

Risk-bounded Programming on Continuous State

Prof. Brian Williams March 30th, 2016 Cognitive Robotics (16.412J / 6.834J)

photo courtesy MIT News

Assignments

Today: Risk-bounded Motion Planning

- M. Ono and B. C. Williams, "Iterative Risk Allocation: A New Approach to Robust Model Predictive Control with a Joint Chance Constraint," *IEEE Conference on Decision and Control,* Cancun, Mexico, December 2008.
- M. Ono, B. Williams and L. Blackmore, "Probabilistic Planning for Continuous Dynamic Systems under Bounded Risk," Journal of Artificial Intelligence Research, v. 46, 2013.

After Advanced Lectures: Risk-bounded Scheduling

- C. Fang, P. Yu, and B. C. Williams, "Chance-constrained Probabilistic Simple Temporal Problems," AAAI, Montreal, CN, 2014.
- A. Wang and B. C. Williams, "Chance-constrained Scheduling via Conflict-directed Risk Allocation," AAAI, Austin, TX, January, 2015.

After Advanced Lectures: Risk-bounded Probabilistic Activity Planning

• Santana, P., Thiébaux, S., Williams, B.C., "RAO*: an Algorithm for Chance-Constrained POMDP's," AAAI, Phoenix, AZ, February 2016.

Homework:

- Changing Pset order; different from syllabus.
- IRA pset soon (next 1-2 weeks)
- Let Steve know what times work for advanced lecture dry runs

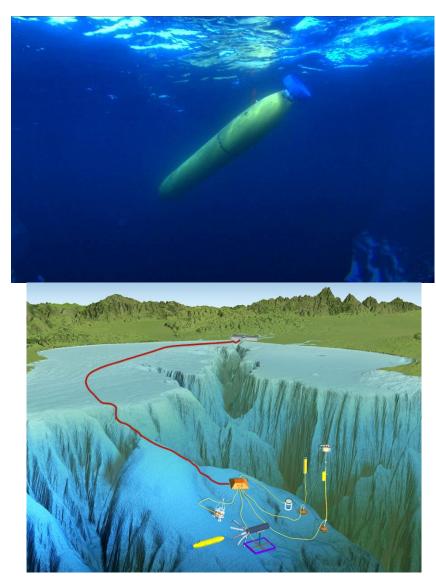
Key takeaways

- Maximizing utility under bounded risk makes sense.
- Risk allocation can help us solve.

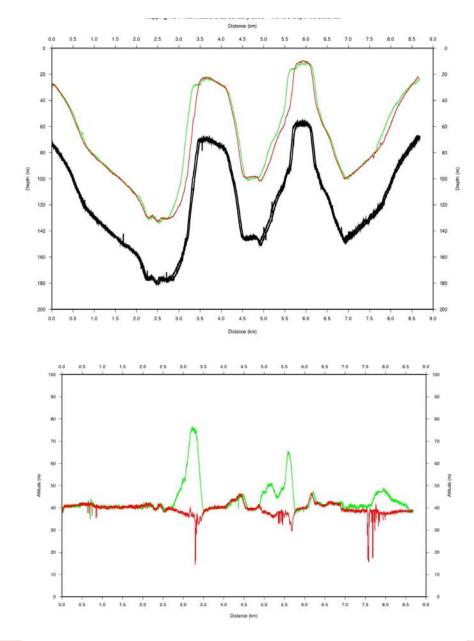
Outline

- Review
- Risk-aware Trajectory Planning
- Iterative Risk Allocation (IRA)
- Generalizing to Risk-aware Systems
- Convex Risk Allocation (CRA)

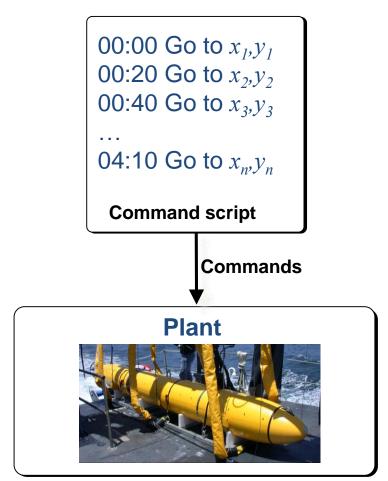
Depth Navigation for Bathymetric Mapping – Jan. 23rd, 2008



© MBARI. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/.



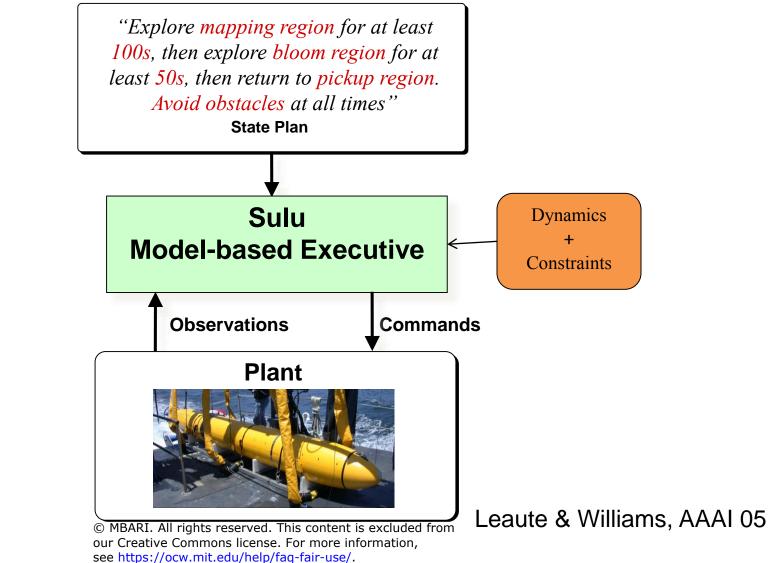
Dynamic Execution of State Plans



© MBARI. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/.

Leaute & Williams, AAAI 05

Dynamic Execution of State Plans



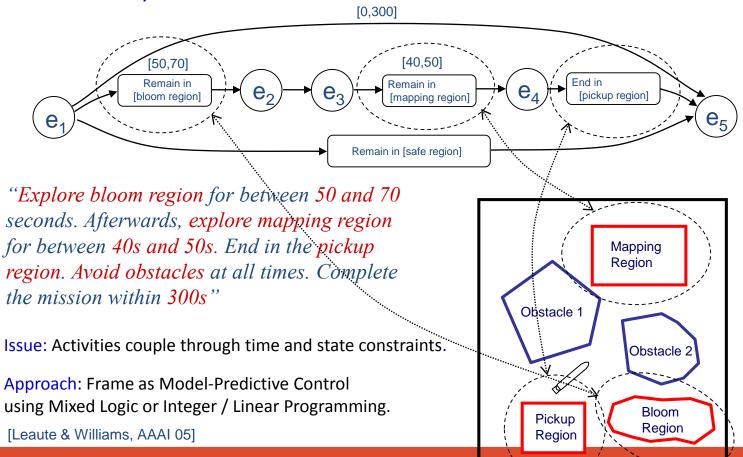
Optimal

3/30/16

Sulu: Dynamic Execution of State Plans

A state plan is a model-based program that is unconditional, timed, and hybrid and provides flexibility in state and time.

3/30/16



16.412J / 6.834J – L15 Risk-bounded Programs on Continuous States

8

Frame Planning as a Mathematical Program

$$\min_{\mathbf{x}_{1:N},\mathbf{u}_{1:N}} J(\mathbf{x}_1\cdots\mathbf{x}_N,\mathbf{u}_1\cdots\mathbf{u}_N) + f(\mathbf{x}_N)$$

Cost function

s.t.

$$\mathbf{x}_{k+1} = \mathbf{A}\mathbf{x}_{k} + \mathbf{B}\mathbf{u}_{k} \quad (k = 0, 1, \dots N - 1)$$

$$\mathbf{H}\mathbf{x}_{k} \leq \mathbf{g} \quad (k = 0, 1, \dots N)$$
Spatial constraints

Cost-to-go function

$$\mathbf{x}_0 = \mathbf{x}_{\text{start}}$$

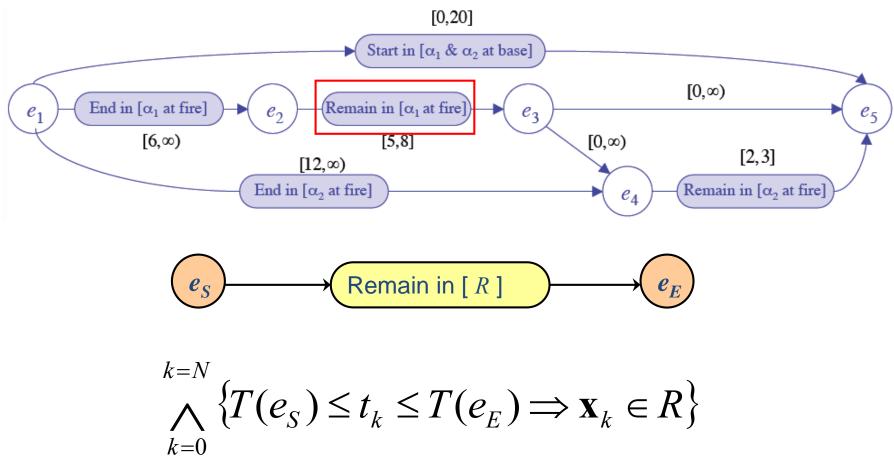
Initial position and velocity

 $\frac{\mathbf{X}_{\text{goal}}}{-\mathbf{u}_{\text{max}}} \leq \mathbf{u}_{k} \leq \mathbf{u}_{\text{max}} \quad (k = 0, 1, \dots N - 1)$ Thrust limits

$$\mathbf{x}_{k} \equiv \begin{pmatrix} x_{k} & y_{k} & \dot{x}_{k} & \dot{y}_{k} \end{pmatrix}^{T}, \ \mathbf{u}_{k} \equiv \begin{pmatrix} F_{x,k} & F_{y,k} \end{pmatrix}^{T}$$

MERS

Encode "Remain In" Constraints, . . .



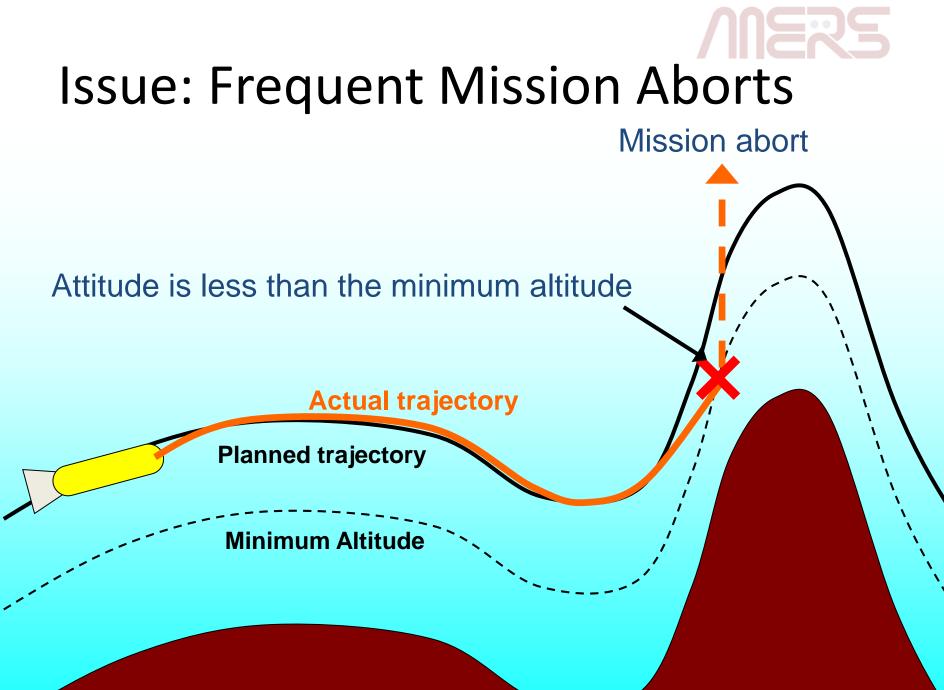
•Thomas Léauté, "*Coordinating Agile Systems through the Model-based Execution of Temporal Plans*, " S. M. Thesis, Massachusetts Institute of Technology, August 2005.

•Thomas Léauté, Brian Williams, "Coordinating Agile Systems Through the Model-based Execution of Temporal Plans," *Proceedings of the Twentieth National Conference on Artificial Intelligence (AAAI-05),* Pittsburgh, PA, July 2005, pp. 114-120.

