluate the performance of this SAFER model, you want to track the
motion of a subject wearing the SAFER training unit. To collect data for your
test, you have setup a small, motion tracking system. The tracking system uses
magnetic markers on the SAFER and provides noisy measurements of the planar
X and Y positions as well as a rotation angle, theta, of the SAFER.

This problem explores the dynamics of this situation, simulates it and leads you
through the development of a simple Kalman filter for tracking the position,
velocity, angle and angular rate of a subject using this training version of the
SAFER.

1

*

e

-r

As s, ̂ gtrsn5 1 'No "C^*lo"

. NS\.\
€ral ry

r J 1. .) l D I
App\ r l i xpu l r I BoJ.y €orce ; l ' r lFu Y l = I

l t r I

To'1t T

Df""*I : , (9 R"+-," b o,ty 4o"te 1^1o i^cr$J {cane

*le Jxc"{so^ l.,sr,.e r.4\.ix, 9
l c I

1 + - / ^ f ­
=i " * "1 'x ' t -".^i^'rl =-

't,t'
' J .r.lno.c ! _ l c o , e "l

Itt]
crs e

6.-\& Aedr L5) ê
l

€ ­ -\:z Mut""'. l"-s, r E ^ , E

. I = - , i = , i , ; f r
T : T i i = j 5 " *] ­

u

(u), - (u);

(u (u)]

This function takes in

and outputs

[cos sin

sin), cos

P
r
o

b
le

m
 2

.

S
im

u
lin

k
 M

o
d

e
l
o
f

S
A

F
E

R

p
la

n
t
d

y
n

a
m

ic
s

Problem 2.

Plots of SAFER position and rotation angle

-1.8 -1.6 -1.4 -1.2 -1 -0.8 -0.6 -0.4 -0.2 0 0.2
-3

-2.5

-2

-1.5

-1

-0.5

0

0.5
Subject motion in X-Y plane

X position (m)

Y

p
o
s
i
t
i
o
n

(
m
)

0 1 2 3 4 5 6 7 8 9 10
0

50

100

150

200

250

300

350

400
Subject rotation angle

Time (s)

R
o
t
a
t
i
o
n

a
n
g
l
e

(
d
e
g
r
e
e
s
)

4

Problems 3-5.

After adding process noise and measurement noise into the Simulink model, we
find a set of data that is less useful than the original ideal situation of Problem 2.

Y
-

i
(m

)

X- i (m)

P
os

it
on

Posit on

Figure 3.1 XY-position measurement of SAFER unit, with both dynamics
disturbances (process noise) and sensor chatter (measurement noise)

5

Ti (

i
l

i

me sec)

R
ot

at
on

 a
ng

e
(ra

d
an

s)

Figure 3.2. Rotation angle of SAFER unit, over time with both dynamics
disturbances (process noise) and sensor chatter (measurement noise)

6

Problem 6.

To determine the matrices needed to create the Kalman filter, we want our
dynamics to be represented in the form

!

˙ x = Ax + Bu , which is equivalent to:

We will also need to determine the measurement matrix, H; the measurement
covariance matrix, R; the continuous process noise covariance matrix, Q; the
initial state covariance matrix estimate, P; and the initial state vector estimate, X.

The measurement update and time update of the Kalman filter will be carried out
according to the following matrix equations (Ferguson, 2006, SBE Dynamics
Lecture Notes):

We must put these into Matlab form, in a discrete time-step loop. To apply the
Kalman filter to our simulated noisy data, we can use the following Matlab code:

7

% Clean up the environment

close all

clear all

% Constants

rad2deg = 180/pi;

deg2rad = pi/180;

% Set the time vector

start_time = 0;

stop_time = 10;

time_step = 0.01;

time_vec = start_time:time_step:stop_time;

% Force and torque values

on_force_val = 10;

on_torque_val = 3;

% Mass properties

mass = 125; % kg

inertia = 10;

% Buid the force and torque vectors as functions of time

x_forcev = zeros(size(time_vec));

y_forcev = zeros(size(time_vec));

torquev = zeros(size(time_vec));

for i = 1:length(time_vec)

if (time_vec(i) >= 7)

x_forcev(i) = x_forcev(i) + on_force_val;

end
if (time_vec(i) <= 3)

x_forcev(i) = x_forcev(i) - on_force_val;
end

if ((time_vec(i) >=2)&(time_vec(i) <= 8))

torquev(i) = torquev(i) + on_torque_val;

end

if (time_vec(i) >= 6)

torquev(i) = torquev(i) - on_torque_val;

end

if (time_vec(i) <= 4)

y_forcev(i) = y_forcev(i) - on_force_val;

end

if (time_vec(i) >= 8)

y_forcev(i) = y_forcev(i) + on_force_val;

end

end

% Format the forces and torques for use with the source block
torque = [time_vec' torquev'];
x_force = [time_vec' x_forcev'];
y_force = [time_vec' y_forcev'];

% Process noise variances
% Note that these are squares of standard deviations, so they look pretty
% small

8

pos_proc_var = 0.01;

ang_proc_var = 0.001;

% Measurement noise variances

% Note that these are squares of standard deviations, so they look pretty

% small

pos_meas_var = 0.005;

ang_meas_var = 0.001;

% Run the dynamics from the Simulink model

% Check the simulation configuration dialog of the model to ensure that the

% following things are set:

%

% Start time: start_time

% Stop time: stop_time

% Type: Fixed-step

% Solver: ode3(Bogacki-Sharnpine)

