
    

    
      
  

 

  
	 	 	 	 	

 
        

          
            

                
                 

                
               

     
 

    
                

                     
              

  
 

                
             

               
             

                 
             

    
 

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 
16.412J / 6.834J – COGNITIVE ROBOTICS 
SPRING 2016 

CONFLICT-DIRECTED A*  
A	 Gentle Introduction – by	 Steve Levine 

INTRODUCTION 
Conflict-directed A* (CDA*) is an algorithm for solving optimal CSP’s, or namely constraint satisfaction
problems where there’s a notion of utility; certain assignments are preferred to others. A number of useful
problems can be framed as optimal CSP’s, such as most-likely mode estimation for diagnosing problems
in engineering systems (as in this week’s problem set). The general intuition behind CDA* is that it behaves
much like A*, searching in best-first order, but it also learns conflicts – assignments to decision variables
that cannot all hold true – and then actively guides the search to steer clear of these conflicts. If the conflicts
learned during search are quite general, then CDA* can leap over large swaths of the search space and 
hopefully find a good solution much quicker than a naïve search. 

CSPS, SEARCH, AND A*… OH MY! 
First, let’s review the definition of a Constraint Satisfaction Problem (CSP). A CSP is defined as a tuple 
<Y, D, C> where Y is a set of variables, D is a set of domains for those variables, and C is a set of constraints 
on those variables. A solution to a CSP is a domain assignment to every variable Y such that all the 
constraints are satisfied. 

Lots of useful things can be framed as CSP’s; these include activity planning, the N-queens problem,
Sudoku, satisfiability problems (SAT), and a million more. Algorithms for solving CSPs generally involve
some combination of state space / graph search and local inference (ex., Backtracking with Forward
checking, DPLL for SAT problems, etc). In such algorithms, the states are partial assignments to variables, 
and the actions that transition between states add on more assignments to the state. The initial state is the
empty assignment (no variables assigned yet), and the goal states are full assignments that are consistent
(i.e., satisfy all the constraints). This is illustrated in the following figure. 

Page 1 of 8 



    

 
             

            
                 

      
 

              
                 
                  

                
                 

                   
              

                 
 

 
            

    
 

 
 

                   
                
           

                     

A1

Figure 1: Solving a CSP as state-space search. The initial state is at the top, with no assignments. Actions transitioning
between states incrementally add on assignments. The bottom row, which are full assignments to every variable, are goal
states if they satisfy all the constraints in the CSP. We can do graph search here to try and find a solution. You might
imagine this graph can be quite large… so any techniques that can prune out choices would be very useful. 

CSPs are great, but sometimes when there are multiple solutions we want to be able to rank them and only
find the best ones. Therefore, we introduce the notion of an optimal CSP. An optimal CSP is a normal 
CSP, except now we have denoted a subset of the variables as decision variables that can be ranked with a 
utility function. We can describe an optimal CSP as a tuple <X, r(x), CSP> where CSP is a constraint 
satisfaction problem as above, X is a subset of its variables, and r(x) is a reward or utility function defined 
only over X (we wish to maximize it). A solution to an optimal CSP is an assignment to all decision variables 
X, such that there exists assignments for all remaining state variables Y \ X where all the constraints are 
satisfied. We want to find the assignment to X that does this that has the highest possible utility as defined 
by r(x). 

Mode estimation and model-based diagnosis can be framed as an optimal CSP; consider the Boolean
polycell example discussed in class: 

1 A A1 X 

Y 

Z 

A2 

A3 

X1 

X2 

0F1 B 
1 C 
0 D G 1 

1 E 

In this case, the modes of A1, A2, A3, X1, and X2 are decision variables, each with domain ‘G’ (good / 
working) or ‘U’ (unknown / broken). Our utility function is the probability of these variables taking their
respective values (for simplicity here, we assume they’re all independent). Other, non-decision variables
(often called state variables) are A, B, C, D, E, F, G, X, Y, and Z. The goal is to enumerate the highest 
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utility (i.e., most likely) combination of these decision variables, such that all constraints are satisfied. This 
is known as the mode estimation problem for model-based diagnosis. 

This Boolean polycell example also illustrates where “decision variables” and “state variables” got their
name. In this case, we’re trying to “decide” what the most likely mode is of all the components, subject to
the other constraints on the system’s “state.” 