3/30/16

Outline

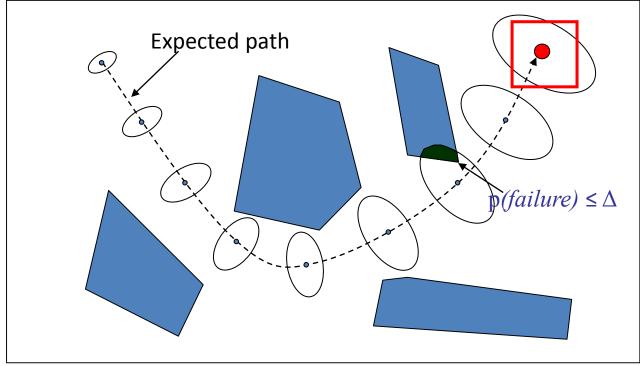
- Review
- Risk-aware Trajectory Planning
- Iterative Risk Allocation (IRA)
- Generalizing to Risk-aware Systems
- Convex Risk Allocation (CRA)



3/30/16

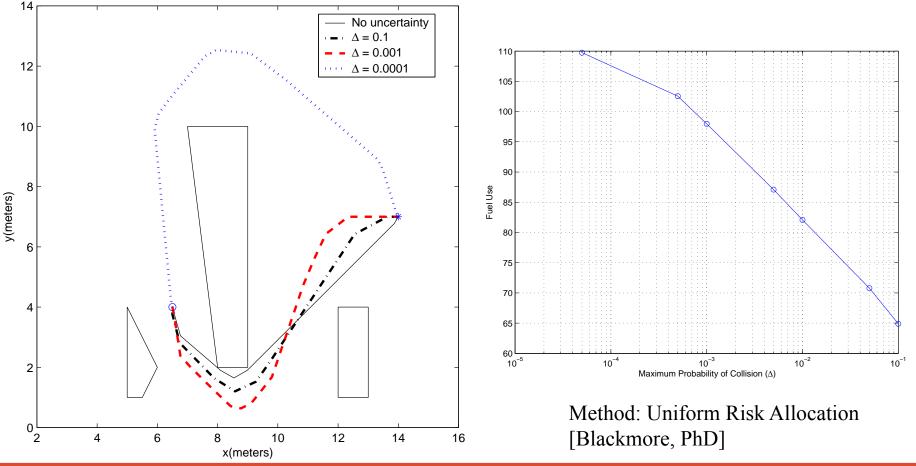
Chanced Constrained, Robust Path Planning

- "Plan optimal path to goal such that $p(failure) \le \Delta$."



Risk – Performance Tradeoff

• Maximum probability of failure is used to trade performance against risk-aversion.

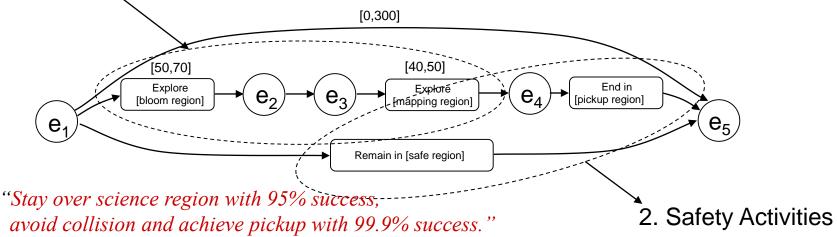


October 29th, 2015

Goal-directed, Risk-bounded Planning

Operator:Specifies acceptable risk.Executive:Decides how to use risk effectively.

1. Science Activities



Constraints on risk of failure (Chance Constraints):

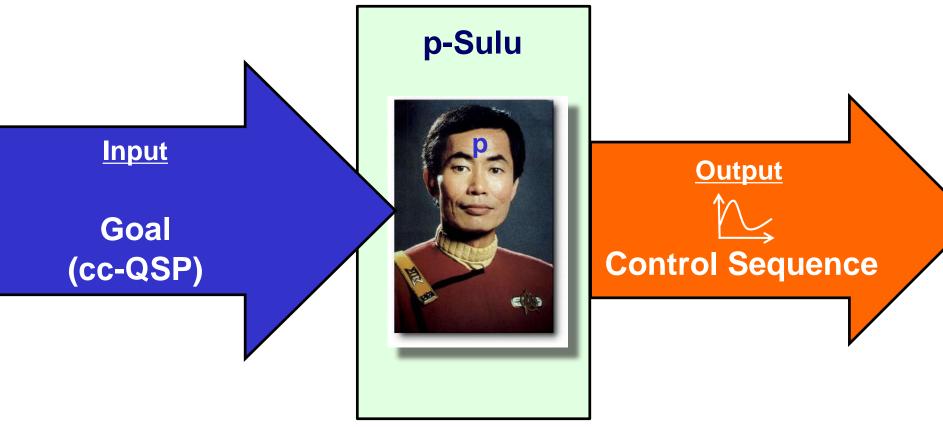
1. p(Remain in [bloom region] fails OR Remain in [mapping region] fails) < 5%.

2. *p*(End in [pickup region] *fails* OR Remain in [safe region] *fails*) < .1%.

Instance of Chance-constrained Programming.

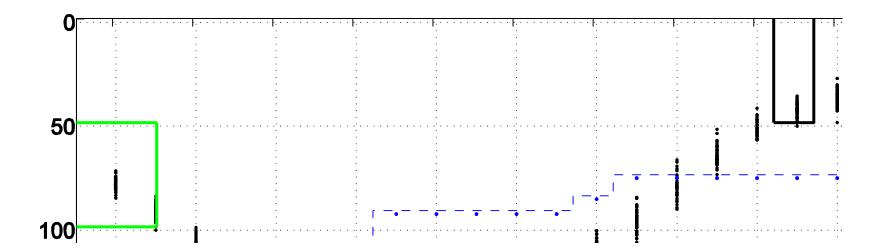
Input and Output

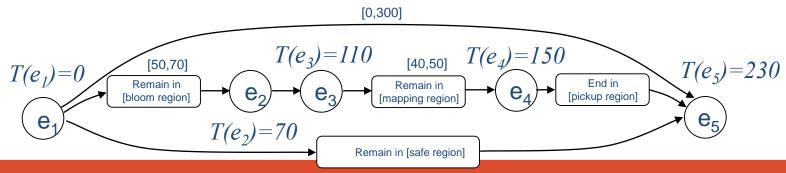
• p-Sulu: Probabilistic Sulu (plan executive)



© source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/.

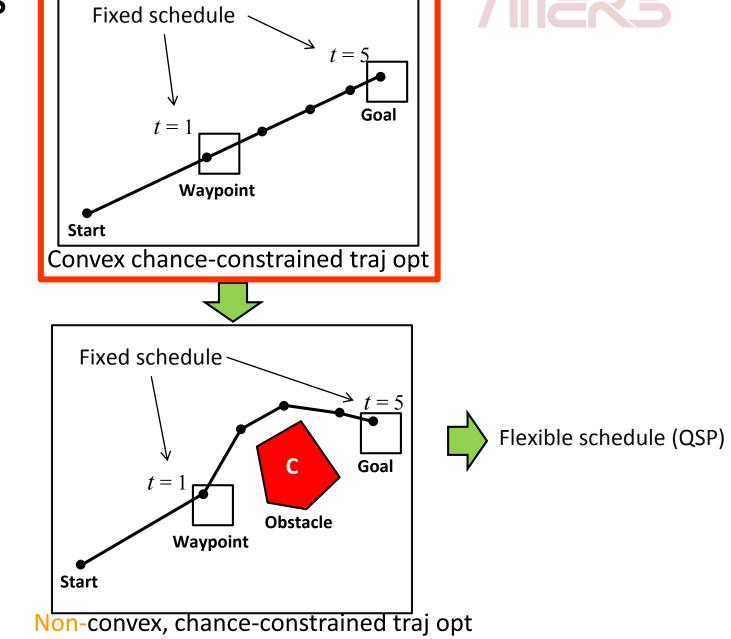
Example Execution





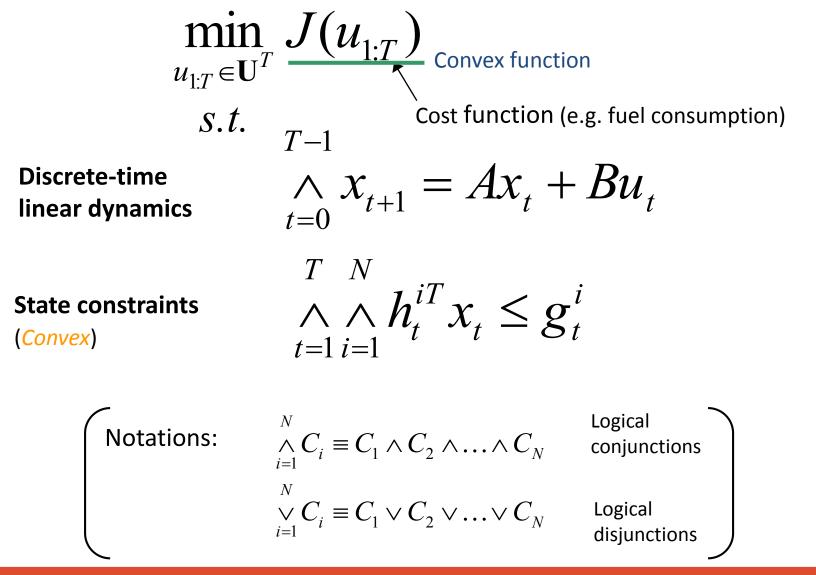
3/30/16

Problems



3/30/16

Deterministic Finite-Horizon Optimal Control



Chance-Constrained FH Optimal Control

$$\begin{array}{ll}
\underset{u_{1:T} \in \mathbf{U}^{T}}{\min} J(u_{1:T}) \\
\overset{S.t.}{\underset{t=0}{}} & T-1 \\
\begin{array}{l}
\overset{N}{\underset{t=0}{}} & x_{t+1} = Ax_{t} + Bu_{t} + \underbrace{w_{t}}{} \\
\overset{N}{\underset{t=0}{}} & \underbrace{w_{t+1}}{\underset{t=0}{}} & \underbrace{w_{t}}{\underset{t=0}{} & \underbrace{w_{t}}{\underset{t=0}{}} \\
\end{array}$$
Stochastic dynamics
$$\begin{array}{l}
\overset{T}{\underset{t=0}{}} & \underbrace{w_{t}}{\underset{t=1}{} & \underbrace{w_{t}}{\underset{t=1}{}} \\
\overset{N}{\underset{t=0}{}} & \underbrace{w_{t}}{\underset{t=1}{} & \underbrace{w_{t}}{\underset{t=1}{}} \\
\overset{N}{\underset{t=1}{}} & \underbrace{w_{t}}{\underset{t=1}{} & \underbrace{w_{t}}{\underset{t=1}{} & \underbrace{w_{t}}{\underset{t=1}{}} \\
\overset{N}{\underset{t=1}{} & \underbrace{w_{t}}{\underset{t=1}{} & \underbrace{w_{t}}{\underset{t=1}{} & \underbrace{w_{t}}{\underset{t=1}{}} \\
\end{array}$$
State constraints
$$\begin{array}{l}
\overset{T}{\underset{t=1}{} & \underbrace{w_{t}}{\underset{t=1}{} & \underbrace{$$

Chance-Constrained FH Optimal Control

$$\begin{split} \min_{u_{1:T} \in \mathbf{U}^{T}} J(u_{1:T}) \\ s.t. \\ T-1 \\ \text{Stochastic dynamics} & & \bigwedge_{t=0}^{T-1} x_{t+1} = Ax_{t} + Bu_{t} + w_{t} \\ w_{t} \sim N(0, \Sigma_{t}) \\ w_{t} \sim N(0, \Sigma_{t}) \\ & X_{0} \sim N(\overline{x}_{0}, \Sigma_{x,0}) \\ T \\ & \bigwedge_{t=1}^{T} \sum_{i=1}^{N} h_{t}^{iT} x_{i} \leq g_{t}^{i} \end{split}$$

Chance-Constrained FH Optimal Control

Example: Connected Sustainable Home

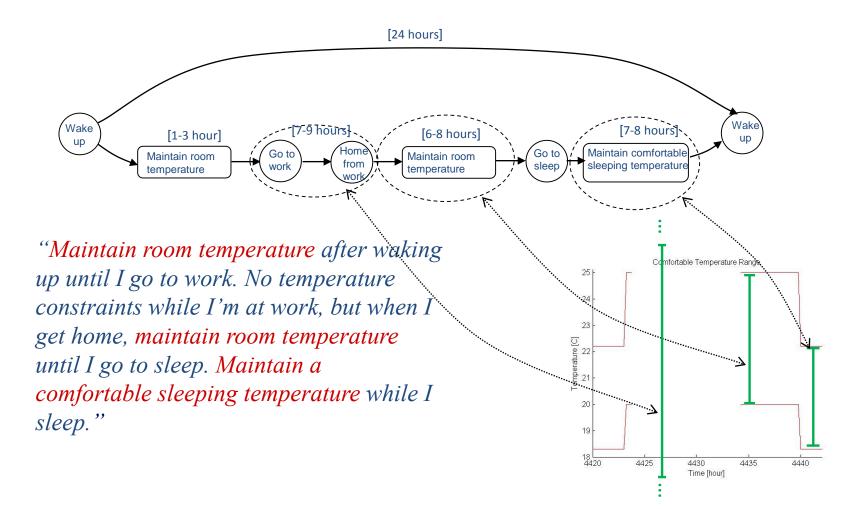
joint w F. Casalegno & B. Mitchell, MIT Mobile Experience Lab

© MIT Mobile Experience Lab. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/.

