CSAIL Programs with Flexible Time

Mers

CSAILIMIT

Contributions:
BrianWilliams
Patrick Conrad
Simon Fang

Paul Morris
Nicola Muscettola
Pedro Santana
st Steve Levine
John Stedl

Andrew Wang

courtesy of JPL 1

@Eﬁ Assignments N

CSAIL

Problems Sets:
e Pset 1 due tomorrow (Wednesday) at 11:59pm

e Pset 2 released tomorrow

Interesting references:

e Dechter, R., I. Meiri, J. Pearl, “Temporal Constraint Networks,” Artificial
Intelligence, 49, pp. 61-95,1991.

« Muscettola, N., P. Morris and 1. Tsamardinos, “Reformulating Temporal Plans for
Efficient Execution.” Intl Conf. on Knowledge Representation and Reasoning
(KRR), 1998.

i Outline

CSAIL

* Programs with Flexible Time
— Intro

— Describing temporal plans

— Exposing implicit constraints
— Consistency checking

— Offline scheduling

— Online execution

— Reformulating for faster online execution

it A single “cognitive system”
s language and executive.

Enterprise

Uhura

Goals & Collaboratively resolves goal failures

User models
in RMPL

M

Control
Commands

\.

Diagnoses likely failures

© source unknown. All rights reserved. This content is excluded
from our Creative Commons license. For moreinformation,
see https://ocw.mit.edu/help/faq-fair-use/.

4

https://ocw.mit.edu/help/faq-fair-use/

ik Flexible Time

CSAIL — 9

e Flexible time = more robustness

* We tell cognitive robot:

— Timing requirements (“engage boosters 2-4
minutes after launch but before reaching orbit™)

— Cognitive robot schedules autonomously.

This image is in the public domain.

Execution of Timed ws
Model-based Programs “4®

imageScienceTargets(Rover1, Rover2)
Parallel
{Sequence
Rover1.goto(p4);
Rover1.goto(p5);
bver1.imageTargets();
Rover1.goto(p3);

{

e

Rover2.goto(p1);
Rover2.imageTargets(§
pver2.goto(p2);

Rover2.goto(p3);

in RMPL [williams etal 01]

Decisions include what, how, who and when. . —

Rover2.goto(p1) Rover2.imageTargets Rover2.goto(p2)

[5.10] [3.10] 23] [3.10]
@ > End
Rover1.goto(p4) Rover1.goto(p5) Rover1.imageTargets Rover1.goto(p3) *
@
. /
[5,10] [5,10] [2,5] [5,10]
@ O O O -

Rover2.goto(p3)

Focus of today

Agents adapt to temporal disturbances in a coordinated manner
by scheduling the start of activities on the fly. MuscettolaMorris, Tsamardinos KR 98]

6

@g& nes o
. To Execute a Temporal Plan ~ “»°
Schedule Offline Schedule Online
1. Describe Temporal Plan 1. Describe Temporal Plan
2. Test Consistency 2. Test Consistency
3. Schedule Plan 3. Reformulate Plan
e ___ofthne___________
online

4. Execute Plan 4. Dynamically Schedule Plan

19 To Execute a Temporal Plan »2

CSAIL

Schedule Offline

Schedule Online

1. Describe Temporal Plan

2. Test Consistency

3. Schedule Plan

offline

online

4. Execute Plan

o =
o] Describe Temporal Plan <

9

* Activities to perform

* Relationships among activities

[Remove NH3 Shunt]4’[Vent NH3 Shunt& Stow]—’[Release LoopATray]

| Egress/ Setup

Configure VentTools]—’[Fluid Caps | | SFU Reconfig]—’[Release Loop B Tray

e ———

U= tmax

) Metric Temporal Relations

CSAIL

« Going to the store takes at least 10 min and at most 30 min.

[10min, 30min]

* Bread should be eaten within one day of baking.

T P T

10

e

CSAIL

Simplify by reducing interval relations to
relations on timepoints.

