
�

Programs with Flexible Time

Contributions:

Brian Williams

Patrick Conrad

Simon Fang

Paul Morris

Nicola Muscettola

Pedro Santana

Julie Shah

John Stedl
Steve Levine
Tuesday, Feb 16th

Andrew Wang

courtesy of JPL

When?

�

Assignments

Problems Sets:
• Pset 1 due tomorrow (Wednesday) at 11:59pm

• Pset 2 released tomorrow

Interesting references:
• Dechter, R., I. Meiri, J. Pearl, “Temporal Constraint Networks,” Artificial

Intelligence, 49, pp. 61-95,1991.

• Muscettola, N., P. Morris and I. Tsamardinos, “Reformulating Temporal Plans for
Efficient Execution.” Intl Conf. on Knowledge Representation and Reasoning
(KRR), 1998.

�

Outline

• Programs with Flexible Time
– Intro
– Describing temporal plans
– Exposing implicit constraints
– Consistency checking
– Offline scheduling
– Online execution
– Reformulating for faster online execution

�

A single “cognitive system”
language and executive.

��������� ��	
�������������������� ��������	�����
��
��	���� �����	�����

���	
Kirk

Pike

Sulu

��������
	�
����
� ����

������
��		�
�

���������

����
�������
�	������������

����������

���������	�������
�������������

Burton

�����������

Bones

������������������������

Uhura

����� �����!���������!�����������������

© source unknown. All rights reserved. This content is excluded
from our Creative Commons license. For moreinformation,
see https://ocw.mit.edu/help/faq-fair-use/.

https://ocw.mit.edu/help/faq-fair-use/

Flexible Time

• Flexible time = more robustness
• We tell cognitive robot:

– Timing requirements (“engage boosters 2-4
minutes after launch but before reaching orbit”)

– Cognitive robot schedules autonomously.

This image is in the public domain.

�

Execution of Timed
Model-based Programs

����� �

���	��������

���	��������

���	���������	�������	������
� ���	��������

���	�����������	���������	���� ���	��������

��������������	��������	������	���
���	� �

���!"����
#
��$%����	��������&�
#
��$%����	������
�&�
#��
%����	���������	������&�
#
��$%����	��������&

'�
���!"����

#
��$%����	��������&
#
��$%���	���������	������&
#��
%����	��������&
#
��$%����	��������&

'
'

�"

�# �$

�%

�&1

2

[5,10] [5,10] [2,5] [5,10]

[5,10] [5,10] [2,5] [5,10]

�

����� �

��������������	��������	������	���
���	� �

&

'

�"

�# �$

�%

�&1

���	�������� ���	���������	�������	������
� ���	��������

�� "����
���	��������&

���	���������	������
��	��������&
���	��������&

'

���!"����
���	��������&�
���	������
�&�
��	���������	������&�
���	��������&

'�

2

[5,10] [5,10] [2,5] [5,10]

���	�������� ���	�����������	���������	���� ���	��������

[5,10] [5,10] [2,5] [5,10]

�!"���
#
��$%�
#
��$%�
#��
%��
#
��$%�

#
��$%��
#
��$%��
#��
%��
#
��$%��

'������
���������	������
����� ����� ��������
����
�	���
 ������
����� �����������������!���������������(

in RMPL [williams et al 01]

Decisions include what, how, who and when.

[Muscettola, Morris, Tsamardinos,KR 98]

Focus of today

(

To Execute a Temporal Plan

��*�+" ��,)) ���� ��*�+" ��,� ���

1. Describe Temporal Plan

2. Test Consistency

3. Schedule Plan

)) ���
� ���

4. Execute Plan 4. Dynamically Schedule Plan

1. Describe Temporal Plan

2. Test Consistency

3. Reformulate Plan

-

To Execute a Temporal Plan

��*�+" ��,)) ���� ��*�+" ��,� ���

1. Describe Temporal Plan

2. Test Consistency

3. Schedule Plan

)) ���
� ���

4. Execute Plan

.