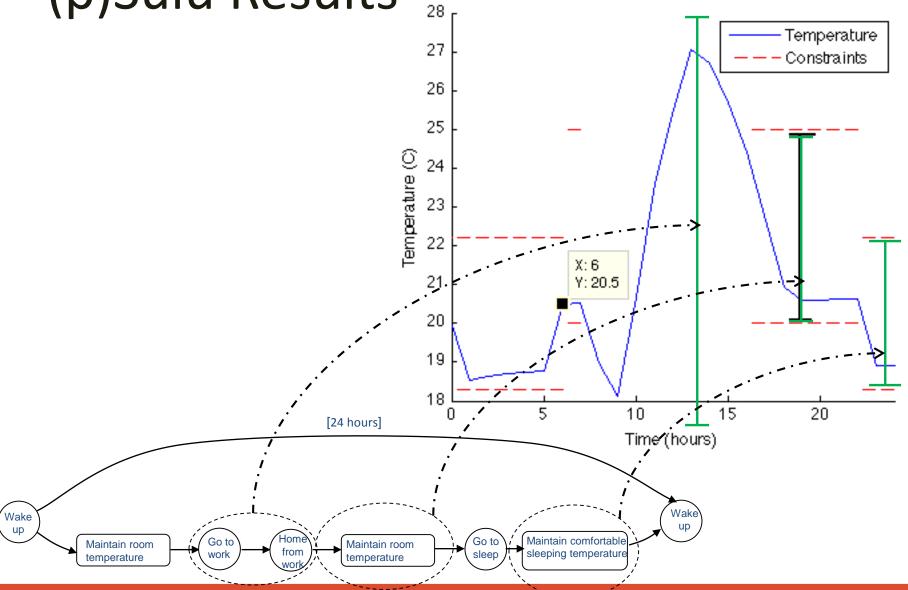
- Goal: Optimally control HVAC, window opacity, washer and dryer, e-car.
- Objective: Minimize energy cost.

Qualitative State Plan (QSP)

Sulu [Leaute & Williams, AAAI05]



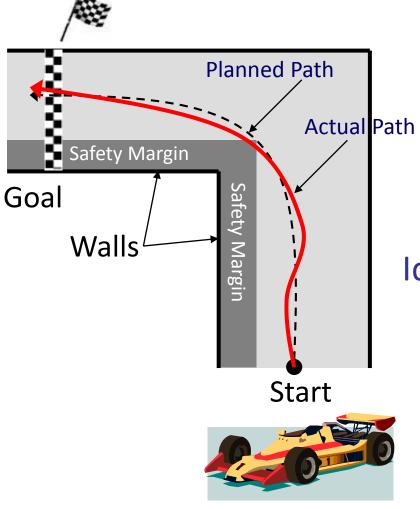
(p)Sulu Results



Outline

- Review
- Risk-aware Trajectory Planning
- Iterative Risk Allocation (IRA)
- Generalizing to Risk-aware Systems
- Convex Risk Allocation (CRA)

Example: Race Car Path Planning



<u>Problem</u>

Find the fastest path to the goal, while limiting the probability of crash Risk bound throughout the race to 0.1%

Idea:

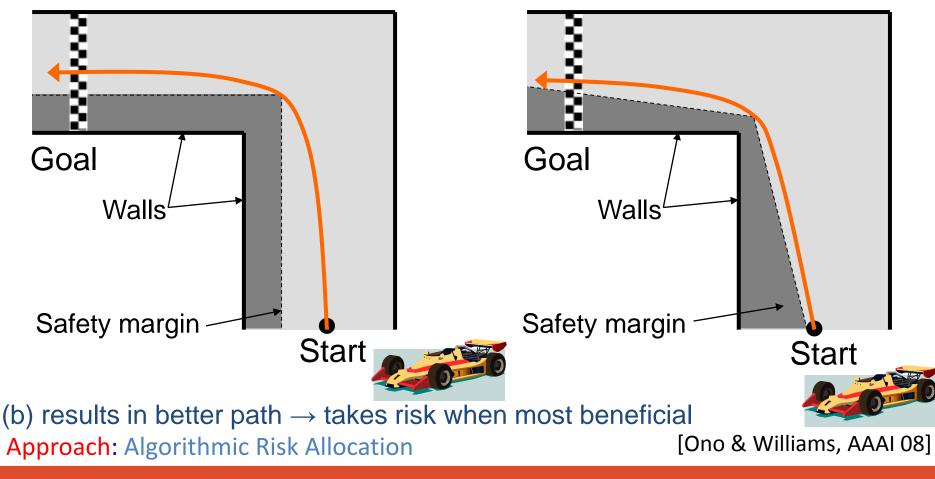
- Create safety margin that satisfies the risk bound from start to the goal.
- Reduce to simpler, deterministic optimization problem.

Executive creates safety margins that satisfy

(a) Uniform width safety margin

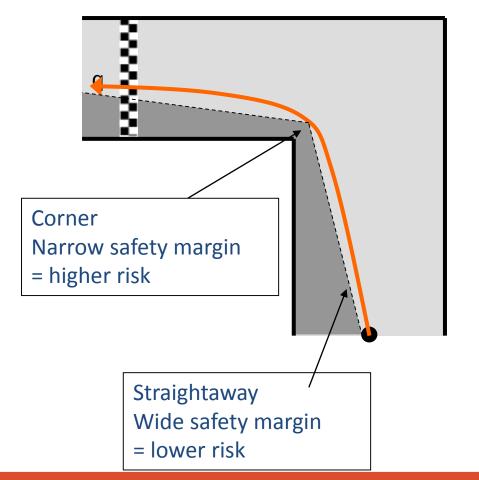
3/30/16

(b) Uneven width safety margin



Key Idea - Risk Allocation

- Taking risk at the corner results in a shorter path, than taking the same risk at the straightaway.
- Sensitivity of path length to risk is higher at the corner.
- Risk Allocation
 - Optimize allocation of risk to time steps and constraints.

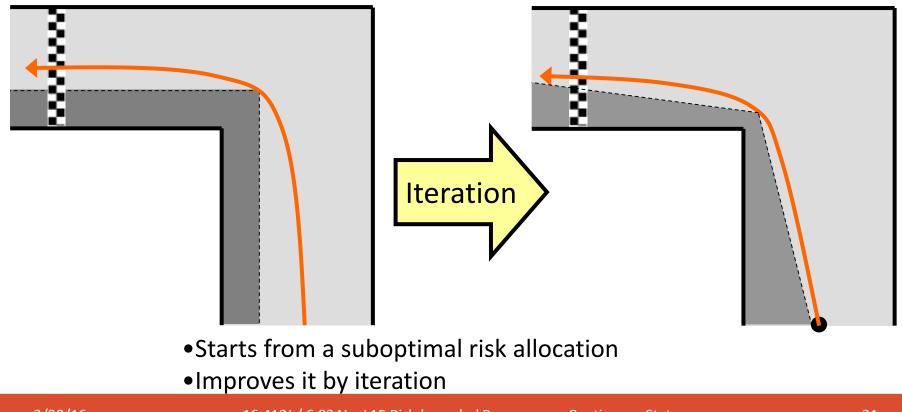


Iterative Risk Allocation (IRA)

•Descent algorithm

$$\overline{J}^*(\boldsymbol{\delta}_0) \ge \overline{J}^*(\boldsymbol{\delta}_1) \ge \overline{J}^*(\boldsymbol{\delta}_2) \cdots$$

(Refer to paper for proof)



Goal Safety margin Start

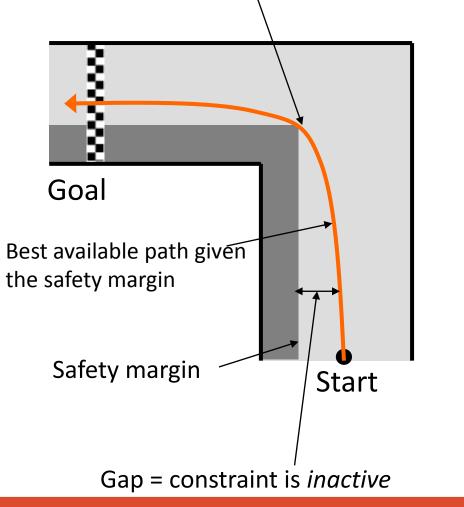
Algorithm IRA

- Initialize with arbitrary risk allocation
- 2 Loop
- 3 Compute the best available path given the current risk allocation
- 4 Decrease the risk where the constraint is inactive
 - Increase the risk where the constraint is active

6 End loop

5

No gap = Constraint is *active*



Algorithm IRA

- 1 Initialize with arbitrary risk allocation
 - Loop

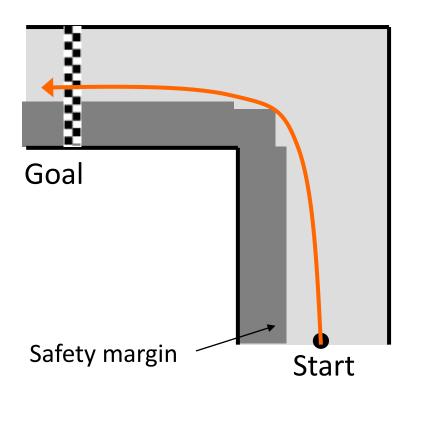
2

<u>3</u>

5

- Compute the best available path given the current risk allocation
- 4 Decrease the risk where the constraint is inactive
 - Increase the risk where the constraint is active

Algorithm IRA



- 1 Initialize with arbitrary risk allocation
- 2 Loop

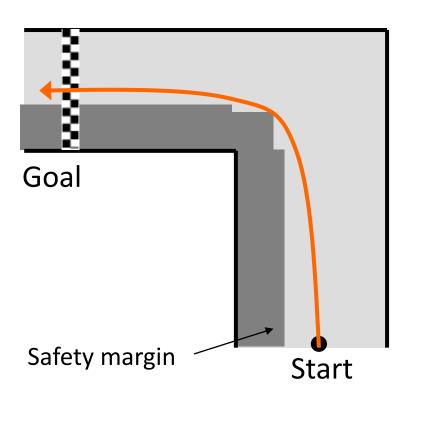
3

<u>4</u>

5

- Compute the best available path given the current risk allocation
- Decrease the risk where the constraint is inactive
- Increase the risk where the constraint is active

Algorithm IRA



- 1 Initialize with arbitrary risk allocation
- 2 Loop

3

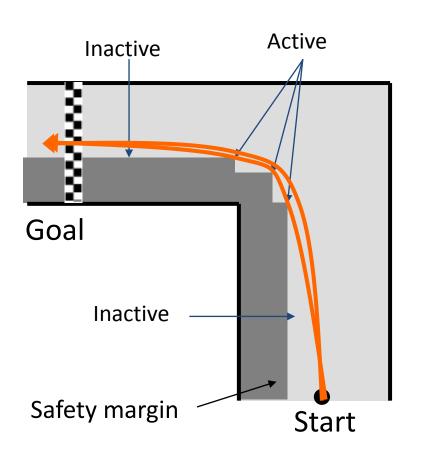
<u>5</u>

- Compute the best available path given the current risk allocation
- 4 Decrease the risk where the constraint is inactive
 - Increase the risk where the constraint is active

1

2

<u>3</u>



Algorithm IRA

- Initialize with arbitrary risk allocation
- Loop
- Compute the best available path given the current risk allocation
- 4 Decrease the risk where the constraint is inactive
- 5 Increase the risk where the constraint is active

Iterative Risk Allocation Algorithm

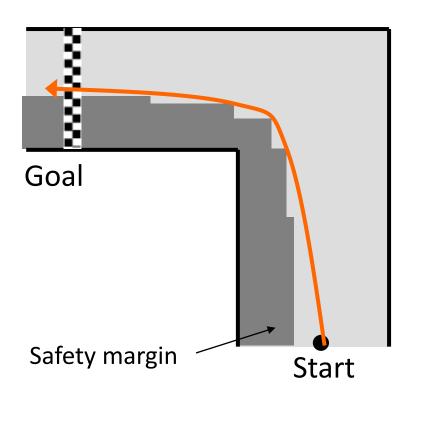
1

3

<u>4</u>

5

Algorithm IRA



- Initialize with arbitrary risk allocation
- 2 Loop
 - Compute the best available path given the current risk allocation
 - Decrease the risk where the constraint is inactive
 - Increase the risk where the constraint is active

6 End loop

Iterative Risk Allocation Algorithm

Goal Safety margin Start

Algorithm IRA

- 1 Initialize with arbitrary risk allocation
- 2 Loop

3

<u>5</u>

- Compute the best available path given the current risk allocation
- 4 Decrease the risk where the constraint is inactive
 - Increase the risk where the constraint is active

6 End loop

Iterative Risk Allocation Algorithm

Goal Safety margin Start

Algorithm IRA

- 1 Initialize with arbitrary risk allocation
- 2 Loop

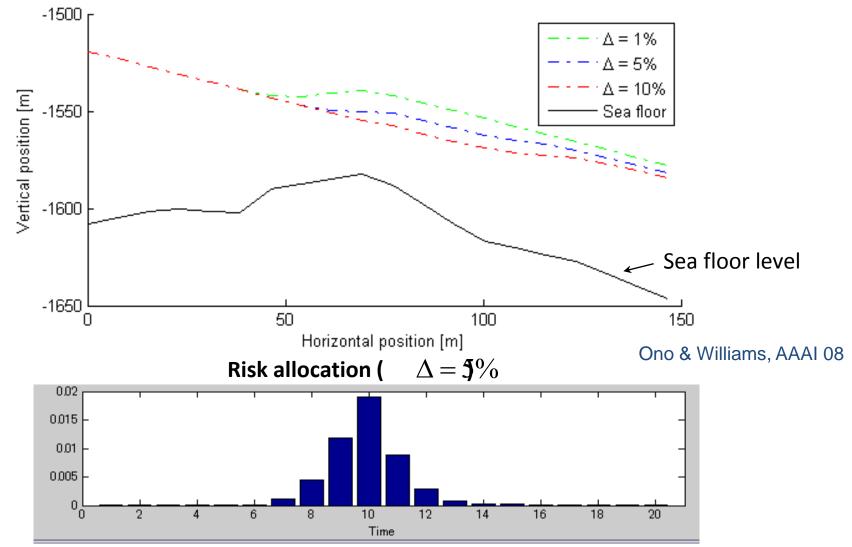
<u>3</u>

5

- Compute the best available path given the current risk allocation
- 4 Decrease the risk where the constraint is inactive
 - Increase the risk where the constraint is active

6 End loop

Monterey Bay Mapping Example



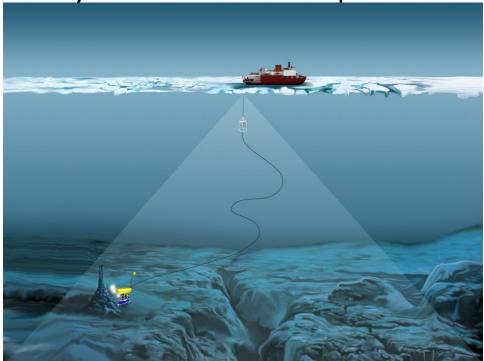
Outline

- Review
- Risk-aware Trajectory Planning (IRA)
- Iterative Risk Allocation
- Generalizing to Risk-aware Systems
- Convex Risk Allocation (CRA)

Risk-Sensitive Architectures for Exploration

- In collaboration with JPL, WHOI and Caltech.
- Initial year study, funded by Keck Institute for Spaces Sciences.