Start Activity A End Activity A

11

. . e
] Metric Temporal Relations s 7%

CSAIL

» Going to the store takes at least 10 min and at most 30 min.

[10m,30m]
@ @ 10 <[G* - G < 30

Start Going to Store End Going to Store

* Bread should be eaten within one day of baking.

[0d, | d]

End Bake Bread Start Eat Bread

12

@%& Qualitative Temporal Relations s
[Allen 83]

Y overlapped-by X

Y contains X

X starts Y Y started-by X

X finishes Y [N Y finished-by X
X equals Y - Y equals X

X disjoint Y

13

) Qualitative Temporal Relations

CSAIL

Expressed as timepoint inequalities:

0,i
xbefore Y [N X <Y (OETHD)
xmeetsy NN XY
Xoverlaps Y [Y- < X*and X-<Y*

X during Y x|] Y- <X and X* <Y*
X starts Y _ X-=Y-and X* <Y*
X finishes Y _ X <Y and X* =Y*
X equals Y - X =Y and X* =Y*

X disjoint Y X*<YorY*<X

i’ [Villain & Kautz;Simmons]

AgLt, Temporal Relations Described by a = _»-

. i S, ﬁ&
“ait Simple Temporal Network (STN) —*+
* Slmple Temporal NetWOrl([Dechter, Meiri, Pearl 91]

* Tuple <X, C> where:

* variables X,,...X,, represent time points
(real-valued domains)

* binary constraints C of the form:
(Xk _Xi)e[aiknbik]

— called links.
Sufficient to represent: Can’t represent:
e simple metric constraints e Allen’s disjoint relation

e all Allen relations but1...

15

) Modeling Visualization

CSAIL

* http://bicycle.csail.mit.edu/stn/

16

http://bicycle.csail.mit.edu/stn/

“.0 To Execute a Temporal Plan

CSAIL

Schedule Offline

1. Describe Temporal Plan

2. Test Consistency

3. Schedule Plan

offline

=
4,.’.‘_,;'
710
v 4
=

PN / 1‘ y.
& A &
< A /4 by
v A
- oy
. :L:E"_?

031 O

4. Execute Plan

online

17

[2,2]

@% Consistency of an STN —p%/

CSAIL

Input: STN <X, C> where C;= < <X, X;>, <a, b> >

LFONL
® ©

57 C)y [22]

STN is consistent iff there exists an assignment to times X
satisfying C.

18

Gl Schedule of an STN =77

CSAIL &

Input: STN <X, C> where C;= < <X, X;>, <a, b> >

LFONL
® ©

57+ C)y [22]

Schedule is assignment to all timepoints X consistent with
constraints.

19

@% How to tind schedule?

CSAIL

e Idea: Transform STN

— Transform to distance-graph

— Common graph algorithms (1.¢., shortest path)
will apply

20

RS_ fp‘;v

) Transformation to distance graph - -

CSAIL

Q\\

* (Board)

21

b %__7
Y

@% Map STN to Distance (D) Graph mi.\\;

CSAIL

Simple Temporal Network Distance Graph

— OO

 Upperbound mapped to outgoing, non-negative arc.
 Lowerbound mapped to incoming, negative arc.

[Dechter, Meiri, Pearl 91]

22

Ll

@% Algorithm: offline scheduling %

Initialize execution window to [-oo, oo] for each event
while unexecuted events:

x; = pick any unexecuted event

t,= pick any time 1n x,’s execution window

Propagate to all x;’s neighbors & update their windows

23

MEE w7

@% Naive (and wrong) scheduling s

CSAIL

* (Board)

24

@Ej Propagating to neighbors

Tighten neighbor’s execution windows:

- outgoing edges to neighbor: v’ = min(u, ¢, + w,)

- incoming edges from neighbor: /” = max(/, ¢,- w,)

[u, l] =2 tightened [u’, ']
-y
- O

25

nes oy

@E}fﬁ Exposing Implicit Constraints s

* (Board)

26

CSAIL

[10,20]

[10,20]