CONSTRAINT-BASED A* 
So, how can we solve optimal CSP’s? One solution, which we will present here first because it’s simpler
to get our feet wet, is known as constraint-based A* (because we use A* to search for a solution to a
constraint system). 

Recall that A* is a best-first search algorithm. It searches through a graph, and can find paths of minimum
cost or greatest reward. 

In constraint-based A*, we use A* to search in the large state space graph shown before, with the only
exception that we only search over the decision variables. In other words: States are partial assignments to
decision variables, actions that transition from one state to the next add a single decision variable
assignment to the states, the initial state has no assignments, and the goal state is a complete assignment
to all decision variables. Because this is only searching over the decision variables, whenever we reach a
full assignment we still need to check the remaining non-decision variables to see if we can come up with
an assignment to them that satisfies all of them. We encompass this into a consistent?(x) method, and itself
often entails further search (over the non-decision variables), and is often implemented as DPLL or back-
track search with forward checking. 

So voila! We can use A* over this state space, right? Almost. First, we need to define how we measure cost
/ reward. A* search ranks states in its graph with a function f(x) = g(x) + h(x), where g(x) is the known cost 
“so far” in the search, and h(x) is a heuristic; an admissible estimate of the cost remaining to the goal. What
“admissible” means depends on whether your goal is to maximize or to minimize, but an easy trick is to
remember that admissible means optimistic. If you’re using A* to find the minimum distance from A to B 
in a graph, the heuristic must underestimate the length to the goal. If you’re trying to find maximum 
probability assignment to variables, it should overestimate the probability. Optimistic in both cases. 

What f(x) = g(x) + h(x) should we use for constraint-based A*? Remember our states (x in f(x)) are partial 
assignments to decision variables, and we wish to maximize r(x). For our Boolean polycell example, we 
can choose g(x) to be the product of probabilities in the assignment. We can choose our heuristic h(x) to be 
the highest-possible product of each of the remaining unassigned variables. So, we wish to maximize the
following utility: 

𝑓 𝑎𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡 = 𝑃 𝑥: = 𝑣< max 𝑃 𝑥; = 𝑣=6C 
CD5BF :> CE >?A :> 

6@@:8>=7>A 6@@:8>=7>A 
8(C) 9(C) 

(If you’re concerned about why we’re multiplying f(x) = g(x)h(x) here instead of adding, good point!
Consider what happens if we take the log of this equation, which is a monotonic function and wouldn’t
change the ordering of nodes picked off the A* queue. Thus, having a product that we can break up in this
way is equivalent to using the summation definition f(x) = g(x) + h(x) that is more commonly associated
with A*. Expressing as a product is advantageous for us though since it’s a probability). 

Page 3 of 8 



    

 
                  

           
                

   
 
 

  
   

    
  

   
      
           
     
         
     
 
     
       
          
         

           
  

    
                  

           
            

         
 

                     
          

           
 

  
         

 
             

             
                
              

                  

And now we’re done. Using the above f(x) to rank items in the A* queue, we can search over the decision
variable state space and try to find the best-possible assignment. Pseudo code is presented below for
constraint-based A*. Note that Q is a priority queue, so whenever we add anything to it we implicitly need 
to compute the f(x) above. 

CONSTRAINT-BASED A* 
Q = [] # priority queue
Add {} to Q
expanded = [] 
while Q isn’t empty:

assignment ← pop best from Q 
Add assignment to expanded # Makes sure we don’t repeat visits  
if assignment is full assignment to decision variables: # potential goal  

if consistent?(assignment): # searches over non-decision variables and checks constraints 
return assignment 

else: # partial assignment to decision variables 
xi = some decision variable not assigned in assignment
neighbors = split_on_variable(assignment, xi) # split search on different assignments to xi 
Add each xk in neighbors to Q if not in expanded

# If we get here, we’ve expanded all possibilities to no avail!
return NOSOLUTION 

Again, note that this algorithm searches over the decision variables. We need to make sure that these values
to the decision variables are also consistent with the non-decision variables though, which is accomplished 
via the consistent?(…) method above. This method may involve performing further search, such as
backtrack search with forward checking or DPLL – taking into account the decision variables’ assignments. 