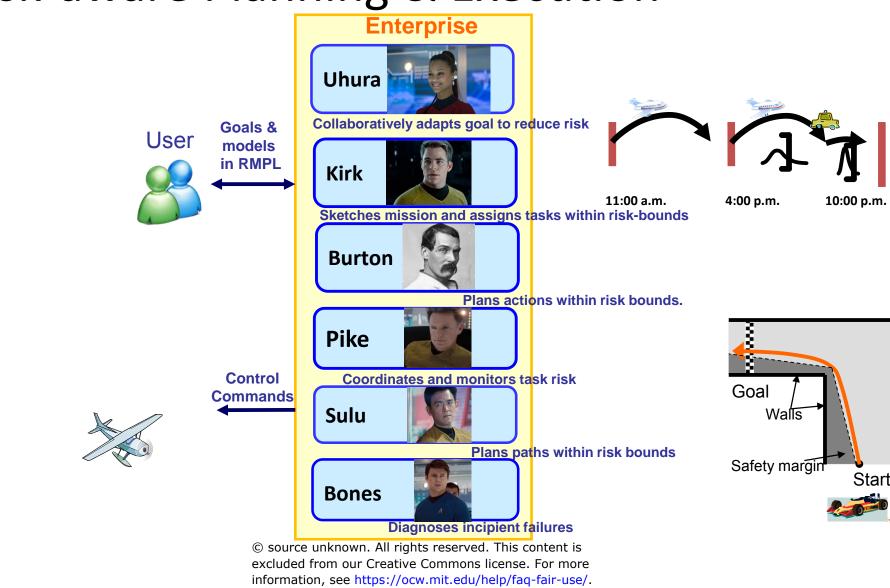
Venus Sage This image is in the public domain.



© Woods Hole Oceanographic Institution. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/.

2 year follow on for demonstration.

Risk-aware Planning & Execution



3/30/16

16.412J / 6.834J – L15 Risk-bounded Programs on Continuous States

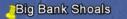
Falkor Cruise – March-April, 2015

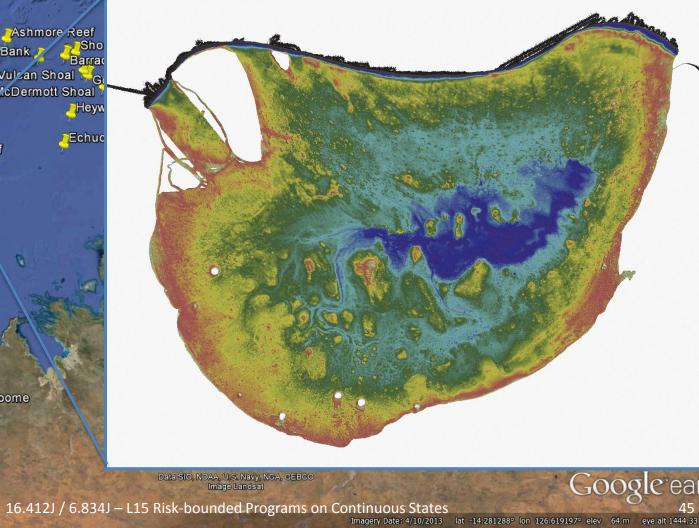
Falkor - Schmidt Ocean Institute

© Schmidt Ocean Institute. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/.

© Teledyne Webb Research. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/.

© Schmidt Ocean Institute. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/.





Ashmore Reef Governor Bank Sho Vulcan Shoal G Eugene McDermott Shoal Wave Governor Bank 🥂 Heyw

Scott Reef

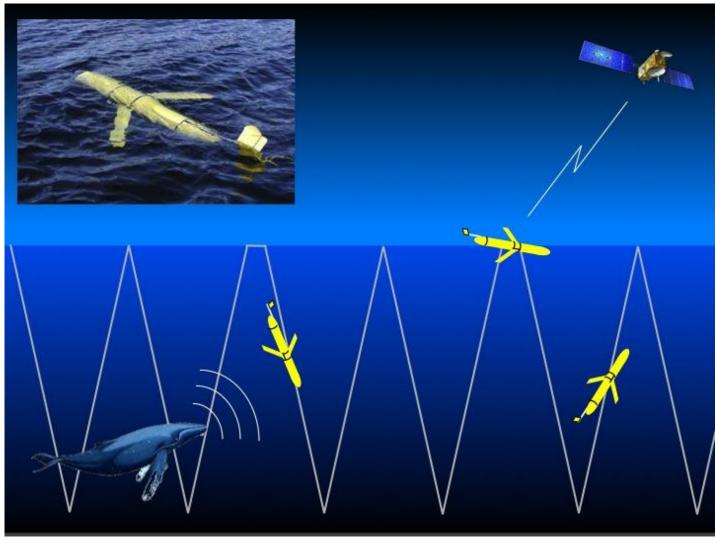
Broome

R

3/30/16

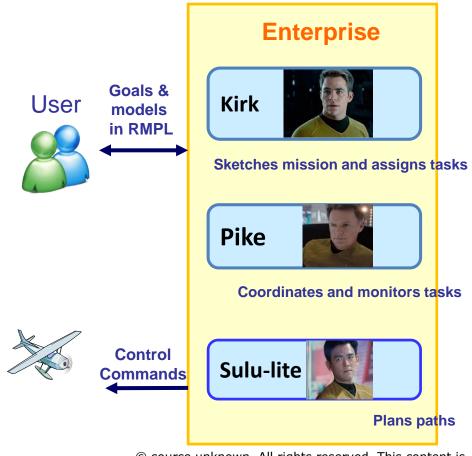
0

Glider Primer



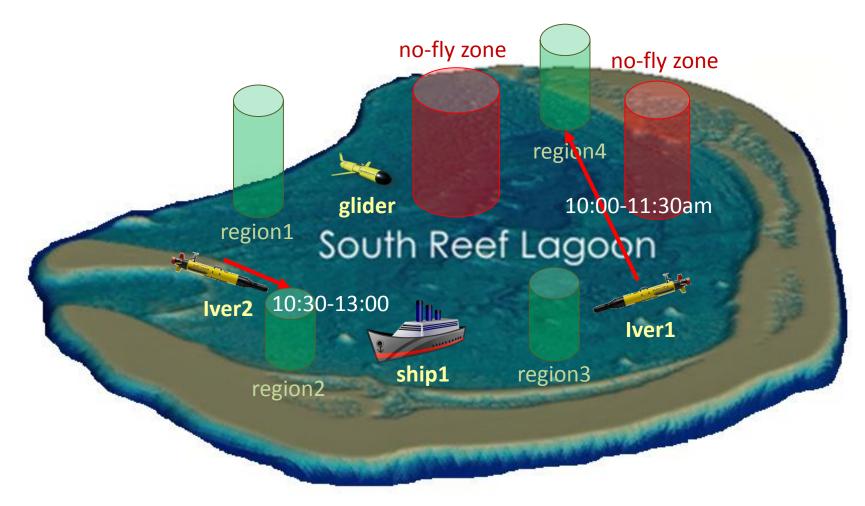
© Woods Hole Oceanographic Institution. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/.

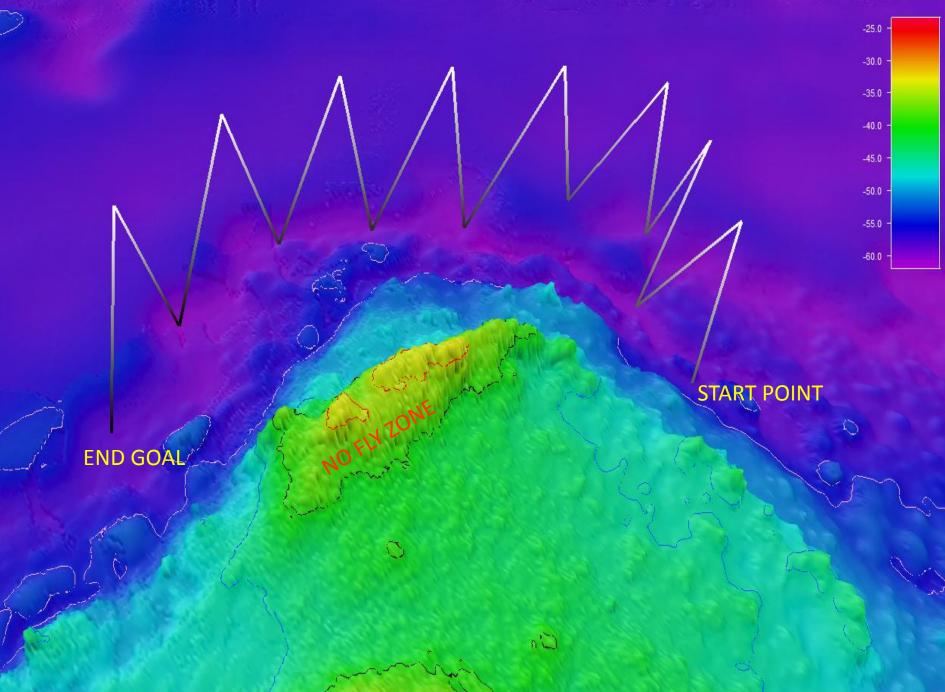
16.412J / 6.834J – L15 Risk-bounded Programs on Continuous States



© source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/.

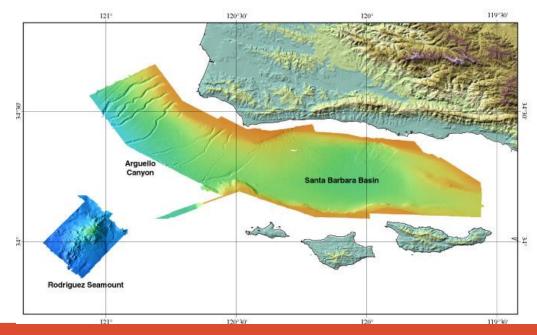
Activity Planning in Scott Reef





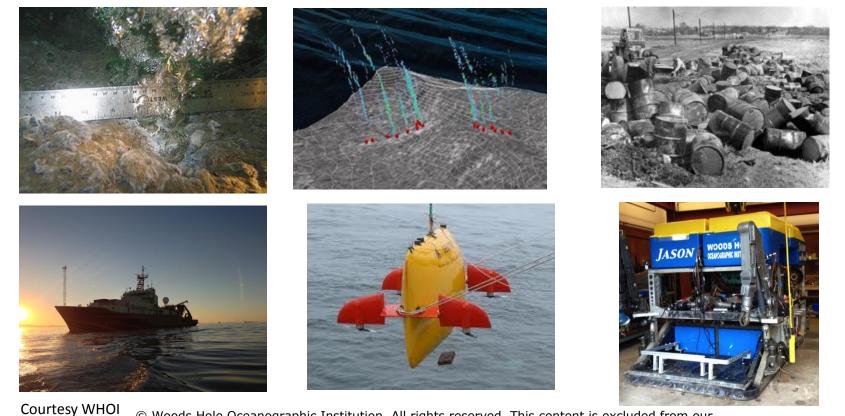
April/May 2016 Deployment: //IERS Slocum Glider at Santa Barbara

- Mission goal:
 - Use miniaturized mass spectrometer to find and characterize oil seeps off the coast of Santa Barbara.
- Primary research goal:
 - Adaptive science using planning and rule-based algorithms.
- Secondary research goal:
 - Risk-aware path planning.



Advisory System for WHOI Cruise AT26-06: San Francisco, California to Los Angeles

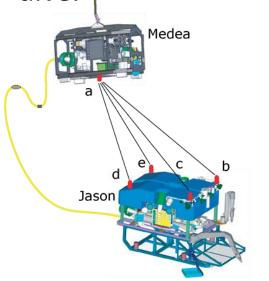
- Find and sample methane seeps near the coast.
- Locate and sample a 60 year-old DDT dumping site.
 Recover and replace incubators on the seafloor.