Describe Temporal Plan

• Activities to perform

• Relationships among activities

/�	���0����"�

������12���*"�� 3����12���*"���4���5 �� �����6��7��	�8

9�)��"	��3����� � : "�+�9��� �:������)�� �� �����6��;��	�8

��<����=

This image is in the public domain.

�$

Metric Temporal Relations

> ?�������*����	����@������ ������$�������+���������$�����

> ;	��+��*" +�A��������5��*������+�8�)�A�@����

Activity: Going to the store

[10min, 30min]

[0d, 1d]
Activity: Bake Bread Activity: Eat Bread

��

Simplify by reducing interval relations to
relations on timepoints.

Activity A

Start Activity A

A- A+

End Activity A

��

Metric Temporal Relations

> ?�������*����	����@������ ������$�������+���������$�����

> ;	��+��*" +�A��������5��*������+�8�)�A�@����

Start Going to Store

G- G+

End Going to Store

[10m,30m]
10 < [G+ - G-] < 30

End Bake Bread

[0d,1d]
B+ E- 0 < [E- - B+] < 1

Start Eat Bread

��

Qualitative Temporal Relations

[Allen 83]

Y

X Y

X Y

X Y

YX

YX

Y X

B�A�)	��C C��)��	�B

B�������C C����DA8�B

B���	 ����C C���	 ����+DA8� B

B�+"	����C C���������B

B����	���C C����	��+DA8�B

B�)����*���C C�)����*�+DA8�B

B��!"� ��C X C��!"� ��B

B�+��E����C

��

Qualitative Temporal Relations

Expressed as timepoint inequalities:

Y

X Y

X Y

X Y

YX

YX

Y X

B�A�)	��C BF G�CD

B�������C BF <�CD

B���	 ����C CD G�BF and X- < Y+

B�+"	����C CD G�BD and X+ < Y+

B����	���C BD <�CD and X+ < Y+

B�)����*���C BD G�CD and X+ = Y+

B��!"� ��C X BD <�CD and X+ = Y+

B�+��E����C BF G�CD or Y+ < X-

Y-
[0,inf]

X+

Y-
[0,0]

X+

[Villain & Kautz; Simmons]

�

Temporal Relations Described by a
Simple Temporal Network (STN)

• Simple Temporal Network
• Tuple <X, C> where:
• variables X1,…Xn, represent time points

(real-valued domains)
• binary constraints C of the form:

– called links.

X1 X3

X2

[l1, u1]

[l2, u2] [l3, u3]

() []., ikikik baXX ∈−

Sufficient to represent:
• simple metric constraints
• all Allen relations but 1…

[Dechter, Meiri, Pearl 91]

Can’t represent:
• Allen’s disjoint relation

��

Modeling Visualization

• http://bicycle.csail.mit.edu/stn/

http://bicycle.csail.mit.edu/stn/

�(

To Execute a Temporal Plan

A

��*�+" ��,)) ���

1. Describe Temporal Plan

2. Test Consistency

3. Schedule Plan

)) ���
� ���

4. Execute Plan

[1,10]

[0,9]

[1,1]

[2,2]

B

C

D

�-

Consistency of an STN

Input: STN <X, C> where Cj = < <Xk, Xi>, <aj, bj> >

STN is consistent iff there exists an assignment to times X
satisfying C.

[1,10] [1,1]B

A D

[0,9] C [2,2]

�.

Schedule of an STN

Input: STN <X, C> where Cj = < <Xk, Xi>, <aj, bj> >

Schedule is assignment to all timepoints X consistent with
constraints.

[1,10]

[0,9]

[1,1]

[2,2]

A

B

C

D

�$

How to find schedule?

