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Assignments

Problems Sets:
• Pset 1 due tomorrow (Wednesday) at 11:59pm

• Pset 2 released tomorrow

Interesting references:
• Dechter, R., I. Meiri, J. Pearl, “Temporal Constraint Networks,” Artificial 

Intelligence, 49, pp. 61-95,1991.

• Muscettola, N., P. Morris and I. Tsamardinos, “Reformulating Temporal Plans for 
Efficient Execution.” Intl Conf. on Knowledge Representation and Reasoning 
(KRR), 1998.
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Outline

• Programs with Flexible Time
– Intro
– Describing temporal plans
– Exposing implicit constraints
– Consistency checking
– Offline scheduling
– Online execution
– Reformulating for faster online execution
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A single “cognitive system” 
language and executive.
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Flexible Time

• Flexible time = more robustness
• We tell cognitive robot:

– Timing requirements (“engage boosters 2-4 
minutes after launch but before reaching orbit”)

– Cognitive robot schedules autonomously.

This image is in the public domain.
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Execution of Timed
Model-based Programs
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in RMPL [williams et al 01]

Decisions include what, how, who and when. 

[Muscettola, Morris, Tsamardinos,KR 98]

Focus of today
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To Execute a Temporal Plan
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1. Describe Temporal Plan

2. Test Consistency

3. Schedule Plan
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4. Execute Plan 4. Dynamically Schedule Plan

1. Describe Temporal Plan

2. Test Consistency

3. Reformulate Plan
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To Execute a Temporal Plan
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1. Describe Temporal Plan

2. Test Consistency

3. Schedule Plan
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4. Execute Plan
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Describe Temporal Plan

• Activities to perform

• Relationships among activities
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This image is in the public domain.
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Metric Temporal Relations

> ?�������*����	����@������ ������$�������+���������$�����

> ;	��+��*" +�A��������5��*������+�8�)�A�@����

Activity: Going to the store

[10min, 30min]

[0d, 1d]
Activity: Bake Bread Activity: Eat Bread



��

Simplify by reducing interval relations to
relations on timepoints.

Activity A

Start Activity A

A- A+

End Activity A
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Metric Temporal Relations

> ?�������*����	����@������ ������$�������+���������$�����

> ;	��+��*" +�A��������5��*������+�8�)�A�@����

Start Going to Store

G- G+

End Going to Store

[10m,30m]
10 < [G+ - G-] < 30

End Bake Bread

[0d,1d]
B+ E- 0 < [E- - B+] < 1

Start Eat Bread
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Qualitative Temporal Relations

[Allen 83]
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Qualitative Temporal Relations

Expressed as timepoint inequalities:

Y

X Y

X Y

X Y

YX

YX

Y X

B�A�)	��C BF G�CD

B�������C BF <�CD

B���	 ����C CD G�BF and X- < Y+

B�+"	����C CD G�BD and X+ < Y+

B����	���C BD <�CD and X+ < Y+

B�)����*���C BD G�CD and X+ = Y+

B��!"� ��C X BD <�CD and X+ = Y+

B�+��E����C BF G�CD or Y+ < X-

Y-
[0,inf]

X+

Y-
[0,0]

X+

[Villain & Kautz; Simmons]
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Temporal Relations Described by a 
Simple Temporal Network (STN)

• Simple Temporal Network
• Tuple <X, C> where:
• variables X1,…Xn, represent time points 

(real-valued domains) 
• binary constraints C of the form:

– called links.

X1 X3

X2

[l1, u1]

[l2, u2] [l3, u3]

( ) [ ]., ikikik baXX ∈−

Sufficient to represent:
• simple metric constraints
• all Allen relations but 1…

[Dechter, Meiri, Pearl 91]

Can’t represent:
• Allen’s disjoint relation
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Modeling Visualization

• http://bicycle.csail.mit.edu/stn/

http://bicycle.csail.mit.edu/stn/
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To Execute a Temporal Plan

A
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1. Describe Temporal Plan

2. Test Consistency

3. Schedule Plan
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4. Execute Plan

[1,10]

[0,9]

[1,1]

[2,2]

B

C

D
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Consistency of an STN

Input: STN <X, C> where Cj = < <Xk, Xi>,  <aj, bj> >

STN is consistent iff there exists an assignment to times X
satisfying C.