(53—

[60,70]

27

20

)]

40

TN
@@ . @
10

e

CSAIL

APSP Graph: Windows of
Feasible Values

X, |Ls |Le |Ss |Se
X, |[0 | 20] 50|30 70
1Ls |[-10]]0 40 | 20 | 60
Le ||-40(|-30 |0 -10 | 30
Ss ||-20(| -10 | 20 |O 50
Se ||-60(| -50 |-20 | 40 |0

- Earliest Times

APSP d-graph

+ Latest Times

28

S In

Lein
*SS In

*Se in

10, 20
40, 50!
20, 30

60, 70

D Dispatchable form 9%/

CSAIL

 An STN or distance graph 1s dispatchable 1.

— Can be properly scheduled via local propagations
to neighbors only

* Requires all implicit constraints be explicit

29

e

CSAIL

* (Board)

Checking Consistency

30

/‘I'I‘RS&_J

CSAIL

) Check D-Graph Consistency -

« Consistent iff D-graph has no negative cycles.

* Detect by computing shortest path from one event to all others.
Single Source Shortest Path (SSSP).
Event must reach all others.

Example of inconsistent constraint:

— O

Simple Temporal Network Distance Graph

31

fﬁﬁggﬁ s v
B Summary S

CSAIL

* To schedule, want a simple, local-propagation
algorithm

— Requires exposing implicit constraints

* All-pairs shortest path (APSP) exposes all
implicit constraints

— Puts network 1n dispatchable form

* Negative cycle in APSP: inconsistent.

32

= To Execute a Temporal Plan @g
Schedule Offline Schedule Online
1. Describe Temporal Plan 1. Describe Temporal Plan
2. Test Consistency 2. Test Consistency

3. Schedule Plan 3. Reformulate Plan

offline

online
4. Execute Plan 4. Dynamically Schedule Plan

33

nEs v

@% Algorithm: oftline scheduling ~»*

Compute dispatchable form (i.e., APSP)
Initialize execution window to [-oo, oo] for each event
while unexecuted events:

x; = pick any unexecuted event

t,= pick any time 1n x,;’s execution window

Propagate to all x;’s neighbors & update their windows

34

CSAIL

The original STN

35

e

CSAIL

Distance graph transformation

36

e

CSAIL
Al B| C| D

Al 010 9] 11
B|-1| 0] -1] 1

C| O 1] 0 2
D|-2|-1|-2] O

37

CSAIL

38

e

CSAIL

Initialize execution windows for each event in the plan

39

e

CSAIL

Assign the first event

40

@E};ﬁ Computing a schedule e

CSAIL

outgoing edges to neighbor: #’ = min(u, ¢, +w,)

incoming edges from neighbor: /” = max(/, ¢, - w;)

[-00, 10]

Propagate updated time bounds to neighbors

41

@E};ﬁ Computing a schedule e

CSAIL

outgoing edges to neighbor: ©’ = min(u, t; + w,)

incoming edges from neighbor: I’ = max(/, ¢, - w))

11, 10]

Propagate updated time bounds to neighbors

42

e

CSAIL

Propagate updated time bounds to neighbors

43

e

CSAIL

12, 11]

Propagate updated time bounds to neighbors

44

@g}g} . /‘]ER‘-‘" > f?‘:r
= Computing a schedule FE

12, 11]

Arbitrarily pick another time point and assign it...

45

e

CSAIL

12, 11]

Propagate updated time bounds to neighbors

46

@Eg’h Computing a schedule

CSAIL

4, 4]

Propagate updated time bounds to neighbors

47

e

CSAIL

Pick another event and assign it

48

ngs 7

@E& Computing a schedule >3

CSAIL

Propagate to neighbors

49

e

CSAIL

Assign the final event

50

@g}% Pre-computed schedules not robust
cAlL against fluctuations

 We’ve just computeda schedule:
t1=0,t3=3,tc=2,tp=4
« But what 1f there’s a disturbance?