• Idea: Transform STN
– Transform to distance-graph
– Common graph algorithms (i.e., shortest path)

will apply

��

Transformation to distance graph

• (Board)

��

A B[l, u] A B

H�����1���I���������I��?	��*

Simple Temporal Network Distance Graph

u

- l

B –A ul � B – A � u �

l � B – A A – B � - l

> ����	A"�+������+���"���������D����������	��
> 65�	A"�+������+����������������������	��

[Dechter, Meiri, Pearl 91]

��

Algorithm: offline scheduling

Initialize execution window to [-∞, ∞] for each event
while unexecuted events:

xi = pick any unexecuted event
ti = pick any time in xi’s execution window
Propagate to all xi’s neighbors & update their windows

��

Naïve (and wrong) scheduling

• (Board)

�

Propagating to neighbors

Tighten neighbor’s execution windows:

- outgoing edges to neighbor: u’ = min(u, ti + wu)
- incoming edges from neighbor: l’ = max(l, ti l- w)

[u, l] � tightened [u’, l’]

wu

wl

xi = ti

��

Exposing Implicit Constraints

• (Board)

�(

B$ 6� 6�

�� ��

[10,20] [30,40]

[10,20]

[40,50]

[60,70]

20 40

B$ 6� 6�-10 -30

-10
20

50

�� ��
-40

70

-60

�-

APSP Graph: Windows of
Feasible Values

�$
$ �$ ($

D�$ �$ �$ �$

D�$ D�$ D�$ �$

D�$ D�$ �$
$

D�$ D
$ D�$ �$

7����+D�	��*

$ F�6�����������

>6� ���#�$���$%

>6�����#�$��
$%

D /�	 ���������� >�� ���#�$���$%

>������#�$��($%

20 40

B$ -10 6� -30 6�
-10

20
50

�� ��-40

70
-60

�.

Dispatchable form

• An STN or distance graph is dispatchable if:
– Can be properly scheduled via local propagations

to neighbors only
• Requires all implicit constraints be explicit

�$

Checking Consistency

• (Board)

��

9*��@�ID?	��*�9��������8

A B[2, 1] A B

> 9����������)) ID�	��*�*���������������8� ���
> I������A8����"������*	��������*�)	�������������� ��*�	��

> ���� ���"	����*	��������*��������
> /������"���	���*�� ��*�	��

/=��� ��)�����������������	����J
1

-2

Simple Temporal Network Distance Graph

��

Summary

• To schedule, want a simple, local-propagation
algorithm
– Requires exposing implicit constraints

• All-pairs shortest path (APSP) exposes all
implicit constraints
– Puts network in dispatchable form

• Negative cycle in APSP: inconsistent.

��

To Execute a Temporal Plan

��*�+" ��,)) ���� ��*�+" ��,� ���

1. Describe Temporal Plan

2. Test Consistency

3. Schedule Plan

)) ���
� ���

4. Execute Plan 4. Dynamically Schedule Plan

1. Describe Temporal Plan

2. Test Consistency

3. Reformulate Plan

��

Algorithm: offline scheduling

Compute dispatchable form (i.e., APSP)
Initialize execution window to [-∞, ∞] for each event
while unexecuted events:

xi = pick any unexecuted event
ti = pick any time in xi’s execution window
Propagate to all xi’s neighbors & update their windows

�

The original STN

[0,10] [1, 1]

[0,10] [2, 2]

��

Distance graph transformation

10 1

0 -1

10
2

-20

�(

All pairs shortest path

10 1

-1 -1

9
2

-20

1 -1

11

-2

A B C D
A 0 10 9 11

B -1 0 -1 1

C 0 1 0 2

D -2 -1 -2 0

�-

Computing a schedule

10 1

-1 -1

9
2

-20

1 -1

11

-2

�.

Computing a schedule

10 1

-1 -1

9
2

-20

[-∞, ∞]

[-∞, ∞] 1 -1 [-∞, ∞]

[-∞, ∞]
11

-2

Initialize execution windows for each event in the plan

�$

Computing a schedule

10 1

-1 -1

9
2

-20

[-∞, ∞]

t = 0 1 -1 [-∞, ∞]

[-∞, ∞]
11

-2

Assign the first event

��

Computing a schedule

10 1

-1 -1

9
2

-20

outgoing edges to neighbor: u’ = min(u, ti + wu)
incoming edges from neighbor: l’ = max(l, ti l- w)