% Periodic sample time constraint: Unconstrained

% Fixed-step size (fundamental sample time): time_step

% Tasking mode for periodic sample times: Auto

% Higher priority value indicates higher task priority: Unchecked

% Automatically handle data transfers between tasks: Unchecked

%

% After running the simulation, the following variables are available:

%

% truth

% meas

%

% Both are structures that contain the data we're interested in

% The structure is automatically created by Simulink and is needlessly

% complicated ... They are extracted below for simplicity

sim(‘your_simulink_model’)

% Extract the truth and the measurements from the Simulink data structures

meas_vecs = meas.signals.values;

truth_vecs = truth.signals.values;

% We now proceed with the setup of the Kalman Filter

% We assume that the state we want to estimate takes the following form:

% X = [x y theta x_dot y_dot theta_dot]'

%

% The measurement vector has the following form:

% y = [x_hat y_hat theta_hat]

% Form the measurement covariance matrix

R = diag([pos_meas_var; pos_meas_var; ang_meas_var]);

% Form the continuous process noise covariance matrix

% Note that process noise is only added to the velocity states because

% we're really adding this to the state equation:

%

% X_dot = Phi*X + B*u + Q

Q = diag([0, 0, 0, pos_proc_var, pos_proc_var, ang_proc_var]);

% Put the input vectors into a matrix for easy use

input_vectors = [x_forcev', y_forcev', torquev'];

9

% Form the measurement matrix such that
% y = H*X
H = [1 0 0 0 0 0;

0 1 0 0 0 0;
0 0 1 0 0 0];

% Form the continuous dynamics matrix
A = [0 0 0 1 0 0;

0 0 0 0 1 0;
0 0 0 0 0 1;
0 0 0 0 0 0;
0 0 0 0 0 0;
0 0 0 0 0 0];

% The continuous B matrix for X_dot = AX + Bu depends on the state (angle)

% So, it needs to be computed at every time step

% Define the initial error variances on the estimate we start with

init_pos_err_var = 0.025;

init_vel_err_var = 1;

init_ang_err_var = 0.01;

init_ang_rate_err_var = 0.02;

% Initialize the state covariance estimate

P_init = diag([init_pos_err_var, init_pos_err_var, init_ang_err_var, init_vel_err_var, init_vel_err_var,

init_ang_rate_err_var]);

P = P_init

% Initialize the state estimate

X_init = truth_vecs(1,:)' + sqrtm(P)*randn(6,1);

X = X_init;

% Setup storage matrices for our estimates

Pdiag_store = [];

X_store = [];

% Run the filter

for i = 1:length(time_vec)

% Store the P diagonal
Pdiag_store = [Pdiag_store, diag(P)];

% Do meas update
K = P*H'*inv(H*P*H' + R);

X = X + K*(meas_vecs(i,:)' - H*X);

P = (eye(size(P)) - K*H)*P;

% Store the estimate
X_store = [X_store, X];

% Do time update
%First compute the continuous B matrix at this time step, recalling that X(3) is the current theta angle
B = [0, 0, 0;

0, 0, 0;

10

0, 0, 0;

(1/mass)*cos(X(3)), (-1/mass)*sin(X(3)), 0;

(1/mass)*sin(X(3)), (1/mass)*cos(X(3)), 0;

0, 0, (1/inertia)];

[Phi, Bk, Qk] = get_discrete_dyn(A, Q, B, time_step);

X = Phi*X + Bk*input_vectors(i,:)';

P = Phi*P*Phi' + Qk;

end

% Compute the errors
X_diff = truth_vecs' - X_store;

11

%%%%%%%%%%%%%%%%%%%

% Here is the get_discrete_dyn function

% It needs to be stored as a separate .m file, with the filename get_discrete_dyn.m

function [Phi_full, Bk, Qk] = get_discrete_dyn(A, Q, B, time_step)

% Build Spectral Densities

full_state_size = length(A);

S = [-A Q; zeros(size(A)) A'];

C = expm(S*time_step);

% Discretize A and B into Phi and Bk

csys = ss(A, B, [], []);

dsys = c2d(csys, time_step, 'zoh');

Phi_full = dsys.A;

Bk = dsys.B;

% Form Qk

Qk = Phi_full*C(1:full_state_size,full_state_size+1:2*full_state_size);

12

Problem 7.

To create the plots of estimation error and covariance bounds, we can use the
following Matlab code.

% Make some plots

% The truth position

figure

plot(truth_vecs(:,1), truth_vecs(:,2))

grid

title('Subject motion in X-Y plane')

xlabel('X position (m)');

ylabel('Y position (m)');

% The truth angle

figure

plot(time_vec, truth_vecs(:,3).*rad2deg)

grid

title('Subject rotation angle')

xlabel('Time (s)');

ylabel('Rotation angle (degrees)');