—1.e.,whatifr3=3.1?
~ i.c., what if 75 = 47
— 1.e., what 1f 75 = 100?
* Pre-computed schedulesnot robust against
fluctuations!

e Solution: Dispatch dynamically online.

— Schedule events “on the fly,” after observing past event times.
— Increases robustness to many unanticipated fluctuations.

— Flexible temporal constraints allow this!

51

@g& ey
=, To Execute a Temporal Plan ~ “» 7%
Schedule Offline Schedule Online
1. Describe Temporal Plan 1. Describe Temporal Plan
2. Test Consistency 2. Test Consistency
3. Schedule Plan 3. Reformulate Plan
offline

online

4. Execute Plan 4. Dynamically Schedule Plan

52

. /lqgég " ﬁ??
ﬂgs A&.L How do we schedule online? e

 First, considernaive (incorrect!) approach.

* Similarto offline schedule algorithm, butnow online:

— Wait until current time in execution window (“‘active”)

» (Still a problem though as we’ll see shortly)

53

E& EEH s e
7. Naive (wrong!) online dispatcher —»_»

Compute dispatchable form (1.e., APSP)

Initialize execution window to [-oo, oo] for each event

while unexecuted events:
x; = pick any unexecuted event if current time in window
{;= NOW

Propagate to all x;’s neighbors & update their windows

54

- - -
@jﬂ% Naive (wrong!) online scheduling “»%

Arbitrarily picking next event...

95

- - -
@jﬂ% Naive (wrong!) online scheduling “»%

Arbitrarily picking next event...

56

Naive (wrong!) online scheduling ~ —s %

CSAIL

...but wait! We just assigned a past time!

o7

% Enablement conditions dictate the — === _~»~

CeAlt ordering of dispatched events ~4C

* Online: must assign monotonically increasing times

— whereas offline algorithms may assign in any order.

 How can we constrain dispatcher to do this?

e Solution: determine “enablement conditions” by
analyzing negative edges.

— Allows us to infer if some edges must precede other edges

58

Enablement conditions dictate the == _»~
CenlL ordering of dispatched events A

* Negative edges from APSP dictate ordering constraints

59

Enablement conditions dictate the ==~
ceAL ordering of dispatched events A

* Negative edges from APSP dictate ordering constraints

B must occur after both A and C!

60

% Enablement conditions dictate the — === _~»~

CeAlt ordering of dispatched events ~4C

* An eventis enabledif all its neighbors over negative
edges have already been dispatched.

— All “predecessors” have been dispatched.

* Modify online dispatching algorithm to only dispatch
events 1f they are enabled.

e An eventis active 1s the current time 1s within that
event’s execution window

61

. . /n]gég " & ﬁ??
ﬁﬂ%iﬁu Corrected online dispatcher %

Compute dispatchable form (1.e., APSP)
Initialize execution window to [-oo, oo] for each event
E € {events with no predecessors}
S< {3
while unexecuted events:
Wait until some event x; in £ 1s active
t;= now
Propagate to all x,’s neighbors & update their windows
Addx;to S
Add to £ any now-enabled events

62

@Hﬁh Running online dispatcher S

CSAIL

Compute dispatchable form (i.e., APSP) L= {A’ C}
Initialize execution windows to [-o0, o] S = {}
E €< {events with no predecessors}
S&{}
while unexecuted events:
Wait until some event x; in E is active

[-00, 00
ti = now
Propagate to x;’s neighbors @
Add X; to S

Add to £ any now-enabled events

A, C imtially in E — have no
negative, outgoing edges

63

@Hﬁh Running online dispatcher S

CSAIL

Compute dispatchable form (i.e., APSP) L= {A’ C}
Initialize execution windows to [-o0, o] S = {}

E €< {events with no predecessors}
S&{}

while unexecuted events:

f; = NOW

Propagate to x;’s neighbors

Add x;to §

Add to £ any now-enabled events

A 1s enabled and in E.