[-∞, 10]

t = 0 1 -1 [-∞, ∞]

[-∞, ∞]
11

-2

Propagate updated time bounds to neighbors

��

Computing a schedule

10

0

9

-1

1

-1

-2

2

outgoing edges to neighbor: u’ = min(u, ti + wu)
incoming edges from neighbor: l’ = max(l, ti l- w)

[1, 10]

t = 0 1 -1 [-∞, ∞]

[-∞, ∞]
11

-2

Propagate updated time bounds to neighbors

��

Computing a schedule

10

0

9

-1

1

-1

-2

2

[1, 10]

t = 0 1 -1 [-∞, ∞]

[0, 9]
11

-2

Propagate updated time bounds to neighbors

��

Computing a schedule

10

0

9

-1

1

-1

-2

2

[1, 10]

t = 0 1 -1 [2, 11]

[0, 9]
11

-2

Propagate updated time bounds to neighbors

�

Computing a schedule

10 1

-1 -1

9
2

-20

t = 3

t = 0 1 -1 [2, 11]

[0, 9]
11

-2

Arbitrarily pick another time point and assign it...

��

Computing a schedule

10

0

9

-1

1

-1

-2

2

t = 3

t = 0 1 -1 [2, 11]

[2, 2]
11

-2

Propagate updated time bounds to neighbors

�(

Computing a schedule

10

0

9

-1

1

-1

-2

2

t = 3

t = 0 1 -1 [4, 4]

[2, 2]
11

-2

Propagate updated time bounds to neighbors

�-

Computing a schedule

10 1

-1 -1

9
2

-20

t = 3

t = 0 1 -1 [4, 4]

t = 2
11

-2

Pick another event and assign it

�.

Computing a schedule

10 1

-1 -1

9
2

-20

t = 3

t = 0 1 -1 [4, 4]

t = 2
11

-2

Propagate to neighbors

$

Computing a schedule

10 1

-1 -1

9
2

-20

t = 3

t = 0 1 -1 t = 4

t = 2
11

-2

Assign the final event

�

Pre-computed schedules not robust
against fluctuations

• We’ve just computed a schedule:
tA = 0, tB = 3, tC = 2, tD = 4

• But what if there’s a disturbance?
– i.e., what if tB = 3.1?
– i.e., what if tB = 4?
– i.e., what if tB = 100?

• Pre-computed schedules not robust against
fluctuations!

• Solution: Dispatch dynamically online.
– Schedule events “on the fly,” after observing past event times.
– Increases robustness to many unanticipated fluctuations.
– Flexible temporal constraints allow this!

�

To Execute a Temporal Plan

��*�+" ��,)) ���� ��*�+" ��,� ���

1. Describe Temporal Plan

2. Test Consistency

3. Schedule Plan

)) ���
� ���

4. Execute Plan 4. Dynamically Schedule Plan

1. Describe Temporal Plan

2. Test Consistency

3. Reformulate Plan

�

How do we schedule online?

• First, consider naive (incorrect!) approach.
• Similar to offline schedule algorithm, but now online:

– Wait until current time in execution window (“active”)

• (Still a problem though as we’ll see shortly)

�

Naïve (wrong!) online dispatcher

Compute dispatchable form (i.e., APSP)
Initialize execution window to [-∞, ∞] for each event
while unexecuted events:

xi = pick any unexecuted event if current time in window
ti = now
Propagate to all xi’s neighbors & update their windows

Naïve (wrong!) online scheduling

10

0

9

-1

1

-1

-2

2

[-∞, ∞]

t = 0 1 -1 [-∞, ∞]

[-∞, ∞]
11

-2

Arbitrarily picking next event…

�

Naïve (wrong!) online scheduling

10

0

9

-1

1

-1

-2

2

t = 3

t = 0 1 -1 [2, 11]

[0, 9]
11

-2

Arbitrarily picking next event…

(

Naïve (wrong!) online scheduling

10

0

9

-1

1

-1

-2

2

t = 3

t = 0 1 -1 [4, 4]

t = 2
11

-2
...but wait! We just assigned a past time!