% Position estimation errors and covariance bounds

figure

subplot(3,1,1)

plot(time_vec, X_diff(1,:), time_vec, sqrt(Pdiag_store(1,:)), 'k--', time_vec, -sqrt(Pdiag_store(1,:)), 'k--')

title('Position Estimation Errors and Covariance Bounds');

ylabel('X Position (m)');

grid

subplot(3,1,2)

plot(time_vec, X_diff(2,:), time_vec, sqrt(Pdiag_store(2,:)), 'k--', time_vec, -sqrt(Pdiag_store(2,:)), 'k--')

ylabel('Y Position (m)');

xlabel('Time (s)')

grid

subplot(3,1,3)

plot(time_vec, X_diff(3,:).*rad2deg, time_vec, sqrt(Pdiag_store(3,:)).*rad2deg, 'k--', time_vec, -

sqrt(Pdiag_store(3,:)).*rad2deg, 'k--')

ylabel('Rotation Angle (degrees)');

xlabel('Time (s)')

grid

% Rate estimation errors and covariance bounds

figure

subplot(3,1,1)

plot(time_vec, X_diff(4,:), time_vec, sqrt(Pdiag_store(4,:)), 'k--', time_vec, -sqrt(Pdiag_store(4,:)), 'k--')

title('Velocity Estimation Errors and Covariance Bounds');

ylabel('X Velocity (m/s)');

grid

subplot(3,1,2)

plot(time_vec, X_diff(5,:), time_vec, sqrt(Pdiag_store(5,:)), 'k--', time_vec, -sqrt(Pdiag_store(5,:)), 'k--')

ylabel('Y Velocity (m/s)');

xlabel('Time (s)')

grid

subplot(3,1,3)

plot(time_vec, X_diff(6,:).*rad2deg, time_vec, sqrt(Pdiag_store(6,:)).*rad2deg, 'k--', time_vec, -

sqrt(Pdiag_store(6,:)).*rad2deg, 'k--')

13

ylabel('Rotation Rate (degrees/s)');

xlabel('Time (s)')

grid

The error in our position estimation and its covariance bounds are shown in
Figure 7.1.

0 1 2 3 4 5 6 7 8 9 10
-0.1

-0.05

0

0.05

0.1

Position Estimation Errors and Covariance Bounds

X

P
o
s
i
t
i
o
n

(
m
)

0 1 2 3 4 5 6 7 8 9 10
-0.1

-0.05

0

0.05

0.1

Y

P
o
s
i
t
i
o
n

(
m
)

Time (s)

0 1 2 3 4 5 6 7 8 9 10
-2

-1

0

1

2

R
o
t
a
t
i
o
n

A
n
g
l
e

(
d
e
g
r
e
e
s
)

Time (s)

Figure 7.1 Position estimation errors and covariance bounds

14

The error in our velocity estimation and its covariance bounds are shown in
Figure 7-2.

0 1 2 3 4 5 6 7 8 9 10
-1.5

-1

-0.5

0

0.5

1

1.5
Velocity Estimation Errors and Covariance Bounds

X

V
e
l
o
c
i
t
y

(
m
/
s
)

0 1 2 3 4 5 6 7 8 9 10
-1.5

-1

-0.5

0

0.5

1

1.5

Y

V
e
l
o
c
i
t
y

(
m
/
s
)

Time (s)

0 1 2 3 4 5 6 7 8 9 10
-10

-5

0

5

10

R
o
t
a
t
i
o
n

R
a
t
e

(
d
e
g
r
e
e
s
/
s
)

Time (s)

Figure 7.2 Velocity estimation errors and covariance bounds

15

Problem 8.

If you suspect that the friction has a Gaussian white noise effect, increase the
velocity elements of the Q matrix to be at least as big as you think the friction
might be. If you don't have any idea what the friction might look like, you would
probably just assume it was Gaussian so that you could do the above.

If you knew exactly what the friction was, you could model it and incorporate it
into the dynamics as part of the A matrix.

However, if you suspected a particular form of the friction, but did NOT know the
parameters, you could “augment” the state matrix, which means incorporating the
B matrix into your state vector. For instance, maybe you know that it took the
form of:

F_friction = -B * velocity

But you did not know what B was. The Kalman filter has the ability to estimate
what B is based on the data. The way you would do this would be to include B
into your state
vector as a constant. The dynamics of B are nothing (because it is constant).
You would need to incorporate this state into the measurement equation (so into
H) also.
This way, not only would your filter track the position and velocity of the
astronaut on the SAFER unit, you would also be able to do some system ID too!

16

An Introduction to the Kalman Filter

Greg Welch and Gary Bishop

Updated: Monday, April 5, 2004

Abstract
In 1960, R.E. Kalman published his famous paper describing a recursive solution
to the discrete-data linear filtering problem. Since that time, due in large part to ad­
vances in digital computing, the Kalman filter has been the subject of extensive re­
search and application, particularly in the area of autonomous or assisted
navigation.
The Kalman filter is a set of mathematical equations that provides an efficient com­
putational (recursive) means to estimate the state of a process, in a way that mini­
mizes the mean of the squared error. The filter is very powerful in several aspects:
it supports estimations of past, present, and even future states, and it can do so even
when the precise nature of the modeled system is unknown.
The purpose of this paper is to provide a practical introduction to the discrete Kal­
man filter. This introduction includes a description and some discussion of the basic
discrete Kalman filter, a derivation, description and some discussion of the extend­
ed Kalman filter, and a relatively simple (tangible) example with real numbers &
results.

2 Welch & Bishop, An Introduction to the Kalman Filter

- -

1 The Discrete Kalman Filter
In 1960, R.E. Kalman published his famous paper describing a recursive solution to the discrete-
data linear filtering problem [Kalman60]. Since that time, due in large part to advances in digital
computing, the Kalman filter has been the subject of extensive research and application,
particularly in the area of autonomous or assisted navigation. A very “friendly” introduction to the
general idea of the Kalman filter can be found in Chapter 1 of [Maybeck79], while a more complete
introductory discussion can be found in [Sorenson70], which also contains some interesting
historical narrative. More extensive references include [Gelb74; Grewal93; Maybeck79; Lewis86;
Brown92; Jacobs93].
The Process to be Estimated
The Kalman filter addresses the general problem of trying to estimate the state x ∈ ℜn of a
discrete-time controlled process that is governed by the linear stochastic difference equation

xk = Axk 1 – + Buk 1 – + wk 1 – , (1.1)

with a measurement z ∈ ℜm that is
zk = H xk + vk . (1.2)

The random variables wk and vk represent the process and measurement noise (respectively).
They are assumed to be independent (of each other), white, and with normal probability
distributions

p w() ∼ N (0, Q) , (1.3)
p v() ∼ N (0, R) . (1.4)

In practice, the process noise covariance Q and measurement noise covariance R matrices might
change with each time step or measurement, however here we assume they are constant.