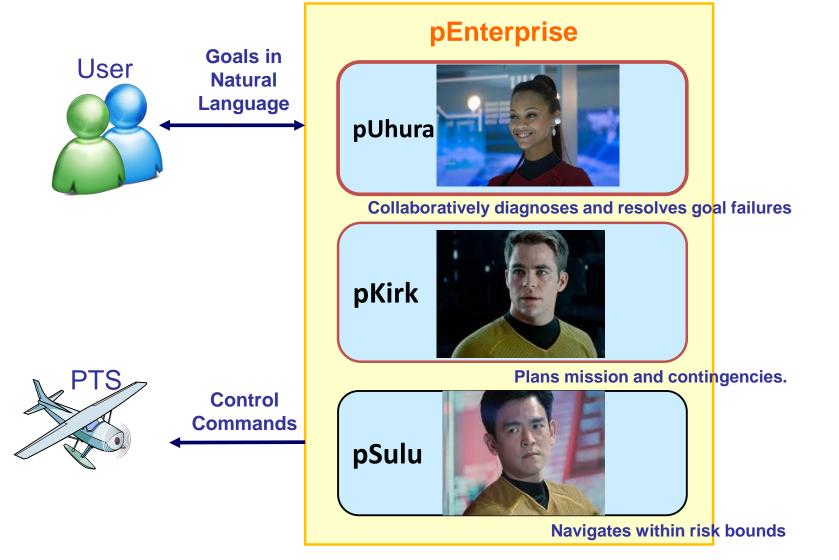
© Woods Hole Oceanographic Institution. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/.

Everything Can Go Wrong

- [Day 1] Jason failed after 30 min into its first dive, entered an uncontrollable spin and broke its optic fiber tether.
- [Day 1] The new camera installed on Sentry did not work well in low light situations. It had been replaced during its second dive.



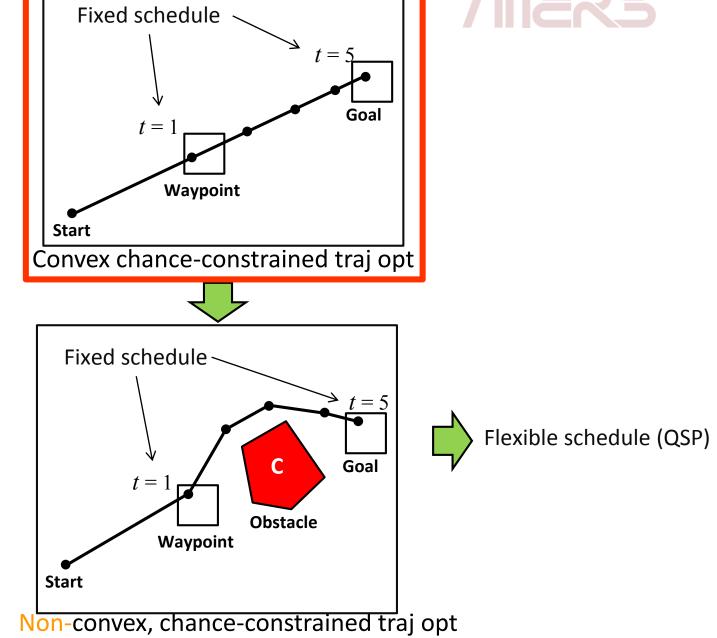
© Woods Hole Oceanographic Institution. All rights reserved. This content is excluded from our Creative Commons license.For more information, see https://ocw.mit.edu/help/faq-fair-use/.



Outline

- Review
- Risk-aware Trajectory Planning
- Iterative Risk Allocation (IRA)
- Generalizing to Risk-aware Systems
- Convex Risk Allocation (CRA)
 - Intuitions
 - Math (optional)

Problems

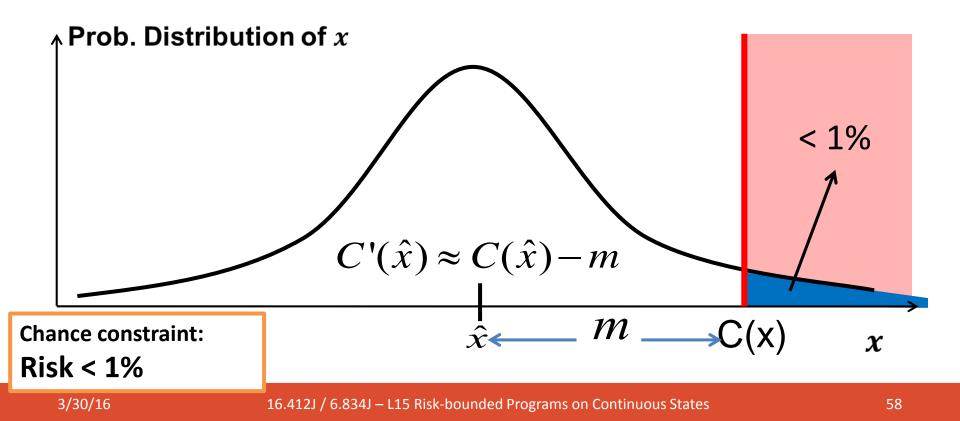


3/30/16

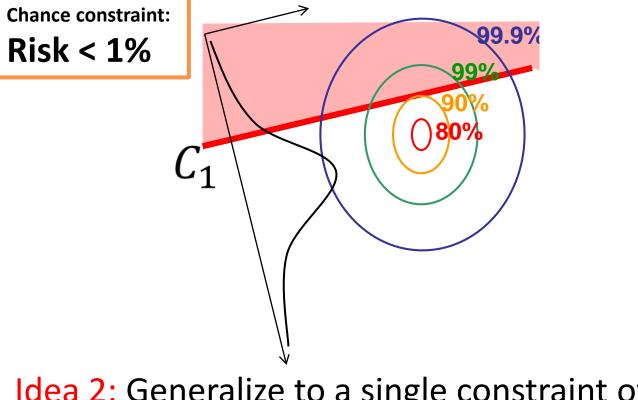
16.412J / 6.834J – L15 Risk-bounded Programs on Continuous States

Risk-Allocation Overview: One Variable

Idea 1: We easily solve a chance constrained problem with one linear constraint C and one normally distributed random variable x, by reformulating C to a deterministic constraint C' on \hat{x}



Risk-Allocation Overview: Many Variables

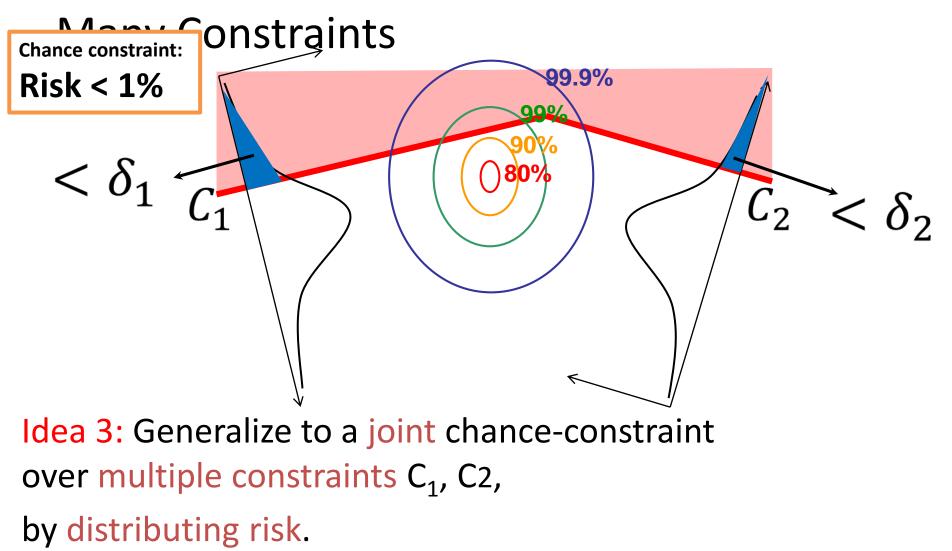


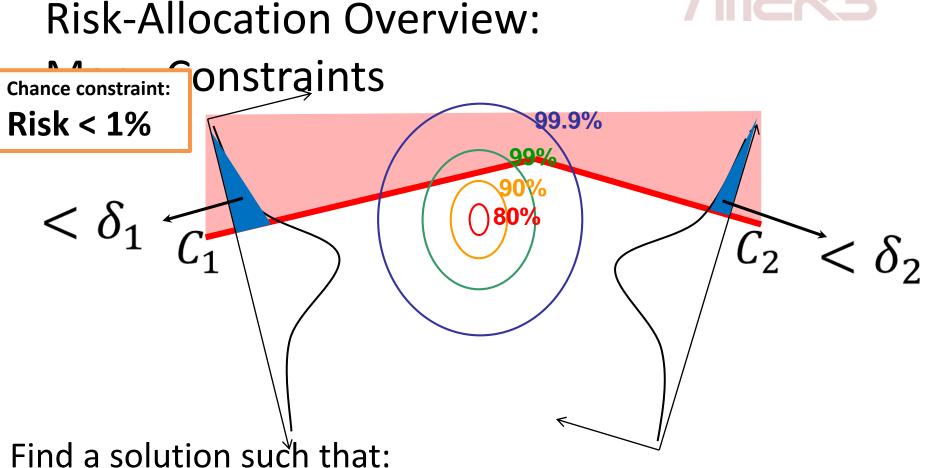
Idea 2: Generalize to a single constraint over an N-dimensional random variable,

by projecting its distribution onto the axis perpendicular to the constraint boundary.

3/30/16

Risk-Allocation Overview:



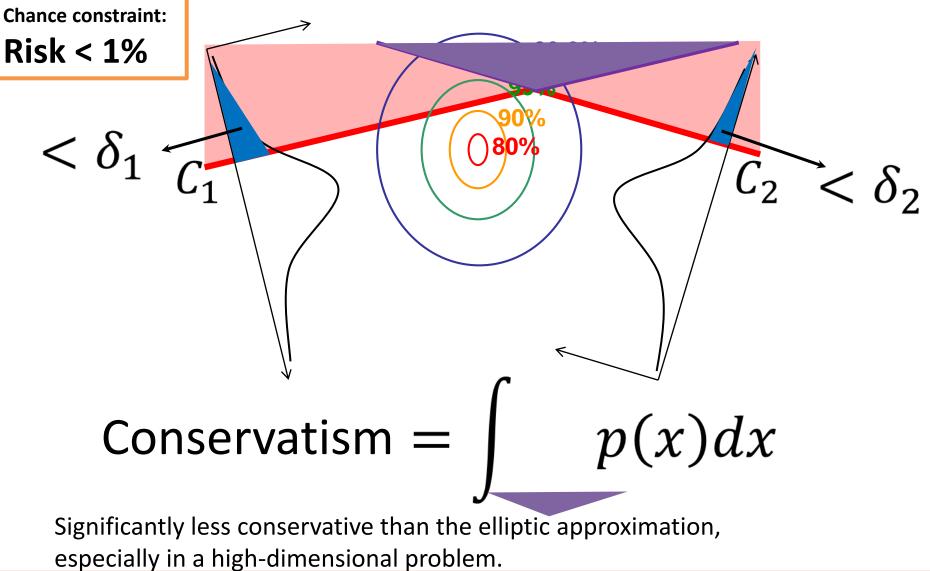


- 1. Each constraint C_i takes less than δ_i risk, and
- 2. $\Sigma_i \delta_i \leq 1\%$

Note: this bound is derived from Boole's inequality.

16.412J / 6.834J – L15 Risk-bounded Programs on Continuous States

Risk-Allocation Overview: Conservatism



3/30/16

16.412J / 6.834J – L15 Risk-bounded Programs on Continuous States

Outline

- Review
- Risk-aware Trajectory Planning
- Iterative Risk Allocation (IRA)
- Generalizing to Risk-aware Systems
- Convex Risk Allocation (CRA)
 - Intuitions
 - Math (optional)

Reformulation: Now Lets Do the Math!

$$\begin{split} \min_{u_{1:T} \in \mathbf{U}^{T}} J(u_{1:T}) \\ s.t. \\ t=0 \\ Stochastic dynamics \\ & \bigwedge_{t=0}^{T-1} X_{t+1} = Ax_{t} + Bu_{t} + w_{t} \\ & & \bigwedge_{t=0}^{Risk \ bound} (\text{Upper bound of the probability of failure}) \\ & & W_{t} \sim N(0, \Sigma_{t}) \\ & & X_{0} \sim N(\bar{X}_{0}, \Sigma_{x,0}) \\ & & X_{0} \sim N(\bar{X}_{0}, \Sigma_{x,0}) \\ \end{split}$$
Chance constraint
$$\begin{aligned} & \Pr\left[\bigwedge_{t=1}^{T-N} h_{t}^{iT} x_{t} \leq g_{t}^{i} \right] \geq 1 - \Delta \end{aligned}$$

MERS

Conversion of Joint Chance Constraint

Joint chance constraint

 $\Pr\left| \bigwedge_{t=0}^{T} \bigwedge_{i=0}^{N} h_t^{iT} x_t \le g_t^i \right| \ge 1 - \Delta$

Intractable

- Requires computation of an integral over a multivariate Gaussian.

A set of individual chance constraints.

- involves univariate Gaussian distribution.

A set of deterministic state constraint.