-

Enablement conditions dictate the
ordering of dispatched events

• Online: must assign monotonically increasing times
– whereas offline algorithms may assign in any order.

• How can we constrain dispatcher to do this?

• Solution: determine “enablement conditions” by
analyzing negative edges.
– Allows us to infer if some edges must precede other edges

.

Enablement conditions dictate the
ordering of dispatched events

• Negative edges from APSP dictate ordering constraints

10 1

-1 -1

9
2

-20

1 -1

11

-2

�$

Enablement conditions dictate the
ordering of dispatched events

• Negative edges from APSP dictate ordering constraints

10 1

-1 -1

9
2

-20

1 -1

11

-2

B must occur after both A and C!

��

Enablement conditions dictate the
ordering of dispatched events

• An event is enabled if all its neighbors over negative
edges have already been dispatched.
– All “predecessors” have been dispatched.

• Modify online dispatching algorithm to only dispatch
events if they are enabled.

• An event is active is the current time is within that
event’s execution window

��

Corrected online dispatcher

Compute dispatchable form (i.e., APSP)
Initialize execution window to [-∞, ∞] for each event
E � {events with no predecessors} # set of enabled events
S � {} # set of executed events
while unexecuted events:

Wait until some event xi in E is active
ti = now # dispatch xi now at ti

Propagate to all xi’s neighbors & update their windows
Add xi to S
Add to E any now-enabled events

�3

Running online dispatcher

10

0

9

-1

1

-1

-2

2

Compute dispatchable form (i.e., APSP) E = {A, C}
Initialize execution windows to [-∞, ∞] S = {}
E � {events with no predecessors}
S � {} [-∞, ∞]
while unexecuted events:

Wait until some event xi in E is active [-∞, ∞] [-∞, ∞]
ti = now
Propagate to xi’s neighbors 1 -1

Add xi to S
Add to E any now-enabled events

A, C initially in E – have no [-∞, ∞]

negative, outgoing edges 11

-2

�4

Running online dispatcher

10

0

9

-1

1

-1

-2

2

Compute dispatchable form (i.e., APSP) E = {A, C}
Initialize execution windows to [-∞, ∞] S = {}
E � {events with no predecessors}
S � {} [-∞, ∞]
while unexecuted events:

Wait until some event xi in E is active [-∞, ∞] [-∞, ∞]
ti = now
Propagate to xi’s neighbors 1 -1

Add xi to S
Add to E any now-enabled events

A is enabled and in E. [-∞, ∞]
(could have chosen C too) 11

-2

�5

Running online dispatcher

10

0

9

-1

1

-1

-2

2

Compute dispatchable form (i.e., APSP) E = {C}
Initialize execution windows to [-∞, ∞] S = {A}
E � {events with no predecessors}
S � {} [1, 10]
while unexecuted events:

Wait until some event xi in E is active
t = 0 [2, 11]

ti = now
Propagate to xi’s neighbors 1 -1

Add xi to S
Add to E any now-enabled events

Dispatch A and propagate [0, 9]
11

-2

�6

Running online dispatcher

10

0

9

-1

1

-1

-2

2

Compute dispatchable form (i.e., APSP) E = {C}
Initialize execution windows to [-∞, ∞] S = {A}
E � {events with no predecessors}
S � {} [1, 10]
while unexecuted events:

Wait until some event xi in E is active
t = 0 [2, 11]

ti = now
Propagate to xi’s neighbors 1 -1

Add xi to S
Add to E any now-enabled events

B, D not enabled! But C still is. [0, 9]
11

-2

�7

Running online dispatcher

10

0

9

-1

1

-1

-2

2

Compute dispatchable form (i.e., APSP) E = {}
Initialize execution windows to [-∞, ∞] S = {A, C}
E � {events with no predecessors}
S � {} [3, 3]
while unexecuted events:

Wait until some event xi in E is active
t = 0 [4, 4]

ti = now
Propagate to xi’s neighbors 1 -1

Add xi to S
Add to E any now-enabled events

Dispatch & propagate C. t = 2
11

-2

68

Running online dispatcher

10

0

9

-1

1

-1

-2

2

Compute dispatchable form (i.e., APSP) E = {B}
Initialize execution windows to [-∞, ∞] S = {A, C}
E � {events with no predecessors}
S � {} [3, 3]
while unexecuted events:

Wait until some event xi in E is active
t = 0 [4, 4]

ti = now
Propagate to xi’s neighbors 1 -1

Add xi to S
Add to E any now-enabled events

B is now enabled (but still not D). t = 2
11

-2

69

Running online dispatcher

10

0

9

-1

1

-1

-2

2

Compute dispatchable form (i.e., APSP) E = {}
Initialize execution windows to [-∞, ∞] S = {A, C, B}
E � {events with no predecessors}
S � {} t = 3
while unexecuted events:

Wait until some event xi in E is active
t = 0 [4, 4]

ti = now
Propagate to xi’s neighbors 1 -1

Add xi to S
Add to E any now-enabled events

Dispatch & propagate B. t = 2
11

-2

(0

Running online dispatcher

10

0

9

-1

1

-1

-2

2

Compute dispatchable form (i.e., APSP) E = {D}
Initialize execution windows to [-∞, ∞] S = {A, C, B}
E � {events with no predecessors}
S � {} t = 3
while unexecuted events:

Wait until some event xi in E is active
t = 0 [4, 4]

ti = now
Propagate to xi’s neighbors 1 -1

Add xi to S
Add to E any now-enabled events

D is finally enabled. t = 2
11

-2

(1

Running online dispatcher

73

10

0

9

-1

1

-1

-2

2

Compute dispatchable form (i.e., APSP) E = {}
Initialize execution windows to [-∞, ∞] S = {A, C, B, D}
E � {events with no predecessors}
S � {} t = 3
while unexecuted events:

Wait until some event xi in E is active
t = 0 t = 4

ti = now
Propagate to xi’s neighbors 1 -1

Add xi to S
Add to E any now-enabled events

Finish up by dispatching D! t = 2
11

-2

(2

Online dispatching algorithm remarks

• By considering predecessors, we guarantee that events
assigned monotonically increasing times online.

• Capable of responding to fluctuations that do not affect
overall temporal feasibility.

• (Note: must be run on an dispatchable / APSP graph!)

(3

Online dispatcher efficiency

• Consider an STN with n edges.

• How many edges in APSP distance graph?

Compute dispatchable form (i.e., APSP)
Initialize execution windows to [-∞, ∞]
E � {events with no predecessors}
S � {}
while unexecuted events:

Wait until some event xi in E is active
ti = now
Propagate to xi’s neighbors
Add xi to S
Add to E any now-enabled events

(4

Online dispatcher efficiency

• Consider an STN with n edges.

• How many edges in APSP distance graph? n2.

Compute dispatchable form (i.e., APSP)
Initialize execution windows to [-∞, ∞]
E � {events with no predecessors}
S � {}
while unexecuted events:

Wait until some event xi in E is active
ti = now
Propagate to xi’s neighbors
Add xi to S
Add to E any now-enabled events

(5

Online dispatcher efficiency

• Consider an STN with n edges.

• How many edges in APSP distance graph? n2.

• How many neighbors to propagate to each step?

Compute dispatchable form (i.e., APSP)
Initialize execution windows to [-∞, ∞]
E � {events with no predecessors}
S � {}
while unexecuted events:

Wait until some event xi in E is active
ti = now
Propagate to xi’s neighbors
Add xi to S
Add to E any now-enabled events

(6

Online dispatcher efficiency

• Consider an STN with n edges.

• How many edges in APSP distance graph? n2.

• How many neighbors to propagate to each step? n.

Compute dispatchable form (i.e., APSP)
Initialize execution windows to [-∞, ∞]
E � {events with no predecessors}
S � {}
while unexecuted events:

Wait until some event xi in E is active
ti = now
Propagate to xi’s neighbors
Add xi to S
Add to E any now-enabled events

(7

Online dispatcher efficiency

• Consider an STN with n edges.