×The n n matrix A in the difference equation (1.1) relates the state at the previous time step k 1 –
to the state at the current step , in the absence of either a driving function or process noise. Note k
that in practice A might change with each time step, but here we assume it is constant. The n l×l ×matrix B relates the optional control input u ∈ ℜ to the state x. The m n matrix H in the
measurement equation (1.2) relates the state to the measurement zk. In practice H might change
with each time step or measurement, but here we assume it is constant.
The Computational Origins of the Filter

-We define x̂ k ∈ ℜn (note the “super minus”) to be our a priori state estimate at step k given
knowledge of the process prior to step k, and x̂ k ∈ ℜn to be our a posteriori state estimate at step
k given measurement zk . We can then define a priori and a posteriori estimate errors as

ek ≡ xk – x̂k, and
ek ≡ xk – x̂k.

3 Welch & Bishop, An Introduction to the Kalman Filter

- -

The a priori estimate error covariance is then
- - - T] ,Pk = E ekek (1.5)[

and the a posteriori estimate error covariance is
Pk = E ekekT] . (1.6)[

In deriving the equations for the Kalman filter, we begin with the goal of finding an equation that-computes an a posteriori state estimate x̂ k as a linear combination of an a priori estimate x̂ k and-a weighted difference between an actual measurement zk and a measurement prediction H x̂ k as
shown below in (1.7). Some justification for (1.7) is given in “The Probabilistic Origins of the
Filter” found below.

x̂k = x̂k + K zk – H x̂k) (1.7)(
-The difference (zk – H x̂k) in (1.7) is called the measurement innovation, or the residual. The-residual reflects the discrepancy between the predicted measurement H x̂ k and the actual

measurement zk . A residual of zero means that the two are in complete agreement.
The n m matrix K in (1.7) is chosen to be the gain or blending factor that minimizes the a×
posteriori error covariance (1.6). This minimization can be accomplished by first substituting (1.7)
into the above definition for ek , substituting that into (1.6), performing the indicated expectations,
taking the derivative of the trace of the result with respect to K, setting that result equal to zero, and
then solving for K. For more details see [Maybeck79; Brown92; Jacobs93]. One form of the
resulting K that minimizes (1.6) is given by1

- - 1–Kk = PkHT (HPkHT + R)
- . (1.8)PkHT

= --------------------------­---HPkHT + R

Looking at (1.8) we see that as the measurement error covariance R approaches zero, the gain K
weights the residual more heavily. Specifically,

H 1–lim Kk = .
Rk → 0

-On the other hand, as the a priori estimate error covariance Pk approaches zero, the gain K weights
the residual less heavily. Specifically,

lim Kk = 0 .
-Pk → 0

1. All of the Kalman filter equations can be algebraically manipulated into to several forms. Equation (1.8)
represents the Kalman gain in one popular form.

4 Welch & Bishop, An Introduction to the Kalman Filter
Another way of thinking about the weighting by K is that as the measurement error covariance R
approaches zero, the actual measurement zk is “trusted” more and more, while the predicted-measurement H x̂ k is trusted less and less. On the other hand, as the a priori estimate error-covariance Pk approaches zero the actual measurement zk is trusted less and less, while the-predicted measurement H x̂ k is trusted more and more.
The Probabilistic Origins of the Filter

-The justification for (1.7) is rooted in the probability of the a priori estimate x̂ k conditioned on all
prior measurements zk (Bayes’ rule). For now let it suffice to point out that the Kalman filter
maintains the first two moments of the state distribution,

E xk[] = x̂k
[(E xk – x̂k)(xk – x̂k)T] = Pk.

The a posteriori state estimate (1.7) reflects the mean (the first moment) of the state distribution—
it is normally distributed if the conditions of (1.3) and (1.4) are met. The a posteriori estimate error
covariance (1.6) reflects the variance of the state distribution (the second non-central moment). In
other words,

(p xk zk) ∼ N E xk [(([], E xk – x̂k)(xk – x̂k)T])
(ˆ= N xk, Pk). .

For more details on the probabilistic origins of the Kalman filter, see [Maybeck79; Brown92;
Jacobs93].
The Discrete Kalman Filter Algorithm
We will begin this section with a broad overview, covering the “high-level” operation of one form
of the discrete Kalman filter (see the previous footnote). After presenting this high-level view, we
will narrow the focus to the specific equations and their use in this version of the filter.
The Kalman filter estimates a process by using a form of feedback control: the filter estimates the
process state at some time and then obtains feedback in the form of (noisy) measurements. As such,
the equations for the Kalman filter fall into two groups: time update equations and measurement
update equations. The time update equations are responsible for projecting forward (in time) the
current state and error covariance estimates to obtain the a priori estimates for the next time step.
The measurement update equations are responsible for the feedback—i.e. for incorporating a new
measurement into the a priori estimate to obtain an improved a posteriori estimate.
The time update equations can also be thought of as predictor equations, while the measurement
update equations can be thought of as corrector equations. Indeed the final estimation algorithm
resembles that of a predictor-corrector algorithm for solving numerical problems as shown below
in Figure 1-1.