[1,10] [1,1]B

A D

[0,9] C [2,2]
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Schedule of an STN

Input: STN <X, C> where Cj = < <Xk, Xi>,  <aj, bj> >

Schedule is assignment to all timepoints X consistent with 
constraints.

[1,10]

[0,9]

[1,1]

[2,2]

A

B

C

D
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How to find schedule?

• Idea: Transform STN 
– Transform to distance-graph
– Common graph algorithms (i.e., shortest path) 

will apply
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Transformation to distance graph

• (Board)
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A B[l, u] A B

H�����1���I���������I��?	��*

Simple Temporal Network Distance Graph

u

- l

B –A ul � B – A � u �

l � B – A A – B � - l

> ����	A"�+������+���"���������D����������	��
> 65�	A"�+������+����������������������	��

[Dechter, Meiri, Pearl 91]
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Algorithm: offline scheduling

Initialize execution window to [-∞, ∞] for each event
while unexecuted events:

xi = pick any unexecuted event
ti = pick any time in xi’s execution window
Propagate to all xi’s neighbors & update their windows
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Naïve (and wrong) scheduling

• (Board)
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Propagating to neighbors

Tighten neighbor’s execution windows:

- outgoing edges to neighbor: u’ = min(u, ti + wu)
- incoming edges from neighbor: l’ = max(l, ti l- w )

[u, l] � tightened [u’, l’]

wu

wl

xi = ti
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Exposing Implicit Constraints

• (Board)
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[10,20] [30,40]

[10,20]

[40,50]

[60,70]

20 40
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20
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APSP Graph: Windows of 
Feasible Values
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Dispatchable form

• An STN or distance graph is dispatchable if:
– Can be properly scheduled via local propagations 

to neighbors only
• Requires all implicit constraints be explicit
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Checking Consistency

• (Board)
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A B[2, 1] A B

> 9����������)) ID�	��*�*���������������8� ���
> I������A8����"������*	��������*�)	��������������  ��*�	��

> ���� ���"	����*	��������*��������
> /������"���	���*��  ��*�	��

/=��� ��)�����������������	����J
1

-2

Simple Temporal Network Distance Graph
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Summary

• To schedule, want a simple, local-propagation 
algorithm
– Requires exposing implicit constraints

• All-pairs shortest path (APSP) exposes all 
implicit constraints
– Puts network in dispatchable form

• Negative cycle in APSP: inconsistent.
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To Execute a Temporal Plan
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1. Describe Temporal Plan

2. Test Consistency

3. Schedule Plan
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4. Execute Plan 4. Dynamically Schedule Plan

1. Describe Temporal Plan

2. Test Consistency

3. Reformulate Plan
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Algorithm: offline scheduling

Compute dispatchable form (i.e., APSP)
Initialize execution window to [-∞, ∞] for each event
while unexecuted events:

xi = pick any unexecuted event
ti = pick any time in xi’s execution window
Propagate to all xi’s neighbors & update their windows
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The original STN

[0,10] [1, 1]

[0,10] [2, 2]
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Distance graph transformation

10 1

0 -1

10
2

-20
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All pairs shortest path 

10 1

-1 -1

9
2

-20

1 -1

11

-2

A B C D
A 0 10 9 11

B -1 0 -1 1

C 0 1 0 2

D -2 -1 -2 0
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Computing a schedule

10 1

-1 -1

9
2

-20

1 -1

11

-2
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Computing a schedule

10 1

-1 -1

9
2

-20

[-∞, ∞]

[-∞, ∞] 1 -1 [-∞, ∞]

[-∞, ∞]
11

-2

Initialize execution windows for each event in the plan
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Computing a schedule

10 1

-1 -1

9
2

-20

[-∞, ∞]

t = 0 1 -1 [-∞, ∞]

[-∞, ∞]
11

-2

Assign the first event



��

Computing a schedule

10 1

-1 -1

9
2

-20

outgoing edges to neighbor: u’ = min(u, ti + wu)
incoming edges from neighbor: l’ = max(l, ti l- w )

[-∞, 10]

t = 0 1 -1 [-∞, ∞]

[-∞, ∞]
11

-2

Propagate updated time bounds to neighbors
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Computing a schedule