• How many edges in APSP distance graph? n2.

• How many neighbors to propagate to each step? n.

• Large STNs: propagation slow. Want to reduce this.

Compute dispatchable form (i.e., APSP)
Initialize execution windows to [-∞, ∞]
E � {events with no predecessors}
S � {}
while unexecuted events:

Wait until some event xi in E is active
ti = now
Propagate to xi’s neighbors
Add xi to S
Add to E any now-enabled events

7-

To Execute a Temporal Plan

��*�+" ��,)) ���� ��*�+" ��,� ���

1. Describe Temporal Plan

2. Test Consistency

3. Schedule Plan

)) ���
� ���

4. Execute Plan 4. Dynamically Schedule Plan

1. Describe Temporal Plan

2. Test Consistency

3. Reformulate Plan

79

-0

You don’t need all those edges!

10 1

-1 -1

9
2

-2
0

1 -1

11

-2

-1

You don’t need all those edges!

10 1

-1 -1

9
2

-2
0

1 -1

11

-2

1

-1

9

0

1 -1

Equivalent minimal dispatchable network

-2

You don’t need all those edges!

10 1

-1 -1

9
2

-2
0

Let’s consider a specific triangle
of edges.

1 -1

11

-2

-3

You don’t need all those edges!

10 1

-1 -1

9
2

-2
0

Let’s consider a specific triangle
of edges.

Do we really need the bottom
edge?

1 -1

11

-2

-4

You don’t need all those edges!

10 1

-1 -1

9
2

-2
0

Let’s consider a different triangle
of edges.

Do we really need the bottom
edge?

1 -1

11

-2

-5

A ropes analogy
10

10
Imagine a “unidirectional rope” of

length 10 constraining sliders on a track.

-6

Rope analogy
10

10

Imagine a “unidirectional rope” of

length 10 constraining sliders on a track.

-7

Rope analogy
10

10

Now add in ropes for other constraints

11

1

1

11

88

Rope analogy
10

Imagine pulling A and D as tightly as
possible.

10
1

11

1

11

8.

Rope analogy
10

Can we remove rope AD without changing behavior?

10

11

1

1

11

Yes! Same possible positions for A, B,
D.

.0

Rope analogy
10

Can we remove ropes AB, BD without changing
behavior?

10

11

1

1

11

No. AD still constrained, but B could slide freely! Not the
same behavior. Collectively, AB and BD entail AD (but AD

does not entail both AB and AD).

.1

Upper dominating edges - detection
from APSP

dBC If dAC, dBC ≥ 0 and

dAB + dBC = dAC

then BC dominatesAC

dAC

(Proof omitted - based on triangle rule property of
APSP. Please see notes / reading for more info)

.2

Lower dominating edges - detection
from APSP

dAB

If dAB, dAC < 0 and

dAB + dBC = dAC

then AB dominatesAC

dAC

(Proof omitted - based on triangle rule property of
APSP. Please see notes / reading for more info)

.3

Dominance example

10 1

-1 -1

9
2

-20

1 -1

11

-2

.4

Dominance example

10 1

-1 -1

9
2

-20

1 -1

11

Upper dominated! -2

.5

Dominance example

10 1

-1 -1

9
2

-20

1 -1

11

Upper dominated! -2

.6

Dominance example

10 1

-1 -1

9
2

-20

Upper dominated!

1 -1

11

-2

.7

Dominance example

10 1

-1 -1

9
2

-20

Upper dominated!

1 -1

11

-2

98

Dominance example

10 1

-1 -1

9
2

-20

1 -1

11

-2 Upper dominated!

99

Dominance example

10 1

-1 -1

9
2

-20

1 -1

11

-2 Upper dominated!

�$0

Dominance example

10 1

-1 -1

9
2

-20

Lower dominated!

1 -1

11

-2

�$1

Dominance example

10 1

-1 -1

9
2

-20

Lower dominated!