Decomposition of Joint Chance Constraint

Joint chance constraint

 $\Pr\left| \begin{array}{cc} T & N \\ \wedge & \wedge \\ t=0 \\ i=0 \end{array} h_t^{iT} x_t \le g_t^i \right| \ge 1 - \Delta$

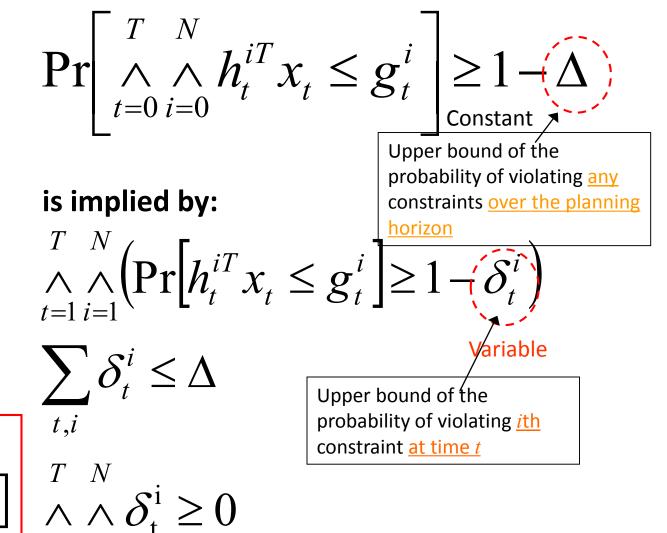
Using Boole's inequality (union bound)

 $\Pr[A \cup B] \leq \Pr[A] + \Pr[B]$

Where A and B denote constraint failures

Decomposition of Joint Chance Constraint

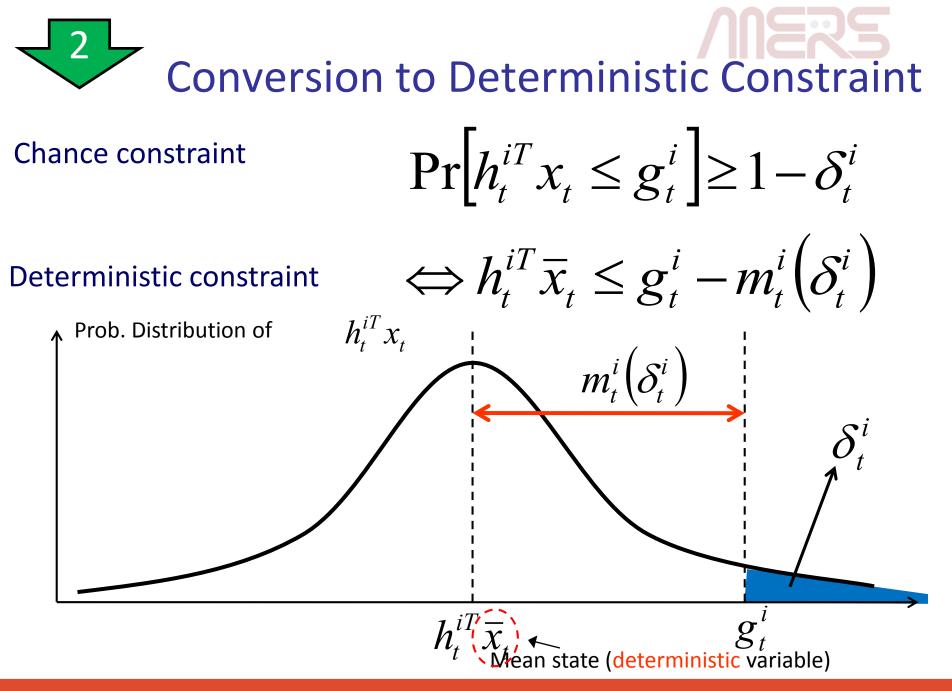
Joint chance constraint

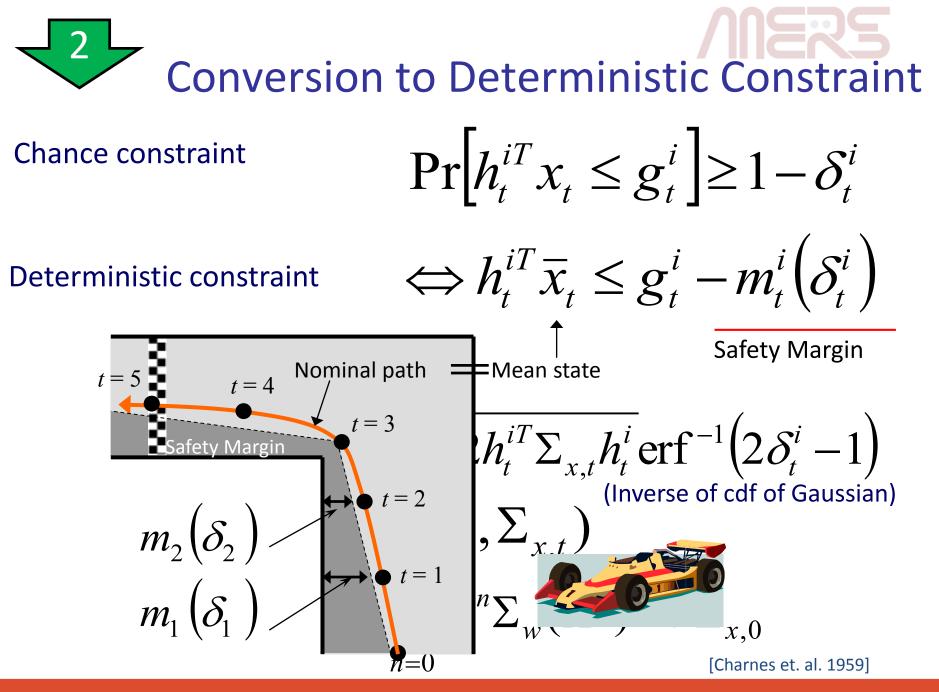


Individual chance constraints

Risk allocation: $\boldsymbol{\delta} = \begin{bmatrix} \delta_1^1, \delta_1^2 \cdots \delta_T^N \end{bmatrix} \begin{array}{c} T & N \\ \wedge & \wedge & \delta_t^i \ge 0 \end{array}$

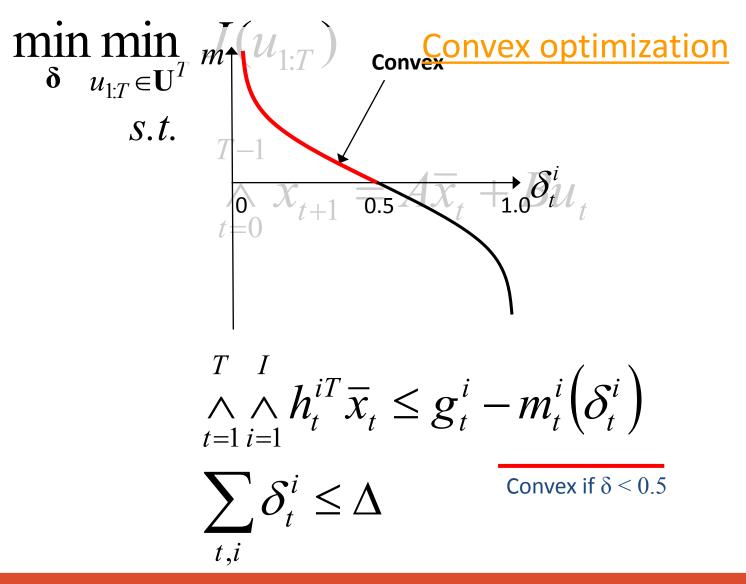
Decomposition of Joint Chance Constraint min min J(U)δ $u_{1:T} \in \mathbf{U}$ *s.t*. T-1**Risk allocation** $\bigwedge_{t=0} x_{t+1} = Ax_t + Bu_t + w_t$ optimization $W_t \sim N(0, \Sigma_t)$ $x_0 \sim N(\bar{x}_0, \Sigma_{x,0})$ Individual chance constraints Joint chance constraint





Conversion to Deterministic Constraint $\min_{\boldsymbol{\delta}} \min_{u_{1:T} \in \mathbf{U}^T} J(u_{1:T})$ *s.t*. T-1 $\bigwedge_{t=0} x_{t+1} = Ax_t + Bu_t + w_t$ $W_{t} \sim N(0, \Sigma_{t})$ $x_0 \sim N(\overline{x}_0, \Sigma_{x,0})$ $\bigwedge_{i=1}^{T} \Pr\left[h_t^{iT} x_t \leq g_t^i\right] \geq 1 - \delta_t^i$ Individual chance constraints t = 1 i = 1 $\sum \delta_t^i \leq \Delta$ t,i

Conversion to Deterministic Constraint

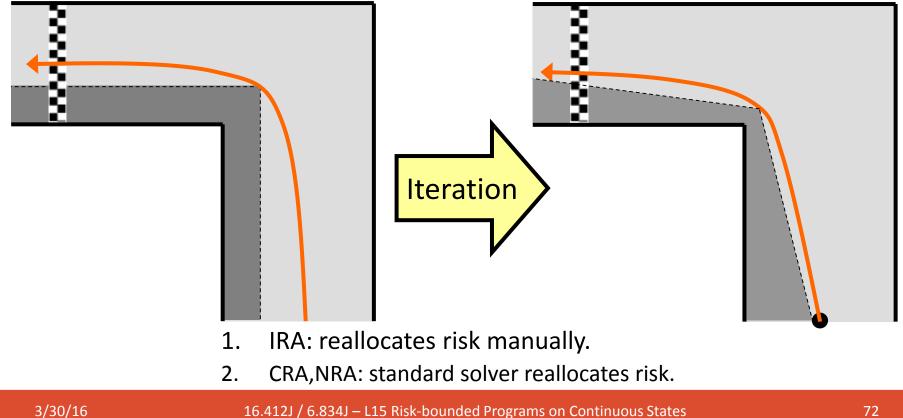


Key takeaways

- Maximizing utility under bounded risk makes sense.
- Risk allocation can help us solve.

Summary: Risk Allocation

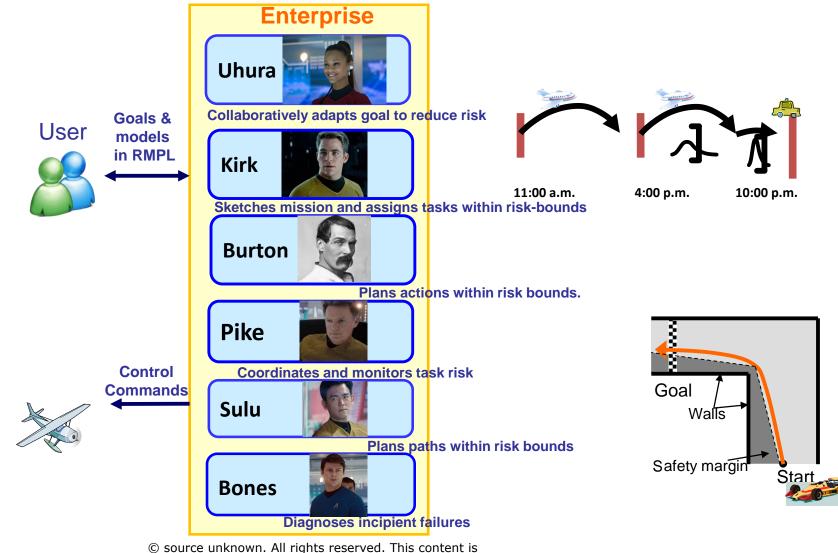
$$\bar{J}^*(\boldsymbol{\delta}_0) \geq \bar{J}^*(\boldsymbol{\delta}_1) \geq \bar{J}^*(\boldsymbol{\delta}_2) \cdots$$



Approach: Programming Cognitive Systems

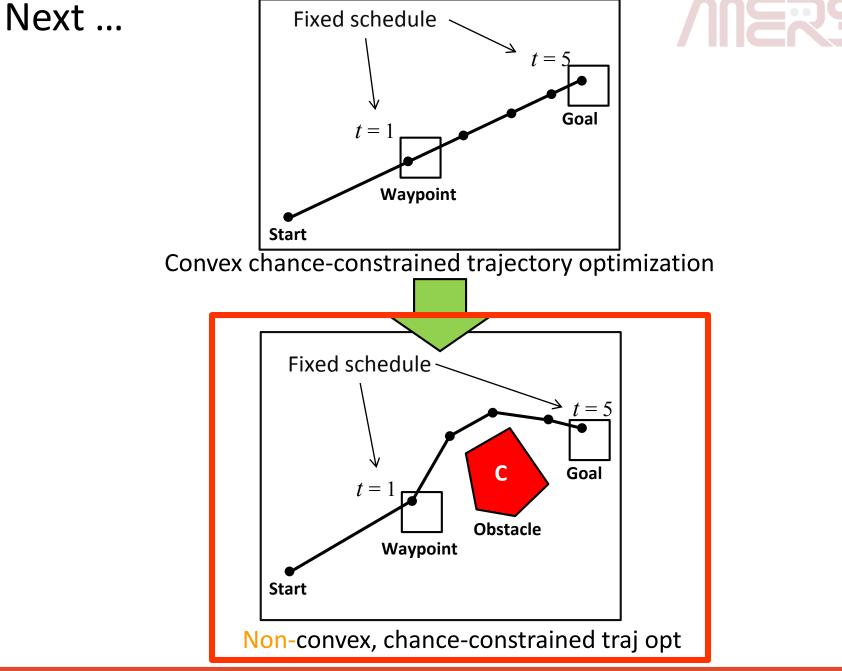
- An embedded programming language elevated to the goal-level through partial specification and operations on state (RMPL).
- 2. A language executive that achieves robustness by reasoning over constraint-based models and by bounding risk (Enterprise).
- 3. Interfaces that support natural human interaction fluidly and at the cognitive level (Uhura).