10

0

9

-1

1

-1

-2

2

outgoing edges to neighbor: u’ = min(u, ti + wu)
incoming edges from neighbor: l’ = max(l, ti l- w )

[1, 10]

t = 0 1 -1 [-∞, ∞]

[-∞, ∞]
11

-2

Propagate updated time bounds to neighbors
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Computing a schedule

10

0

9

-1

1

-1

-2

2

[1, 10]

t = 0 1 -1 [-∞, ∞]

[0, 9]
11

-2

Propagate updated time bounds to neighbors
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Computing a schedule

10

0

9

-1

1

-1

-2

2

[1, 10]

t = 0 1 -1 [2, 11]

[0, 9]
11

-2

Propagate updated time bounds to neighbors
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Computing a schedule

10 1

-1 -1

9
2

-20

t = 3

t = 0 1 -1 [2, 11]

[0, 9]
11

-2

Arbitrarily pick another time point and assign it...
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Computing a schedule

10

0

9

-1

1

-1

-2

2

t = 3

t = 0 1 -1 [2, 11]

[2, 2]
11

-2

Propagate updated time bounds to neighbors
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Computing a schedule

10

0

9

-1

1

-1

-2

2

t = 3

t = 0 1 -1 [4, 4]

[2, 2]
11

-2

Propagate updated time bounds to neighbors
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Computing a schedule

10 1

-1 -1

9
2

-20

t = 3

t = 0 1 -1 [4, 4]

t = 2
11

-2

Pick another event and assign it
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Computing a schedule

10 1

-1 -1

9
2

-20

t = 3

t = 0 1 -1 [4, 4]

t = 2
11

-2

Propagate to neighbors
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Computing a schedule

10 1

-1 -1

9
2

-20

t = 3

t = 0 1 -1 t = 4

t = 2
11

-2

Assign the final event
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Pre-computed schedules not robust 
against fluctuations

• We’ve just computed a schedule:
tA = 0, tB = 3, tC = 2, tD = 4

• But what if there’s a disturbance?
– i.e., what if tB = 3.1?
– i.e., what if tB = 4?
– i.e., what if tB = 100?

• Pre-computed schedules not robust against 
fluctuations!

• Solution: Dispatch dynamically online. 
– Schedule events “on the fly,” after observing past event times.
– Increases robustness to many unanticipated fluctuations.
– Flexible temporal constraints allow this!
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To Execute a Temporal Plan
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1. Describe Temporal Plan

2. Test Consistency

3. Schedule Plan
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4. Execute Plan 4. Dynamically Schedule Plan

1. Describe Temporal Plan

2. Test Consistency

3. Reformulate Plan
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How do we schedule online?

• First, consider naive (incorrect!) approach.
• Similar to offline schedule algorithm, but now online:

– Wait until current time in execution window (“active”)

• (Still a problem though as we’ll see shortly)
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Naïve (wrong!) online dispatcher

Compute dispatchable form (i.e., APSP)
Initialize execution window to [-∞, ∞] for each event
while unexecuted events:

xi = pick any unexecuted event if current time in window
ti = now
Propagate to all xi’s neighbors & update their windows







Naïve (wrong!) online scheduling

10

0

9

-1

1

-1

-2

2

[-∞, ∞]

t = 0 1 -1 [-∞, ∞]

[-∞, ∞]
11

-2

Arbitrarily picking next event…
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Naïve (wrong!) online scheduling

10

0

9

-1

1

-1

-2

2

t = 3

t = 0 1 -1 [2, 11]

[0, 9]
11

-2

Arbitrarily picking next event…
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Naïve (wrong!) online scheduling

10

0

9

-1

1

-1

-2

2

t = 3

t = 0 1 -1 [4, 4]

t = 2
11

-2
...but wait! We just assigned a past time!
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Enablement conditions dictate the 
ordering of dispatched events

• Online: must assign monotonically increasing times
– whereas offline algorithms may assign in any order.

• How can we constrain dispatcher to do this?