The search tree is “split” on variables; this is a fancy way of saying that we choose our successor states as
extensions of the current state by picking some variable that’s not yet assigned, and assigning it all possible
values in its domain. Those resulting states become our successor states, and are added to Q. 

split_on_variable(assignment, xi)  
return [(assignment ∪{xi = dj}) for each dj in xi’s domain]  

Constraint-based A* will solve the problem at hand. It does however suffer from an important drawback:
it can repeatedly (and unintelligently…) keep searching over problematic areas of our state space. Consider
the following figure of a search tree generated from constraint-based A*. Suppose that we know that x=1 
can never hold. The search doesn’t care about this; it’ll keep searching the x=1 subtree until completion, 
before finally moving onto the x=2 subtree. For big state spaces, that can add up to a lot of wasted time. 
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x=1 x=2 

X X X X X X X X  
Figure 2: Constraint-based A* inefficiently searching. The blue dotted arrow shows the order of search, which is depth-
first in nature. Darkened nodes have been expanded, while unshaded ones are unexpanded but in the queue. The red x’s
indicate that those full assignments failed the consistent?(…) check. The algorithm will search the entire x=1 subtree. If 
we know that x=1 can never hold however, this wastes a lot of time, and causes a lot of calls to the consistent?(…) 
method. 

Can we do better? Yes we can! 

INTRODUCING: CONFLICT-DIRECTED A* 
Conflict-directed A* aims to solve the above problem, by not repeatedly exploring states that all won’t
work for the same reason. The notion of “states that won’t work for the same reason” is captured by a
conflict. Intuitively, a conflict is a partial set of assignments to the decision variables, not all of which can 
hold at once. We often denote a conflict as {xi = vi, …}. 

An example of a conflict may be that “you cannot have your cake and eat it too.” You can have cake, you 
can eat it, but you can’t do both. So, it would be futile for a search algorithm to examine such states as “has
cake, eats cake, likes chocolate” or “has cake, eats cake, likes to bake”– because these states manifest the 
conflict. Some states, such as “doesn’t have cake, likes ice cream” or “doesn’t eat cake, eats cereal” –
provably resolve the conflict by avoiding it. If one of these states holds, it guarantees the conflict doesn’t 
hold. Other partial states such as “has chocolate” neither manifests the conflict nor resolves it. However in
our search, we can be clever and choose successor states such as “has chocolate, doesn’t have cake” and 
“has chocolate, doesn’t eat cake” to guarantee that these successors will resolve the conflict. This uses the
notion of constituent kernels (We’ll elaborate all of this a bit shortly). 

In our example above where constraint-based A* was repeatedly exploring problematic areas, our conflict
was that x=1; in other words, x=1 doesn’t hold in any solution. Suppose we can discover this conflict early
in the search, say, after we reach the first full assignment: 
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x=1 x=2 

X 
Figure 3: Conflict-directed A* discovers a conflict that x=1 cannot hold early in the search, after the first consistency
check. Because of this, the algorithm “leaps” over the rest of the x=1 subtree, knowing that any state there will be 
problematic, and immediately moves on to the x=2 subtree. This can save a lot of time. 

If we can do that, then we can immediately leap over any problematic subtrees in our search that exhibit
x=1. Why waste time there if we know there can’t be any solutions? This is the intuition behind conflict-
directed A*. 

But how do we get these conflicts in the first place? Technically, that’s not the job of conflict-directed A*.
We assume they’re given to us on a silver platter by the consistency checker. So we modify the 
consistent?(…) function above. Instead of just returning True / False, we now expect it to return a tuple 
(is_consistent, conflict), where is_consistent is True or False as before, and conflict is a conflict. In practice,
this can be done in a number of ways; SAT-based consistency checkers that use unit propagation can trace
back support to get conflicts. Oftentimes, these conflicts can be extracted efficiently with little overhead. 

Once we have conflicts, how can we use them to guide our search? In a few ways. The most obvious way
is that, once we discover a conflict, remove any states in Q that manifest the conflict. That guarantees we
won’t waste time searching over future enqueued nodes that are definitely problematic. 