(could have chosen C too)

64

@Hﬁh Running online dispatcher S

CSAIL

Compute dispatchable form (i.e., APSP) L= {C}
Initialize execution windows to [-o0, o] S = {A}
E €< {events with no predecessors}
S&{}
while unexecuted events:

Wait until some event x; in E is active

Add to £ any now-enabled events

Dispatch A and propagate

65

@Hﬁh Running online dispatcher S

CSAIL

Compute dispatchable form (i.e., APSP) L= {C}
Initialize execution windows to [-o0, o] S = {A}
E €< {events with no predecessors}
S&{}
while unexecuted events:
Wait until some event x; in E is active
; = Nnow
Propagate to x;’s neighbors
Add x;to §

B, D not enabled! But C still 1s.

66

@Hﬁh Running online dispatcher S

CSAIL

Compute dispatchable form (i.e., APSP) L= {}
Initialize execution windows to [-o0, o] S = {A, C}
E €< {events with no predecessors}

S<{)

while unexecuted events:

Add to £ any now-enabled events

Dispatch & propagate C.

67

@E& Running online dispatcher Y

CSAIL

Compute dispatchable form (i.e., APSP) L= {B}
Initialize execution windows to [-o0, o] S = {A, C}
E €< {events with no predecessors}

S < {}

while unexecuted events:
Wait until some event x; in E is active
; = Nnow
Propagate to x;’s neighbors
Add x;to §

B 1s now enabled (but still not D).

68

@E& Running online dispatcher Y

CSAIL

Compute dispatchable form (i.e., APSP) L= {}
Initialize execution windows to [-o0, o] S = {A, C, B}
E €< {events with no predecessors}

S<{)

while unexecuted events:

Add to £ any now-enabled events

Dispatch & propagate B.

69

@E& Running online dispatcher Y

CSAIL

Compute dispatchable form (i.e., APSP) L= {D}
Initialize execution windows to [-o0, o] S = {A, C, B}
E €< {events with no predecessors}
S < {}

while unexecuted events:

10
Wait until some event x; in E is active 0
l‘ f—
ti = now _1

Propagate to x;’s neighbors
Add X; to S

D 1s finally enabled.

70

@E& Running online dispatcher Y

CSAIL

Compute dispatchable form (i.e., APSP) L= {}
Initialize execution windows to [-o0, o] S = {Aa Ca Ba D}
E €< {events with no predecessors}

S< {}

while unexecuted events:

Add to £ any now-enabled events

Finish up by dispatching D!

73

71

MERS 7

P

% Online dispatching algorithm remarks ~—» 7%

CSAIL &

* By considering predecessors, we guarantee that events
assigned monotonically increasing times online.

« (Capable of responding to fluctuations that do not affect
overall temporal feasibility.

* (Note: must be run on an dispatchable/ APSP graph!)

72

@E{ﬁ Online dispatcher efficiency &

CSAIL

e Consider an STN with n edges.
e How many edges in APSP distance graph?

Compute dispatchable form (i.e., APSP)
Initialize execution windows to [-co, o]
E €< {events with no predecessors}
S<{)
while unexecuted events:
Wait until some event x; in £ is active
f; = NOW
Propagate to x;’s neighbors
Add x;to §
Add to £ any now-enabled events

73

@H} . . . /ITRE _ /%7
= Online dispatcher efficiency 5

e Consider an STN with n edges.

 How many edges in APSP distance graph? »?.

Compute dispatchable form (i.e., APSP)
Initialize execution windows to [-co, o]
E €< {events with no predecessors}
S<{)
while unexecuted events:
Wait until some event x; in £ is active
f; = NOW
Propagate to x;’s neighbors
Add x;to §
Add to £ any now-enabled events

74

e

CSAIL

Online dispatcher efficiency

e Consider an STN with n edges.
 How many edges in APSP distance graph? n’.

 How many neighbors to propagate to each step?