5 Welch & Bishop, An Introduction to the Kalman Filter

- -

(“Predict”)
Measurement Update

(“Correct”)Time Update

Figure 1-1. The ongoing discrete Kalman filter cycle. The time update
projects the current state estimate ahead in time. The measurement update
adjusts the projected estimate by an actual measurement at that time.

The specific equations for the time and measurement updates are presented below in Table 1-1 and
Table 1-2.

Table 1-1: Discrete Kalman filter time update equations.
-x̂k = Ax̂k 1 – + Buk 1 – (1.9)
-Pk = APk 1 – AT + Q (1.10)

Again notice how the time update equations in Table 1-1 project the state and covariance estimates
forward from time step k 1 – to step k . A and B are from (1.1), while Q is from (1.3). Initial
conditions for the filter are discussed in the earlier references.

Table 1-2: Discrete Kalman filter measurement update equations.
- - 1 – Kk = PkHT (HPkHT + R) (1.11)

x̂k = x̂k + Kk (zk – H x̂k) (1.12)
-–Pk = (I KkH)Pk (1.13)

The first task during the measurement update is to compute the Kalman gain, K k . Notice that the
equation given here as (1.11) is the same as (1.8). The next step is to actually measure the process
to obtain zk , and then to generate an a posteriori state estimate by incorporating the measurement
as in (1.12). Again (1.12) is simply (1.7) repeated here for completeness. The final step is to obtain
an a posteriori error covariance estimate via (1.13).
After each time and measurement update pair, the process is repeated with the previous a posteriori
estimates used to project or predict the new a priori estimates. This recursive nature is one of the
very appealing features of the Kalman filter—it makes practical implementations much more
feasible than (for example) an implementation of a Wiener filter [Brown92] which is designed to
operate on all of the data directly for each estimate. The Kalman filter instead recursively
conditions the current estimate on all of the past measurements. Figure 1-2 below offers a complete
picture of the operation of the filter, combining the high-level diagram of Figure 1-1 with the
equations from Table 1-1 and Table 1-2.

6 Welch & Bishop, An Introduction to the Kalman Filter

Filter Parameters and Tuning
In the actual implementation of the filter, the measurement noise covariance R
prior to operation of the filter. Measuring the measurement error covariance R

is usually measured
is generally

practical (possible) because we need to be able to measure the process anyway (while operating the
filter) so we should generally be able to take some off-line sample measurements in order to
determine the variance of the measurement noise.
The determination of the process noise covariance Q is generally more difficult as we typically do
not have the ability to directly observe the process we are estimating. Sometimes a relatively
simple (poor) process model can produce acceptable results if one “injects” enough uncertainty
into the process via the selection of Q . Certainly in this case one would hope that the process
measurements are reliable.
In either case, whether or not we have a rational basis for choosing the parameters, often times
superior filter performance (statistically speaking) can be obtained by tuning the filter parameters
Q and R . The tuning is usually performed off-line, frequently with the help of another (distinct)
Kalman filter in a process generally referred to as system identification.

Kk Pk
- HT HPk

- HT R+()=

x̂ kInitial estimates for and Pk

x̂ k x̂ k
- Kk zk H x̂ k

-–()+=
(2) Update estimate with measurement zk

Pk I KkH–()Pk
-=

(1) Project the state ahead
x̂ k

- Ax̂ k Buk+=

Pk
- APk AT Q+=

1 –
(1) Compute the Kalman gain

1 – 1 –

(3) Update the error covariance

Measurement Update (“Correct”)

(2) Project the error covariance ahead

Time Update (“Predict”)

1 – 1 –

1 –

Figure 1-2. A complete picture of the operation of the Kalman filter, com­
bining the high-level diagram of Figure 1-1 with the equations from
Table 1-1 and Table 1-2.

In closing we note that under conditions where Q and R .are in fact constant, both the estimation
error covariance Pk and the Kalman gain Kk will stabilize quickly and then remain constant (see
the filter update equations in Figure 1-2). If this is the case, these parameters can be pre-computed
by either running the filter off-line, or for example by determining the steady-state value of Pk as
described in [Grewal93].

7 Welch & Bishop, An Introduction to the Kalman Filter

2

It is frequently the case however that the measurement error (in particular) does not remain
constant. For example, when sighting beacons in our optoelectronic tracker ceiling panels, the
noise in measurements of nearby beacons will be smaller than that in far-away beacons. Also, the
process noise Q is sometimes changed dynamically during filter operation—becoming Qk —in
order to adjust to different dynamics. For example, in the case of tracking the head of a user of a
3D virtual environment we might reduce the magnitude of Qk if the user seems to be moving
slowly, and increase the magnitude if the dynamics start changing rapidly. In such cases Qk might
be chosen to account for both uncertainty about the user’s intentions and uncertainty in the model.