A second clever technique used by conflict-directed A* is to “leap over” the conflicts. This is accomplished 
by converting the conflict into what is known as a constituent kernel. Suppose we have three decision 
variables, x1 and x2 and x3, each with domain {1, 2, 3}. Now suppose our consistent?(…) method discovers 
the conflict {x1=2, x2=3}. Logically, this means:

¬(𝑥3 = 2 ∧ 𝑥4 = 3) 

If we apply De Morgan’s law, we get: 
¬ 𝑥3 = 2) ∨ ¬(𝑥4 = 3 
𝑥3 ≠ 2) ∨ (𝑥4 ≠ 3 

𝑥3 = 1 ∨ 𝑥3 = 3) ∨ (𝑥4 = 1 ∨ 𝑥4 = 2 
and finally 

𝑥3 = 1 ∨ 𝑥3 = 3 ∨ 𝑥4 = 1 ∨ 𝑥4 = 2 
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This last line represents what is known as a constituent kernel. It’s a disjunction (an “or” of assignments).
Each assignment in the constituent kernel is guaranteed to resolve the conflict. In other words, if x1=1, it is 
guaranteed that ¬(𝑥3 = 2 ∧ 𝑥4 = 3) is satisfied. For the conflict to be resolved, at least one of the 
constituent kernels must hold. 

Suppose in our search, we encounter a state like x3 = 1 that neither manifests the above conflict, nor resolves
it. What can we do? Well, we can guarantee that any successor states stemming from this state will resolve
the conflict using its constituent kernel. We can conjoin this state with each of the assignments from the 
constituent kernel, and be guaranteed that the resulting state resolves the conflict. For example, one such
successor state could be {x3 = 1, x1 = 1} – which is guaranteed to avoid the conflict. By selecting the
neighbors / successors of this state in our search in this way, we can “leap” over conflicts – our search is
guaranteed to avoid them. 

This is exactly what the following split on conflict function does: 

split_on_conflict(assignment, γ)  
return [(assignment ∪ ci) for ci in constituent_kernel(γ), if it’s self-consistent]  

(The “self consistent” part of the above just makes sure we don’t have anything silly, like {x1=2, x1=3}).  

Putting all these ideas together, here is some pseudo code for conflict-directed A*:  

CONFLICT-DIRECTED A* 
Q = [] # priority queue
Add {} to Q
Γ = [] # conflicts 
expanded = [] 
while Q isn’t empty:

assignment ← pop best from Q 
Add assignment to expanded  
if assignment is full assignment to decision variables: # potential goal 

is_consistent, conflict = consistent?(assignment): # searches over non-decision variables 
if is_consistent: 

return assignment 
else: 

Add conflict to Γ # some clever tricks here to save space
Remove anything from Q that manifests conflict 

else: # partial assignment to decision variables
if assignment resolves all conflicts in Γ: 

xi = some decision variable not assigned in assignment
neighbors = split_on_variable(assignment, xi)

else if assignment doesn’t resolve some conflict γ in Γ:  
neighbors = split_on_conflict(assignment, γ) 

Add each xk in neighbors to Q if not in expanded 
# If we get here, we’ve expanded all possibilities to no avail!
return NOSOLUTION 
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In a nutshell, this algorithm behaves just like constraint-based A*, except that it gets conflicts from the 
consistency checker and stores them in a list Γ. Whenever it learns a conflict, it removes from Q any state 
manifesting it. When expanding a state and getting its neighbors / successors, we always guarantee that the
generated neighbors resolve conflicts. 

How well does this work in practice? It depends on a few things. If we can extract better, more minimal
conflicts that are smaller in size – we can leap over larger and larger sections of state space and possibly
gain huge advantages. If, however, the cost to extract a conflict is very high, the performance could suffer. 
These need to be traded off. 

TIPS & TRICKS 
There are plenty of tips & tricks for conflict directed A* that aren’t discuss here. For instance, we only want
to keep the “minimal” conflicts in Γ, such that no conflict in it is a subset of any other conflict in it. That 
would be redundant information, and we can save space (and efficiency) by only storing the smallest
conflicts. 

There are also other tricks we can play to minimize the queue size of conflict-directed A* in circumstances
where we have a mutually preferentially-independent (MPI) reward function (which we actually do
have). Please read the full paper about conflict-directed A* for details. 
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