Risk_aware Planning & Execution



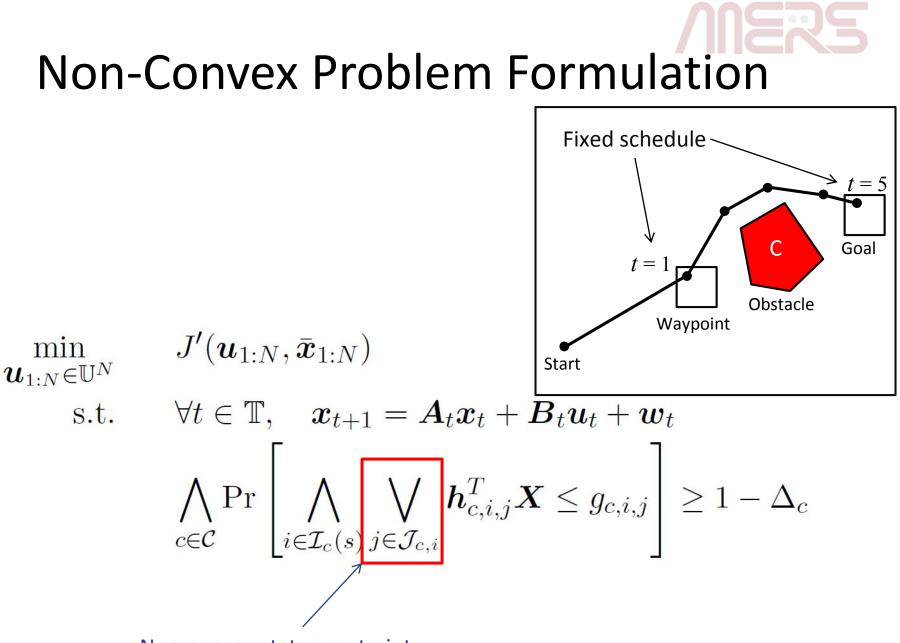
© source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/.

APPENDIX: RISK-BOUNDED PLANNING FOR NON-CONVEX PROBLEMS



October 29th, 2015

Risk Bounded Goal-directed Motion Planning



Non-convex state constraint

Problem Formulation: Non-Convex Chance Constraint

CC over convex state constraints $\min_{u_{1:T} \in \mathbf{U}^{T}} J^{i}(u_{t})$ s.t. $\Pr\left[\bigwedge_{t=1}^{T} \bigwedge_{n=1}^{N} h_{t}^{nT} x_{t} \leq g_{t}^{n} \right] \geq 1 - \Delta$

Convex Deterministic Program

Risk allocation

 $\min_{u_{1:T}\in\mathbf{U}^{T}}J^{i}(u_{t})$

t=1.n=1

s.t

$$\sum_{t=1}^{T} \sum_{n=1}^{N} h_t^{nT} \overline{x}_t \leq g_t^n - m_t^n \Big(\delta_t^n \Big)$$

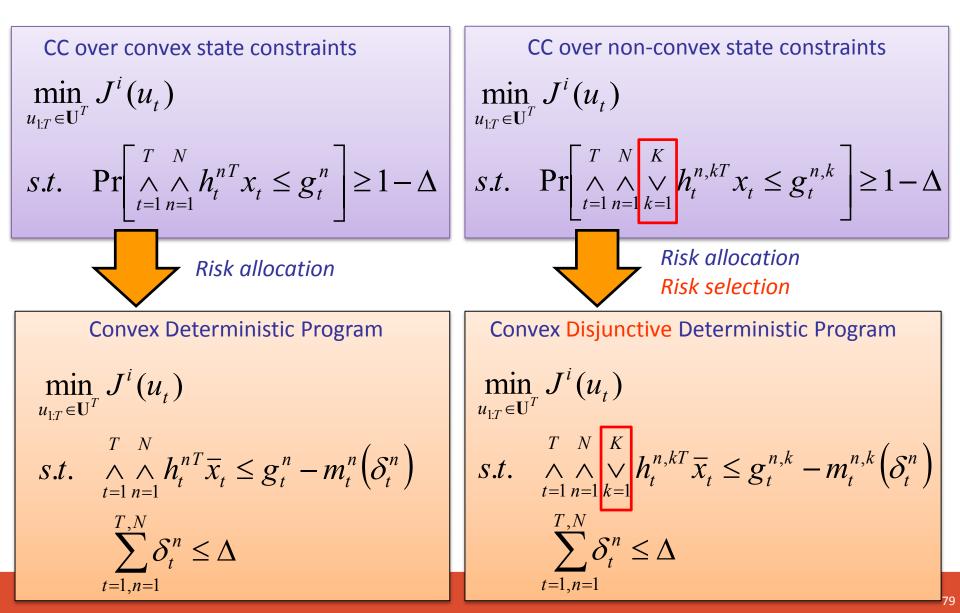
 $\sum \delta_t^n \leq \Delta$

A joint chance constraints

A set of individual chance constraints

A set of deterministic state constraints

Problem Formulation: Non-Convex Chance Constraint



Solving Disjunctive Program using Branch and Bound

Example:

$$\sum_{\substack{k=1 \ n=1 \ k=1}}^{T \ N \ K} h_t^{n,kT} \overline{x}_t \le g_t^{n,k} - m_t^{n,k} \left(\delta_t^n \right)$$

$$= (C_{11} \lor C_{12}) \land (C_{21} \lor C_{22})$$

$$T = 2, N = 1, K = 2; \quad C_{tk} \equiv \left\{ h_t^{1,kT} \bar{x}_t \le g_t^{1,k} - m_t^{1,k} \left(\delta_t^n \right) \right\}$$

Convex Disjunctive Programming $\min_{u_{t:T} \in \mathbf{U}^{T}} J^{i}(u_{t})$ s.t. $\sum_{t=1}^{T} \sum_{n=1}^{N} K_{t} h_{t}^{n,kT} \overline{x}_{t} \leq g_{t}^{n,k} - m_{t}^{n,k} \left(\delta_{t}^{n}\right)$ $\sum_{t=1,n=1}^{T,N} \delta_{t}^{n} \leq \Delta$

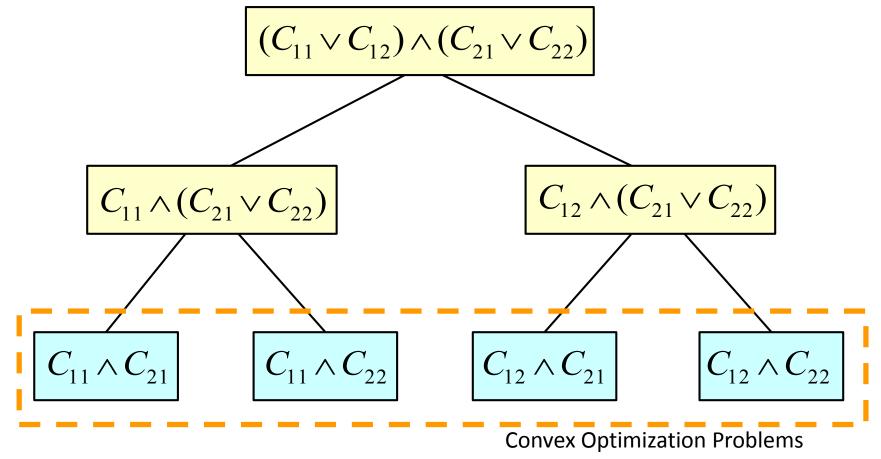
October 29th, 2015

Risk Bounded Goal-directed Motion Planning

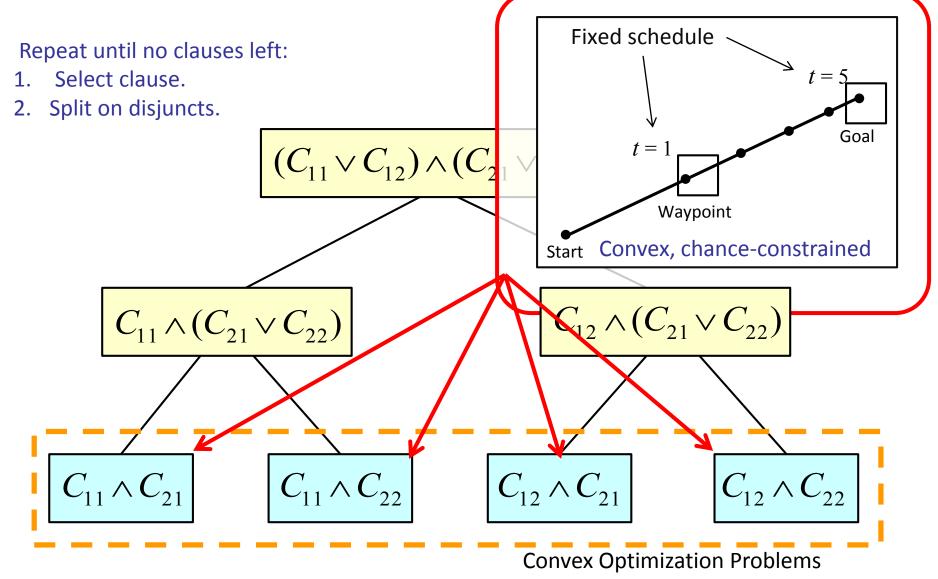
Stochastic DLP Branch and Bound

Repeat until no clauses left:

- 1. Select clause.
- 2. Split on disjuncts.



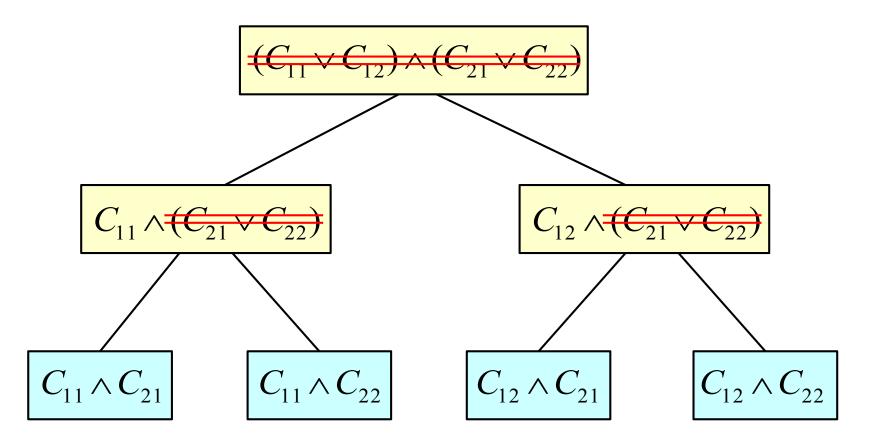
Stochastic DLP Branch and Bound



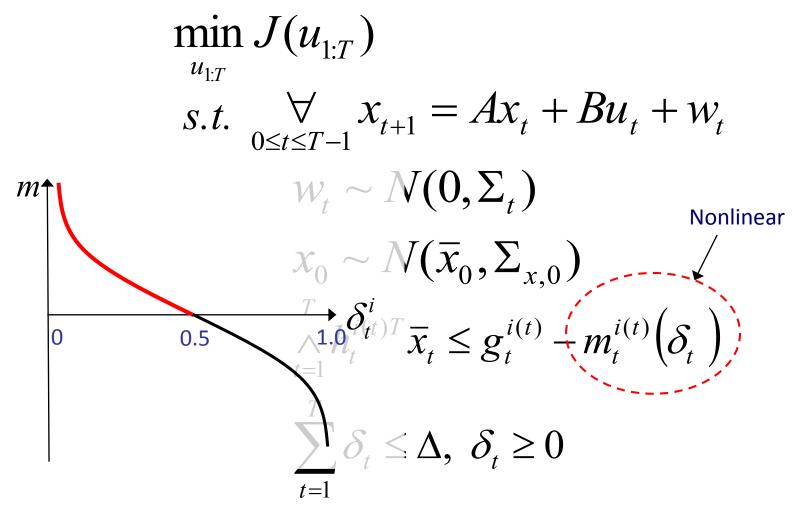
Bound Sub-Problems

Through Convex Relaxation

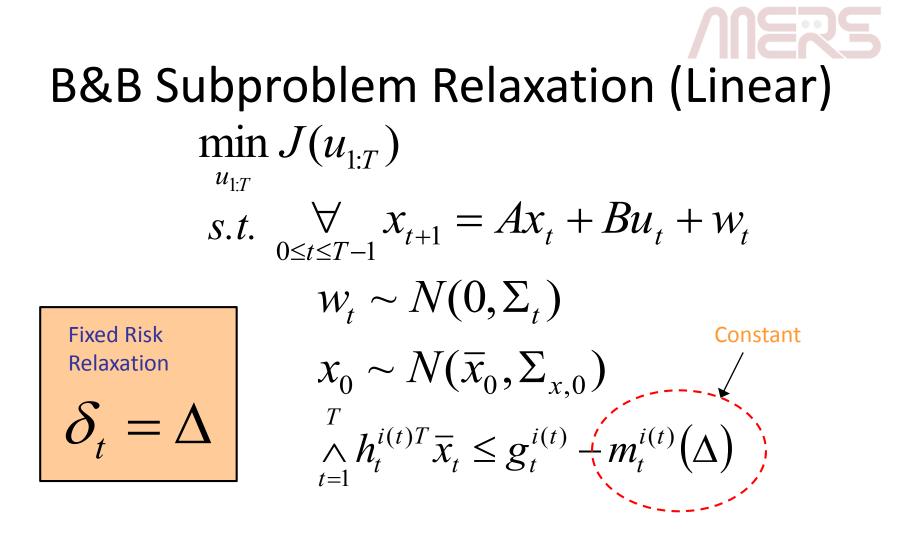
- Bound: Remove all disjunctive clauses [Li & Williams 2005].
- Issue: Computing bound is slow!!
- Cause: Sub-problems include non-linear constraints.