The Extended Kalman Filter (EKF)
The Process to be Estimated
As described above in section 1, the Kalman filter addresses the general problem of trying to
estimate the state x ∈ ℜn of a discrete-time controlled process that is governed by a linear
stochastic difference equation. But what happens if the process to be estimated and (or) the
measurement relationship to the process is non-linear? Some of the most interesting and successful
applications of Kalman filtering have been such situations. A Kalman filter that linearizes about
the current mean and covariance is referred to as an extended Kalman filter or EKF.
In something akin to a Taylor series, we can linearize the estimation around the current estimate
using the partial derivatives of the process and measurement functions to compute estimates even
in the face of non-linear relationships. To do so, we must begin by modifying some of the material
presented in section 1. Let us assume that our process again has a state vector x ∈ ℜn , but that the
process is now governed by the non-linear stochastic difference equation

xk = f xk 1 – , uk 1 – , wk 1 –) , (2.1)(
with a measurement z ∈ ℜm that is

zk = h xk, vk) , (2.2)(
where the random variables wk and vk again represent the process and measurement noise as in
(1.3) and (1.4). In this case the non-linear function f in the difference equation (2.1) relates the
state at the previous time step k 1 – to the state at the current time step . It includes as parameters k
any driving function uk 1 – and the zero-mean process noise wk. The non-linear function h in the
measurement equation (2.2) relates the state xk to the measurement zk .
In practice of course one does not know the individual values of the noise wk and vk at each time
step. However, one can approximate the state and measurement vector without them as

x̃k = (,f x̂k 1 – uk 1 – , 0) (2.3)

and
z̃k = h x(˜ k, 0) , (2.4)

where x̂ k is some a posteriori estimate of the state (from a previous time step k).

8 Welch & Bishop, An Introduction to the Kalman Filter
It is important to note that a fundamental flaw of the EKF is that the distributions (or densities in
the continuous case) of the various random variables are no longer normal after undergoing their
respective nonlinear transformations. The EKF is simply an ad hoc state estimator that only
approximates the optimality of Bayes’ rule by linearization. Some interesting work has been done
by Julier et al. in developing a variation to the EKF, using methods that preserve the normal
distributions throughout the non-linear transformations [Julier96].
The Computational Origins of the Filter
To estimate a process with non-linear difference and measurement relationships, we begin by
writing new governing equations that linearize an estimate about (2.3) and (2.4),

xk ≈ x̃k + A xk 1 – – x̂k 1 –) + W wk 1 – , (2.5)(
(zk ≈ z̃k + H xk – x̃k) + V vk . (2.6)

where
• xk and zk are the actual state and measurement vectors,
• x̃k and z̃k are the approximate state and measurement vectors from (2.3) and (2.4),
• x̂ k is an a posteriori estimate of the state at step k,
• the random variables wk and vk represent the process and measurement noise as in

(1.3) and (1.4).
• A is the Jacobian matrix of partial derivatives of f with respect to x, that is

∂ f [] x= x
i
j

(ˆ k 1 – , uk 1 – , 0) ,,A[i j] ∂ []
• W is the Jacobian matrix of partial derivatives of f with respect to w,

∂ f [] xi
,W [i j] = ∂ []

(ˆ k 1 – , uk 1 – , 0) ,w j
• H is the Jacobian matrix of partial derivatives of h with respect to x,

∂h[] xiH [i j] = ∂ []
(˜ k, 0) ,, x j

• V is the Jacobian matrix of partial derivatives of h with respect to v,
∂h[] x= v

i
j

(˜ k, 0) .,V [i j] ∂ []

Note that for simplicity in the notation we do not use the time step subscript k with the Jacobians
A , W , H , and V , even though they are in fact different at each time step.

9 Welch & Bishop, An Introduction to the Kalman Filter

Now we define a new notation for the prediction error,
ẽxk

≡ xk – x̃k , (2.7)

and the measurement residual,
ẽzk

≡ zk – z̃k . (2.8)

Remember that in practice one does not have access to xk in (2.7), it is the actual state vector, i.e.
the quantity one is trying to estimate. On the other hand, one does have access to zk in (2.8), it is
the actual measurement that one is using to estimate xk . Using (2.7) and (2.8) we can write
governing equations for an error process as

ẽxk
≈ A xk 1 – – x̂k 1 –) εk , (2.9)(+

ẽzk
≈ Hẽxk

+ ηk , (2.10)

where εk and ηk represent new independent random variables having zero mean and covariance
matrices WQW T and VRV T , with Q and R as in (1.3) and (1.4) respectively.
Notice that the equations (2.9) and (2.10) are linear, and that they closely resemble the difference
and measurement equations (1.1) and (1.2) from the discrete Kalman filter. This motivates us to
use the actual measurement residual ẽzk

in (2.8) and a second (hypothetical) Kalman filter to
estimate the prediction error ẽ given by (2.9). This estimate, call it êk , could then be used alongxkwith (2.7) to obtain the a posteriori state estimates for the original non-linear process as

x̂k = x̃k + êk . (2.11)

The random variables of (2.9) and (2.10) have approximately the following probability
distributions (see the previous footnote):

(˜ [˜p e) ∼ N (0, E e ẽT])xk xk xk

() ∼ N (0, W QkW T)p εk
() ∼ N (0, V RkV T)p ηk

Given these approximations and letting the predicted value of êk be zero, the Kalman filter
equation used to estimate êk is

êk = Kkẽzk
. (2.12)

By substituting (2.12) back into (2.11) and making use of (2.8) we see that we do not actually need
the second (hypothetical) Kalman filter:

x̂k = x̃k + ˜Kkezk

= x̃k + Kk(zk – z̃k) (2.13)

Equation (2.13) can now be used for the measurement update in the extended Kalman filter, with
x̃k and z̃k coming from (2.3) and (2.4), and the Kalman gain Kk coming from (1.11) with the
appropriate substitution for the measurement error covariance.