1 -1

11

-2

�$2

Dominance example

10 1

-1 -1

9
2

-20

1 -1

11

-2

Lower dominated!

�$3

Dominance example

10 1

-1 -1

9
2

-20

1 -1

11

-2

Lower dominated!

�$4

Dominance example

10 1

-1 -1

9
2

-20

1 -1

11

-2 Lower dominated!

�$5

Dominance example

10 1

-1 -1

9
2

-20

1 -1

11

-2 Lower dominated!

�$6

Dominance example

1

-1

9

0

1 -1

�$7

Dominance example

1

-1

9

0

1 -1

10 1

-1 -1

9
2

-20

1 -1 Original APSP distance graph

11

-2

... now in minimal
dispatchable form!

�$8

Dominance example

1

-1

9

0

Original STN

... now in minimal 1 -1
dispatchable form!

[0,10] [1, 1]

[0,10] [2, 2]

�09

FilteringAlgorithm(G)

Input: A dispatchable APSP-graph G
Output: A minimal dispatchable graph
1 for each pair of intersecting edges in G
2 if both dominate each other
3 if neither is marked
4 arbitrarily mark one for elimination
5 end if
6 else if one dominates the other
7 mark dominated edge for elimination
8 end if
9 end for
10 remove all marked edges from graph
11 return G

��0

Avoiding Intermediate Graph
Explosion

> Problem:
K All pairs shortest path table computation consumed O(n2) space
K Only used as an intermediate - not needed after minimal dispatchable graph

obtained.

> Solution:
K Interleave process of APSP construction with edge elimination.

> Never have to build whole APSP graph.

[Tsarmardinos 1998]

��1

Recap

• Recap
– To schedule online, times must monotonically increase - use enablement

conditions
– Running online allows greater flexibility to fluctuations
– However, propagation costs can be large for large graphs
– Can reduce edges by using domination to make graph smaller

��2

To Execute a Temporal Plan

)) ���
� ���

3. Schedule Plan

1. Describe Temporal Plan

2. Test Consistency

4. Execute Plan

��*�+" ��,)) ���
[1,10]

[0,9]

[1,1]

[2,2]

A

B

C

D

-2

Detect negative loops
(SSSP).

APSP + Decomposition.

A

B

C

D2
-1

10 1
-1

STN D Graph

9
0

[Dechter, Meiri, Pearl 91]

��3

To Execute a Temporal Plan

��*�+" ��,)) ���

1. Describe Temporal Plan

2. Test Consistency

3. Schedule Plan

)) ���
� ���

4. Execute Plan

Problem: delays and fluctuations in task
duration can cause plan failure.

Observation: temporal constraints
leave room to adapt.

Flexible Execution adapts through
dynamic scheduling:

Assign time to event when executed.

K Guarantee that all constraints will
be satisfied.

K Schedule with low latency through
pre-compilation.

[Muscettola, Morris, Tsmardinos KR98]

��4

To Execute a Temporal Plan

��*�+" ��,)) ��� ����
����)���

1. Describe Temporal Plan

2. Test Consistency

3. Schedule Plan

)) ���
� ���

4. Execute Plan 4. Dynamically Execute Plan

1. Describe Temporal Plan

2. Test Consistency

3. Reformulate Plan

How do we schedule on line?

~ Decomposable STN

��5

Outline: To Execute a Temporal
Plan

[1,10] [1,1]

[0,9] [2,2]

[1,1]

[0,9]

B
A D

C

B

A [1,1] D

C

[0,9]

[1,1]

��*�+" ��,� ���

t=3

t=0 B t=4
A [1,1] D

C

t=2

)) ���
� ���

4. Dynamically Execute Plan

1. Describe Temporal Plan

��������M�� �����8�
	�����	�+"�+����

2. Test Consistency �+����

3. Reformulate Plan

#H"����� ���H		���������	+����L�.-%

MIT OpenCourseWare
https://ocw.mit.edu

16.412J / 6.834J Cognitive Robotics
Spring 2016

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

https://ocw.mit.edu
https://ocw.mit.edu/terms