Compute dispatchable form (i.e., APSP)
Initialize execution windows to [-co, o]
E €< {events with no predecessors}
S<{)
while unexecuted events:
Wait until some event x; in £ is active
f; = NOW
Propagate to x;’s neighbors
Add x;to §
Add to £ any now-enabled events

75

e

CSAIL

Online dispatcher efficiency -

e Consider an STN with n edges.
 How many edges in APSP distance graph? n’.

 How many neighbors to propagate to each step? n.

Compute dispatchable form (i.e., APSP)
Initialize execution windows to [-co, o]
E €< {events with no predecessors}
S<{)
while unexecuted events:
Wait until some event x; in £ is active
f; = NOW
Propagate to x;’s neighbors
Add x;to §
Add to £ any now-enabled events

76

. . . =
@E& Online dispatcher efficiency j?.f

CSAIL

e Consider an STN with n edges.
 How many edges in APSP distance graph? n’.
* How many neighbors to propagate to each step? n.
e Large STNs: propagation slow. Want to reduce this.

Compute dispatchable form (i.e., APSP)
Initialize execution windows to [-co, o]
E €< {events with no predecessors}
S<{)
while unexecuted events:
Wait until some event x; in £ is active
f; = NOW
Propagate to x;’s neighbors
Add x;to §
Add to £ any now-enabled events

77

@g& ey
=, To Execute a Temporal Plan ~ “» 7%
Schedule Offline Schedule Online
1. Describe Temporal Plan 1. Describe Temporal Plan
2. Test Consistency 2. Test Consistency

3. Schedule Plan 3. Reformulate Plan

offline

online
4. Execute Plan 4. Dynamically Schedule Plan

78

CSAIL

WHAT IEITOLD
"You,

§)

YOU|DON'T/NEED ALL THOSE
| “* EDGES

! memegenerator.ne

79

e

CSAIL

80

2 Equivalent minimal dispatchable network

81

nes. v

@g& You don’t need all those edges! >

CSAIL

v ¥

Let’s consider a specific triangle
of edges.

82

nEs /v

@Eﬁ You don’t need all those edges! =8

CSAIL

Let’s consider a specific triangle
of edges.

Do we really need the bottom
edge?

83

nEs /v

@Eﬁ You don’t need all those edges! =8

CSAIL

Let’s consider a different triangle
of edges.

Do we really need the bottom

e : edge?
1

1
—/

84

A ropes analogy ”IE; tg-g??

Imagine a “unidirectional rope” of

length 10 constraining sliders on a track.

85

HIERE 9
@E& Rope analogy j?.g

CSAIL
@wf

Imagine a “unidirectional rope” of

length 10 constraining sliders on a track.

86

HIERE 9
Rope analogy :».*\;«77

Now add 1n ropes for other constraints

87

Rope analogy

__| == Y
— __1__7./"

Tl P4 /
t;;:;;’.@}

CSAIL
‘\ 11 /
Imagine pulling A and D as tightly as
possible.
A B D

11

88

Rope analogy ”IE; ’é;?

Can we remove rope AD without changing behavior?

A B D

10

11

Yes! Same possible positions for A, B,
D.

89

@% Rope analogy

Can we remove ropes AB, BD without changing
behavior?

-
No. AD still constrained, but B could slide freely! Not the
same behavior. Collectively, AB and BD entail AD (but AD

does not entail both AB and AD).

90

@}5& Upper dominating edges - detection = 7
CSALL from APSP A

I If d,., dg- =0 and
N‘) dAB - dBC o dAC
then BC dominates AC

(Proof omitted - based on triangle rule property of
APSP. Please see notes / reading for more 1info)

91

@5}% Lower dominating edges - detection == 7
CSALL from APSP A

dap
Itdyg dyw <0 and
dpp + dpc = dy
\/ @ then AB dominates AC
dc

(Proof omitted - based on triangle rule property of
APSP. Please see notes / reading for more 1info)

92

CSAIL

Dominance example

93

[@Eﬁ Dominance example

CSAIL

Upper dominated!

94

@g& Dominance example

CSAIL

Upper dominated!

95

@g& Dominance example S

CSAIL

Upper dominated!