• Solution: determine “enablement conditions” by 
analyzing negative edges.
– Allows us to infer if some edges must precede other edges
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Enablement conditions dictate the 
ordering of dispatched events

• Negative edges from APSP dictate ordering constraints

10 1

-1 -1

9
2

-20

1 -1

11

-2
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Enablement conditions dictate the 
ordering of dispatched events

• Negative edges from APSP dictate ordering constraints

10 1

-1 -1

9
2

-20

1 -1

11

-2

B must occur after both A and C!
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Enablement conditions dictate the 
ordering of dispatched events

• An event is enabled if all its neighbors over negative 
edges have already been dispatched.
– All “predecessors” have been dispatched.

• Modify online dispatching algorithm to only dispatch 
events if they are enabled.

• An event is active is the current time is within that 
event’s execution window
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Corrected online dispatcher

Compute dispatchable form (i.e., APSP)
Initialize execution window to [-∞, ∞] for each event
E � {events with no predecessors} # set of enabled events
S � {} # set of executed events
while unexecuted events:

Wait until some event xi in E is active
ti = now # dispatch xi now at ti

Propagate to all xi’s neighbors & update their windows
Add xi to S
Add to E any now-enabled events
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Running online dispatcher

10

0

9

-1

1

-1

-2

2

Compute dispatchable form (i.e., APSP) E = {A, C}
Initialize execution windows to [-∞, ∞] S = {}
E � {events with no predecessors}
S � {} [-∞, ∞]
while unexecuted events:

Wait until some event xi in E is active [-∞, ∞] [-∞, ∞]
ti = now
Propagate to xi’s neighbors 1 -1

Add xi to S
Add to E any now-enabled events

A, C initially in E – have no [-∞, ∞]

negative, outgoing edges 11

-2
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Running online dispatcher

10

0

9

-1

1

-1

-2

2

Compute dispatchable form (i.e., APSP) E = {A, C}
Initialize execution windows to [-∞, ∞] S = {}
E � {events with no predecessors}
S � {} [-∞, ∞]
while unexecuted events:

Wait until some event xi in E is active [-∞, ∞] [-∞, ∞]
ti = now
Propagate to xi’s neighbors 1 -1

Add xi to S
Add to E any now-enabled events

A is enabled and in E. [-∞, ∞]
(could have chosen C too) 11

-2
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Running online dispatcher

10

0

9

-1

1

-1

-2

2

Compute dispatchable form (i.e., APSP) E = {C}
Initialize execution windows to [-∞, ∞] S = {A}
E � {events with no predecessors}
S � {} [1, 10]
while unexecuted events:

Wait until some event xi in E is active
t = 0 [2, 11]

ti = now
Propagate to xi’s neighbors 1 -1

Add xi to S
Add to E any now-enabled events

Dispatch A and propagate [0, 9]
11

-2
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Running online dispatcher

10

0

9

-1

1

-1

-2

2

Compute dispatchable form (i.e., APSP) E = {C}
Initialize execution windows to [-∞, ∞] S = {A}
E � {events with no predecessors}
S � {} [1, 10]
while unexecuted events:

Wait until some event xi in E is active
t = 0 [2, 11]

ti = now
Propagate to xi’s neighbors 1 -1

Add xi to S
Add to E any now-enabled events

B, D not enabled! But C still is. [0, 9]
11

-2
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Running online dispatcher

10

0

9

-1

1

-1

-2

2

Compute dispatchable form (i.e., APSP) E = {}
Initialize execution windows to [-∞, ∞] S = {A, C}
E � {events with no predecessors}
S � {} [3, 3]
while unexecuted events:

Wait until some event xi in E is active
t = 0 [4, 4]

ti = now
Propagate to xi’s neighbors 1 -1

Add xi to S
Add to E any now-enabled events

Dispatch & propagate C. t = 2
11

-2
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Running online dispatcher

10

0

9

-1

1

-1

-2

2

Compute dispatchable form (i.e., APSP) E = {B}
Initialize execution windows to [-∞, ∞] S = {A, C}
E � {events with no predecessors}
S � {} [3, 3]
while unexecuted events:

Wait until some event xi in E is active
t = 0 [4, 4]

ti = now
Propagate to xi’s neighbors 1 -1

Add xi to S
Add to E any now-enabled events

B is now enabled (but still not D). t = 2
11

-2
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Running online dispatcher

10

0

9

-1

1

-1

-2

2

Compute dispatchable form (i.e., APSP) E = {}
Initialize execution windows to [-∞, ∞] S = {A, C, B}
E � {events with no predecessors}
S � {} t = 3
while unexecuted events:

Wait until some event xi in E is active
t = 0 [4, 4]

ti = now
Propagate to xi’s neighbors 1 -1

Add xi to S
Add to E any now-enabled events

Dispatch & propagate B. t = 2
11

-2
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Running online dispatcher

10

0

9

-1

1

-1

-2

2

Compute dispatchable form (i.e., APSP) E = {D}
Initialize execution windows to [-∞, ∞] S = {A, C, B}
E � {events with no predecessors}
S � {} t = 3
while unexecuted events:

Wait until some event xi in E is active
t = 0 [4, 4]

ti = now
Propagate to xi’s neighbors 1 -1

Add xi to S
Add to E any now-enabled events

D is finally enabled. t = 2
11

-2
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Running online dispatcher

73

10

0

9

-1

1

-1

-2

2

Compute dispatchable form (i.e., APSP) E = {}
Initialize execution windows to [-∞, ∞] S = {A, C, B, D}
E � {events with no predecessors}
S � {} t = 3
while unexecuted events:

Wait until some event xi in E is active
t = 0 t = 4

ti = now
Propagate to xi’s neighbors 1 -1

Add xi to S
Add to E any now-enabled events

Finish up by dispatching D! t = 2
11

-2
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Online dispatching algorithm remarks

• By considering predecessors, we guarantee that events 
assigned monotonically increasing times online.

• Capable of responding to fluctuations that do not affect 
overall temporal feasibility.

• (Note: must be run on an dispatchable / APSP graph!)
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Online dispatcher efficiency

• Consider an STN with n edges.

• How many edges in APSP distance graph?

Compute dispatchable form (i.e., APSP)
Initialize execution windows to [-∞, ∞] 
E � {events with no predecessors}
S � {}
while unexecuted events:

Wait until some event xi in E is active
ti = now
Propagate to xi’s neighbors
Add xi to S
Add to E any now-enabled events
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Online dispatcher efficiency

• Consider an STN with n edges.

• How many edges in APSP distance graph? n2.

• How many neighbors to propagate to each step? 

Compute dispatchable form (i.e., APSP)
Initialize execution windows to [-∞, ∞] 
E � {events with no predecessors}
S � {}
while unexecuted events:

Wait until some event xi in E is active
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Online dispatcher efficiency

• Consider an STN with n edges.

• How many edges in APSP distance graph? n2.

• How many neighbors to propagate to each step? n.

Compute dispatchable form (i.e., APSP)
Initialize execution windows to [-∞, ∞] 
E � {events with no predecessors}
S � {}
while unexecuted events:

Wait until some event xi in E is active
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Online dispatcher efficiency

• Consider an STN with n edges.

• How many edges in APSP distance graph? n2.

• How many neighbors to propagate to each step? n.

• Large STNs: propagation slow.  Want to reduce this.

Compute dispatchable form (i.e., APSP)
Initialize execution windows to [-∞, ∞] 
E � {events with no predecessors}
S � {}
while unexecuted events:

Wait until some event xi in E is active
ti = now
Propagate to xi’s neighbors
Add xi to S
Add to E any now-enabled events
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To Execute a Temporal Plan
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1. Describe Temporal Plan

2. Test Consistency

3. Schedule Plan

)) ���
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4. Execute Plan 4. Dynamically Schedule Plan

1. Describe Temporal Plan

2. Test Consistency

3. Reformulate Plan
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You don’t need all those edges!
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You don’t need all those edges!
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Equivalent minimal dispatchable network
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You don’t need all those edges!
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Let’s consider a specific triangle 
of edges.
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You don’t need all those edges!

10 1

-1 -1

9
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0

Let’s consider a specific triangle 
of edges.

Do we really need the bottom 
edge?

1 -1
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You don’t need all those edges!

10 1

-1 -1

9
2

-2
0

Let’s consider a different triangle 
of edges.

Do we really need the bottom 
edge?

1 -1

11
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A ropes analogy
10

10
Imagine a “unidirectional rope” of 

length 10 constraining sliders on a track.
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Rope analogy
10

10

Imagine a “unidirectional rope” of 

length 10 constraining sliders on a track.
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Rope analogy
10

10

Now add in ropes for other constraints

11

1

1

11
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Rope analogy
10

Imagine pulling A and D as tightly as 
possible.