10 Welch & Bishop, An Introduction to the Kalman Filter
- -

The complete set of EKF equations is shown below in Table 2-1 and Table 2-2. Note that we have -substituted x̂ k for x̃ k to remain consistent with the earlier “super minus” a priori notation, and that
we now attach the subscript k to the Jacobians A , W , H , and V , to reinforce the notion that they
are different at (and therefore must be recomputed at) each time step.

Table 2-1: EKF time update equations.
- (ˆx̂k = f xk 1 – , uk 1 – , 0) (2.14)

-Pk = AkPk 1 – AkT + W kQk 1 – W kT (2.15)

As with the basic discrete Kalman filter, the time update equations in Table 2-1 project the state
kand covariance estimates from the previous time step k 1 – to the current time step . Again f in

(2.14) comes from (2.3), Ak and W k are the process Jacobians at step k, and Qk is the process
noise covariance (1.3) at step k.

Table 2-2: EKF measurement update equations.
- - 1 – Kk = PkHkT (HkPkHkT + V kRkV kT) (2.16)

x̂k = x̂k + Kk(zk – h xk, 0)) (2.17)(ˆ
-–Pk = (I KkHk)Pk (2.18)

As with the basic discrete Kalman filter, the measurement update equations in Table 2-2 correct
the state and covariance estimates with the measurement zk . Again h in (2.17) comes from (2.4),
Hk and V are the measurement Jacobians at step k, and Rk is the measurement noise covariance
(1.4) at step k. (Note we now subscript R allowing it to change with each measurement.)
The basic operation of the EKF is the same as the linear discrete Kalman filter as shown in
Figure 1-1. Figure 2-1 below offers a complete picture of the operation of the EKF, combining the
high-level diagram of Figure 1-1 with the equations from Table 2-1 and Table 2-2.

11 Welch & Bishop, An Introduction to the Kalman Filter

3

Kk Pk
- HkT HkPk

- HkT V kRkV kT+()=

x̂ k x̂ k
- Kk zk h x̂ k

- 0,()–()+=
(2) Update estimate with measurement zk

Pk I KkHk–()Pk
-=

(1) Project the state ahead
x̂ k

- f x̂ k uk 0, ,()=

Pk
- AkPk AkT W kQk W kT+=

x̂ kInitial estimates for and Pk

1 –
(1) Compute the Kalman gain

(3) Update the error covariance

Measurement Update (“Correct”)

(2) Project the error covariance ahead

Time Update (“Predict”)

1 – 1 –

1 – 1 –

1 – 1 –

Figure 2-1. A complete picture of the operation of the extended Kalman fil­
ter, combining the high-level diagram of Figure 1-1 with the equations from
Table 2-1 and Table 2-2.

An important feature of the EKF is that the Jacobian Hk in the equation for the Kalman gain Kkserves to correctly propagate or “magnify” only the relevant component of the measurement
information. For example, if there is not a one-to-one mapping between the measurement zk and
the state via h , the Jacobian Hk affects the Kalman gain so that it only magnifies the portion of-(ˆthe residual zk – h xk, 0) that does affect the state. Of course if over all measurements there is not
a one-to-one mapping between the measurement zk and the state via h , then as you might expect
the filter will quickly diverge. In this case the process is unobservable.

A Kalman Filter in Action: Estimating a Random Constant
In the previous two sections we presented the basic form for the discrete Kalman filter, and the
extended Kalman filter. To help in developing a better feel for the operation and capability of the
filter, we present a very simple example here.
The Process Model
In this simple example let us attempt to estimate a scalar random constant, a voltage for example.
Let’s assume that we have the ability to take measurements of the constant, but that the
measurements are corrupted by a 0.1 volt RMS white measurement noise (e.g. our analog to digital
converter is not very accurate). In this example, our process is governed by the linear difference
equation

xk = + wkAxk 1 – + Buk 1 –
= xk 1 – + wk

,

12 Welch & Bishop, An Introduction to the Kalman Filter

with a measurement z ∈ ℜ1 that is
zk = H xk + vk

= xk + vk
.

The state does not change from step to step so A = 1 . There is no control input so u = 0 . Our
noisy measurement is of the state directly so H = 1 . (Notice that we dropped the subscript k in
several places because the respective parameters remain constant in our simple model.)
The Filter Equations and Parameters
Our time update equations are

-x̂k = x̂k 1– ,
-Pk = Pk 1– + Q ,

and our measurement update equations are
Kk = Pk

- Pk
- + R() 1–

= Pk
- , (3.1)

Pk
- + R

x̂ k = ,x̂ k
- Kk zk x̂ k

-–()+

Pk = .1 Kk–()Pk
-

Presuming a very small process variance, we let Q = . (We could certainly let1e 5– Q = but0
assuming a small but non-zero value gives us more flexibility in “tuning” the filter as we will

demonstrate below.) Let’s assume that from experience we know that the true value of the random
constant has a standard normal probability distribution, so we will “seed” our filter with the guess
that the constant is 0. In other words, before starting we let x̂ k 1– = 0 .
Similarly we need to choose an initial value for Pk 1– , call it P0 . If we were absolutely certain that
our initial state estimate x̂ 0 = 0 was correct, we would let P0 = 0 . However given the
uncertainty in our initial estimate x̂ 0 , choosing P0 = 0 would cause the filter to initially and
always believe x̂ k = 0 . As it turns out, the alternative choice is not critical. We could choose
almost any P0 ≠ 0 and the filter would eventually converge. We’ll start our filter with P0 = 1 .