96

@g& Dominance example

CSAIL

Upper dominated!

97

@g& Dominance example S

CSAIL

Upper dominated!

98

e

CSAIL

99

Upper dominated!

@g& Dominance example S

CSAIL

[Lower dominated!

100

@g& Dominance example

CSAIL

[Lower dominated!

101

e
Y /

@Eb Dominance example “»

CSAIL

LLower dominated!

102

CSAIL

Dominance example

LLower dominated!

103

CSAIL

104

LLower dominated!

CSAIL

Dominance example N

-2 IL.ower dominated!

105

@jﬂ% Dominance example

CSAIL

106

... Now 1n minimal
dispatchable form!

@Eﬁ Dominance example . o

CSAIL

@ Original STN

Nl

10,107

... Now 1n minimal
dispatchable form!

L

ol FilteringAlgorithm(G) e

CSAIL ._,

Input: A dispatchable APSP-graph G
Output: A minimal dispatchable graph
1 for each pair of intersecting edges in G
2 if both dominate each other

3 if neither is marked

4 arbitrarily mark one for elimination
5 end if

6 elseif one dominates the other

7 mark dominated edge for elimination
8 endif

9 end for

10 remove all marked edges from graph

11 return G

109

@g& Avoiding Intermediate Graph ws_py
ceatt Explosion

 Problem:

— All pairs shortest path table computation consumed O(rn?) space

— Only used as an intermediate - not needed after minimal dispatchable graph
obtained.

 Solution:

— Interleave process of APSP construction with edge elimination.
* Never have to build whole APSP graph.

[Tsarmardinos 1998]

110

@Eﬂ% Recap

CSAIL

* Recap

— To schedule online, times must monotonically increase - use enablement
conditions

— Running online allows greater flexibility to fluctuations
— However, propagation costs can be large for large graphs

— Can reduce edges by using domination to make graph smaller

111

@E& To Execute

CSAIL

Schedule Offline

1. Describe Temporal Plan

2. Test Consistency

3. Schedule Plan

4. Execute Plan

b=
a Temporal Plan s
STN D Graph

[1,10 e [1,1]

®E>@\/<\/

/ Detect negative loops
\ (SSSP).

APSP + Decomposition.

offline

online

[Dechter;, Meiri, Pearl 91]
112

19 To Execute a Temporal Plan s

CSAIL

Schedule Offline Problem: delays and fluctuations in task

duration can cause plan failure.

1. Describe Temporal Plan
Observation:temporal constraints

leave room to adapt.

2. Test Consistency

Flexible Execution adapts through
dynamic scheduling:

3. Schedule Plan

Assign time to event when executed.

: — Guarantee that all constraints will
offline .
___________________________ be satisfied.
online _ Schedule with low latency through
4. Execute Plan pre-compilation.

[Muscettola, Morris, Tsmardinos KR98]
113

@Eﬁ% To Execute a Temporal Plan s~
CSAIL P i .@
Schedule Offline Schedule Online

1. Describe Temporal Plan 1. Describe Temporal Plan
2. Test Consistency 2. Test Consistency

3. Schedule Plan 3. Reformulate Plan

offline ~ Decomposable STN

online

4. Execute Plan 4. Dynamically Execute Plan

How do we schedule on line?

114

AxiH Outline: To Execute a Temporal
Plan

CSAIL

Schedule Online

1. Describe Temporal Plan

2. Test Consistency

3. Reformulate Plan

4. Dynamically Execute Plan

[Muscettola, Morris, Tsamardinos KR98]

115

[1,10] (B[]
(S92

[0,9]
To minimize latency
remove redundant

edges.
oM
@ T®
0,91 (<)
offline t=3
online EAO) (B> [I’I]@S
[1,1]
[0,9] (S
t=2

MIT OpenCourseWare
https://ocw.mit.edu

16.412J / 6.834J Cognitive Robotics
Spring 2016

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

https://ocw.mit.edu
https://ocw.mit.edu/terms