10
1

11

1

11
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Rope analogy
10

Can we remove rope AD without changing behavior?

10

11

1

1

11

Yes! Same possible positions for A, B, 
D.
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Rope analogy
10

Can we remove ropes AB, BD without changing 
behavior?

10

11

1

1

11

No.  AD still constrained, but B could slide freely! Not the 
same behavior. Collectively,  AB and BD entail AD (but AD 

does not entail both AB and AD).
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Upper dominating edges - detection 
from APSP

dBC If dAC, dBC ≥ 0 and

dAB + dBC = dAC

then BC dominatesAC

dAC

(Proof omitted - based on triangle rule property of 
APSP. Please see notes / reading for more info)
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Lower dominating edges - detection 
from APSP

dAB

If dAB, dAC < 0 and

dAB + dBC = dAC

then AB dominatesAC

dAC

(Proof omitted - based on triangle rule property of 
APSP. Please see notes / reading for more info)
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Dominance example
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Dominance example
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Dominance example
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Dominance example
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Dominance example
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Dominance example
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Dominance example
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Dominance example
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Dominance example

1
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1 -1 Original APSP distance graph

11
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... now in minimal 
dispatchable form!
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Dominance example

1

-1

9

0

Original STN

... now in minimal 1 -1
dispatchable form!

[0,10] [1, 1]

[0,10] [2, 2]
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FilteringAlgorithm(G)

Input: A dispatchable APSP-graph G
Output: A minimal dispatchable graph
1   for each pair of intersecting edges in G
2      if both dominate each other
3         if neither is marked
4            arbitrarily mark one for elimination
5         end if
6      else if one dominates the other
7         mark dominated edge for elimination
8      end if
9   end for
10 remove all marked edges from graph
11 return G
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Avoiding Intermediate Graph 
Explosion

> Problem:
K All pairs shortest path table computation consumed O(n2) space
K Only used as an intermediate - not needed after minimal dispatchable graph 

obtained.

> Solution:
K Interleave process of APSP construction with edge elimination.

> Never have to build whole APSP graph.

[Tsarmardinos 1998]
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Recap

• Recap
– To schedule online, times must monotonically increase - use enablement 

conditions
– Running online allows greater flexibility to fluctuations
– However, propagation costs can be large for large graphs
– Can reduce edges by using domination to make graph smaller
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To Execute a Temporal Plan
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3. Schedule Plan

1. Describe Temporal Plan

2. Test Consistency

4. Execute Plan

��*�+" ��,)) ���
[1,10]

[0,9]

[1,1]

[2,2]

A

B

C

D

-2

Detect negative loops
(SSSP).

APSP + Decomposition.

A

B

C

D2
-1

10 1
-1

STN D Graph

9
0

[Dechter, Meiri, Pearl 91]
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To Execute a Temporal Plan
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1. Describe Temporal Plan

2. Test Consistency

3. Schedule Plan

)) ���
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4. Execute Plan

Problem: delays and fluctuations in task 
duration can cause plan failure.

Observation: temporal constraints 
leave room to adapt.

Flexible Execution adapts through 
dynamic scheduling:

Assign time to event when executed.

K Guarantee that all constraints will 
be satisfied.

K Schedule with low latency through 
pre-compilation.

[Muscettola, Morris, Tsmardinos KR98]
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To Execute a Temporal Plan
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1. Describe Temporal Plan

2. Test Consistency

3. Schedule Plan

)) ���
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4. Execute Plan 4. Dynamically Execute Plan

1. Describe Temporal Plan

2. Test Consistency

3. Reformulate Plan

How do we schedule on line?

~ Decomposable STN
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Outline: To Execute a Temporal 
Plan

[1,10] [1,1]

[0,9] [2,2]

[1,1]

[0,9]

B
A D

C

B

A [1,1] D

C

[0,9]

[1,1]
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t=3

t=0 B t=4
A [1,1] D

C

t=2
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4. Dynamically Execute Plan

1. Describe Temporal Plan

��������M�� �����8�
	�����	�+"�+����

2. Test Consistency �+����

3. Reformulate Plan
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