13 Welch & Bishop, An Introduction to the Kalman Filter
The Simulations
To begin with, we randomly chose a scalar constant (there is no “hat” on the zz = 0.37727 – because it represents the “truth”). We then simulated 50 distinct measurements zk

that had error
normally distributed around zero with a standard deviation of 0.1 (remember we presumed that the
measurements are corrupted by a 0.1 volt RMS white measurement noise). We could have
generated the individual measurements within the filter loop, but pre-generating the set of 50
measurements allowed me to run several simulations with the same exact measurements (i.e. same
measurement noise) so that comparisons between simulations with different parameters would be
more meaningful.
In the first simulation we fixed the measurement variance at R = (0.1)2 = 0.01. Because this is
the “true” measurement error variance, we would expect the “best” performance in terms of
balancing responsiveness and estimate variance. This will become more evident in the second and
third simulation. Figure 3-1 depicts the results of this first simulation. The true value of the random

is given by the solid line, the noisy measurements by the cross marks, andconstant x = 0.37727 – the filter estimate by the remaining curve.

Figure 3-1. The first simulation: . The true value of the
random constant is given by the solid line, the noisy mea­
surements by the cross marks, and the filter estimate by the remaining curve.

5040302010

-0.2

-0.3

-0.4

-0.5

Iteration

Vo
lta

ge

R 0.1()2 0.01= =
x = 0.37727 –

When considering the choice for P0
above, we mentioned that the choice was not critical as long

as P0 ≠ 0 because the filter would eventually converge. Below in Figure 3-2 we have plotted the
value of versus the iteration. By the 50th iteration, it has settled from the initial (rough) choicePkof 1 to approximately 0.0002 (Volts2).

14 Welch & Bishop, An Introduction to the Kalman Filter

5040302010

0.01

0.008

0.006

0.004

0.002

Iteration

(V
olt

ag
e)2

-Figure 3-2. After 50 iterations, our initial (rough) error covariance Pkchoice of 1 has settled to about 0.0002 (Volts2).
In section 1 under the topic “Filter Parameters and Tuning” we briefly discussed changing or
“tuning” the parameters Q and R to obtain different filter performance. In Figure 3-3 and Figure 3­
4 below we can see what happens when R is increased or decreased by a factor of 100 respectively.
In Figure 3-3 the filter was told that the measurement variance was 100 times greater (i.e. R = 1)
so it was “slower” to believe the measurements.

5040302010

-0.2

-0.3

-0.4

-0.5

Vo
lta

ge

Figure 3-3. Second simulation: R = 1 . The filter is slower to respond to
the measurements, resulting in reduced estimate variance.

In Figure 3-4 the filter was told that the measurement variance was 100 times smaller (i.e.
R = 0.0001) so it was very “quick” to believe the noisy measurements.

15 Welch & Bishop, An Introduction to the Kalman Filter

5040302010

-0.2

-0.3

-0.4

-0.5

Vo
lta

ge

Figure 3-4. Third simulation: R = 0.0001 . The filter responds to measure­
ments quickly, increasing the estimate variance.

While the estimation of a constant is relatively straight-forward, it clearly demonstrates the
workings of the Kalman filter. In Figure 3-3 in particular the Kalman “filtering” is evident as the
estimate appears considerably smoother than the noisy measurements.

16 Welch & Bishop, An Introduction to the Kalman Filter

References

Brown92	 Brown, R. G. and P. Y. C. Hwang. 1992. Introduction to Random Signals
and Applied Kalman Filtering, Second Edition, John Wiley & Sons, Inc.

Gelb74	 Gelb, A. 1974. Applied Optimal Estimation, MIT Press, Cambridge, MA.
Grewal93	 Grewal, Mohinder S., and Angus P. Andrews (1993). Kalman Filtering The­

ory and Practice. Upper Saddle River, NJ USA, Prentice Hall.
Jacobs93	 Jacobs, O. L. R. 1993. Introduction to Control Theory, 2nd Edition. Oxford

University Press.
Julier96	 Julier, Simon and Jeffrey Uhlman. “A General Method of Approximating

Nonlinear Transformations of Probability Distributions,” Robotics Re­
search Group, Department of Engineering Science, University of Oxford
[cited 14 November 1995]. Available from http://www.robots.ox.ac.uk/~si-
ju/work/publications/Unscented.zip.
Also see: “A New Approach for Filtering Nonlinear Systems” by S. J. Julier,
J. K. Uhlmann, and H. F. Durrant-Whyte, Proceedings of the 1995 Ameri-
can Control Conference, Seattle, Washington, Pages:1628-1632. Available
from http://www.robots.ox.ac.uk/~siju/work/publications/ACC95_pr.zip.
Also see Simon Julier's home page at http://www.robots.ox.ac.uk/~siju/.

Kalman60	 Kalman, R. E. 1960. “A New Approach to Linear Filtering and Prediction
Problems,” Transaction of the ASME—Journal of Basic Engineering,
pp. 35-45 (March 1960).

Lewis86	 Lewis, Richard. 1986. Optimal Estimation with an Introduction to Stochas­
tic Control Theory, John Wiley & Sons, Inc.

Maybeck79	 Maybeck, Peter S. 1979. Stochastic Models, Estimation, and Control, Vol­
ume 1, Academic Press, Inc.

Sorenson70	 Sorenson, H. W. 1970. “Least-Squares estimation: from Gauss to Kalman,”
IEEE Spectrum, vol. 7, pp. 63-68, July 1970.
UNC-Chapel Hill, TR 95-041, April 5, 2004

	kalman_intro.pdf
	1 The Discrete Kalman Filter
	2 The Extended Kalman Filter (EKF)
	3 A Kalman Filter in Action: Estimating a Random Constant