B&B Subproblem (non-linear)



B&B Subproblem Relaxation (Linear) $\min J(u_{1:T})$ $u_{1:T}$ s.t. $\bigvee_{0 \le t \le T-1} x_{t+1} = Ax_t + Bu_t + W_t$ $W_t \sim N(0, \Sigma_t)$ Nonlinear **Fixed Risk** $x_{0} \sim N(\overline{x}_{0}, \Sigma_{x,0})$ $\bigwedge_{t=1}^{T} h_{t}^{i(t)T} \overline{x}_{t} \leq g_{t}^{i(t)} + m_{t}^{i(t)} \left(\delta_{t}\right)$ Relaxation $\rightarrow \delta_t \leq \Delta, \delta_t \geq 0$ t=1



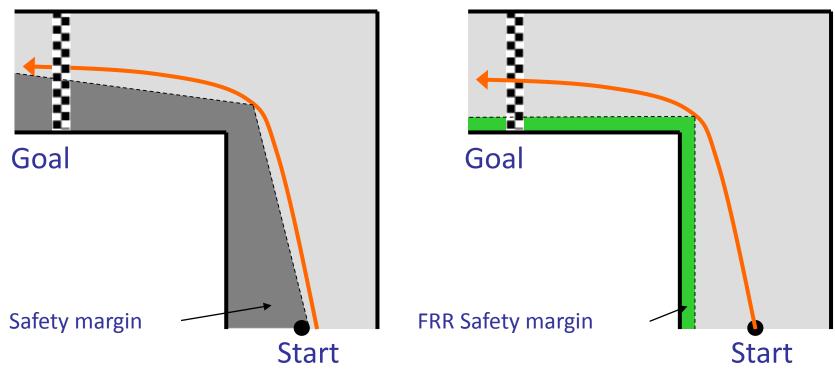
•All constraints are linear (FRR is typically LP or QP).

October	
29th, 2015	

FRR Intuition

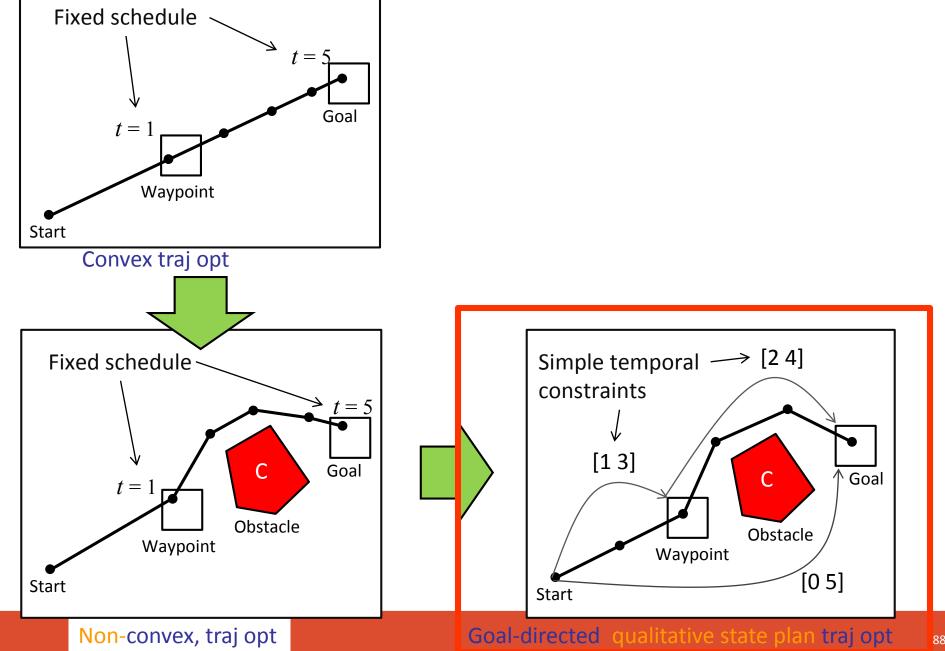
Original problem

 $\begin{array}{c} FRR\\ \text{Sets safety margin for all}\\ \text{constraints to max risk } \Delta. \end{array}$

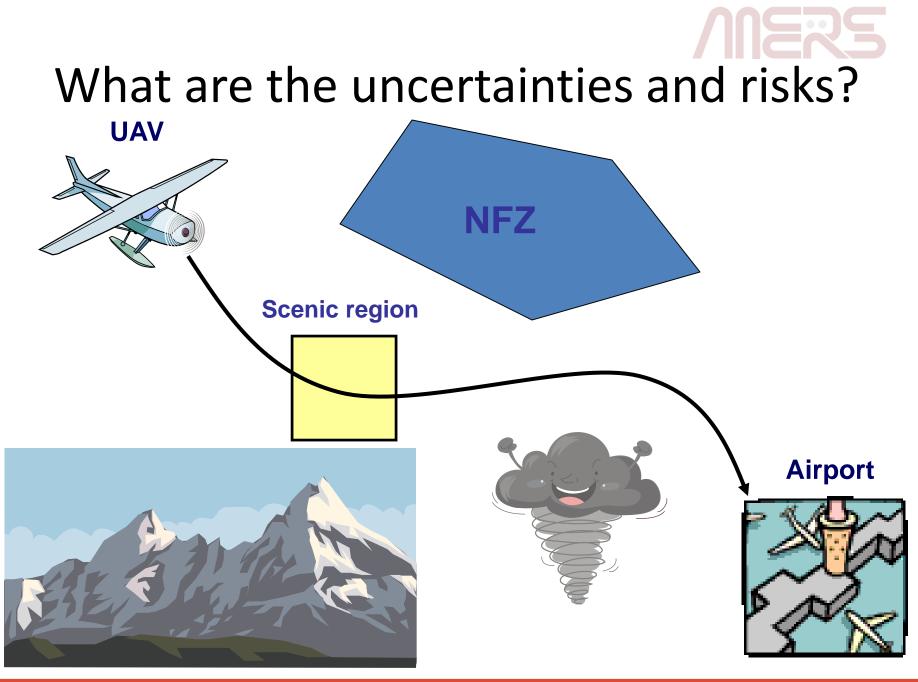


- Results in an infeasible solution to the original problem.
- Gives lower bound on the cost of the original problem.

Problems



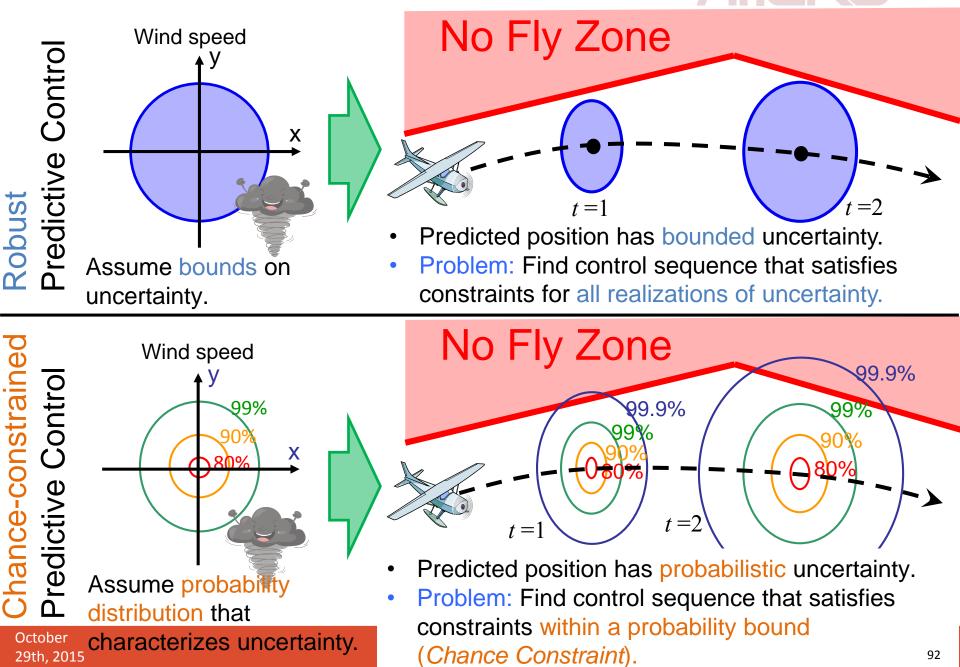
APPENDIX: OVERVIEW AND ALTERNATIVE APPROACHES



- Receding horizon (MPC) planners react to uncertainty after something goes wrong.
- Can we take precautionary actions before something goes wrong?

•Ali A. Jalali and Vahid Nadimi, "A Survey on Robust Model Predictive Control from 1999-2006."

Robust versus Chance Constrained



Incorporating Uncertainty

• Deterministic discrete-time LTI model.

$$x_{t+1} = Ax_t + Bu_t$$

• Additive uncertainty

$$x_{t+1} = Ax_t + Bu_t + w_t$$

• Multiplicative uncertainty

$$p(w_t) = N(\hat{w}_t, \mathbf{P}_0)$$

 $W_t \in W$

$$x_{t+1} = (A + \Delta A)x_t + Bu_t$$

What to Minimize? (*Bounded* Uncertainty)

• Minimize the worst case cost $\min_{\mathbf{U}} \max_{w \in W} J(\mathbf{X}, \mathbf{U})$

$$s.t. \quad \forall_{w \in W} h_t^{iT} x_t \leq g_t^i$$

 $w \in W$: Bounded uncertainty

• Minimize nominal cost

 $\min_{\mathbf{U}} J(\overline{\mathbf{X}}, \mathbf{U}) : \text{Cost when } w = \mathbf{0}$ s.t. $\forall_{w \in W} h_t^{iT} x_t \leq g_t^i$ $w \in W$: Bounded uncertainty

What to Minimize? (*Stochastic* Uncertainty)

Utilitarian approach • $\min J(\mathbf{X}, \mathbf{U}) + pf(\mathbf{U})$

Penalty (constant)

Probability of failure

 Chance constrained optimization $\min J(\mathbf{X}, \mathbf{U})$ J s.t. $f(\mathbf{U}) \leq \Delta$ Probability of failure **Risk bound** October

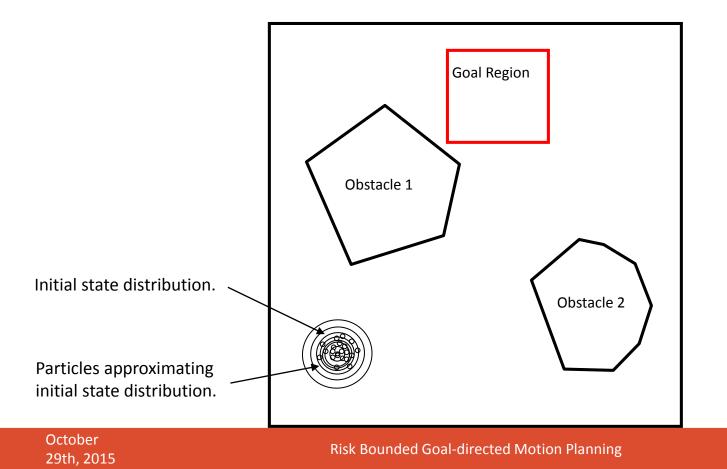
MERS

Solution Methods for Chance-Constrained Problems

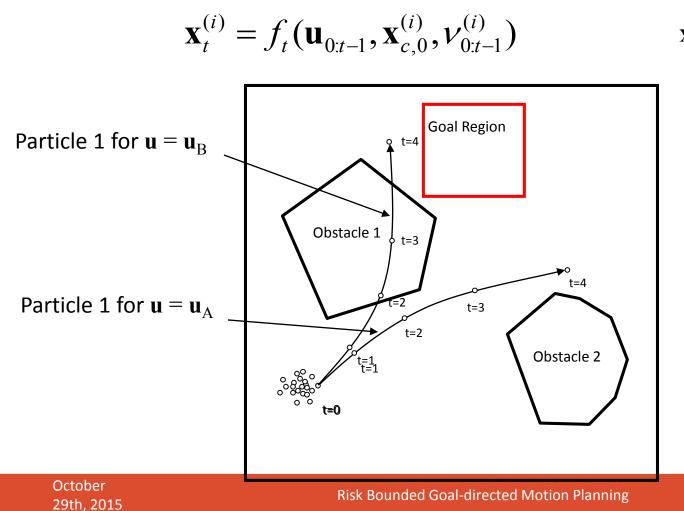
- Sampling based methods
 - Scenario-based
 - Bernardini and Bemporad, 2009
 - Particle control
 - Blackmore et al., 2010
- Non-sampling-based methods
 - Elliptic approximation
 (direct extension of robust predictive control)
 - van Hessem, 2004
 - Risk allocation
 - Ono and Williams, 2008

1. Use particles to sample random variables.

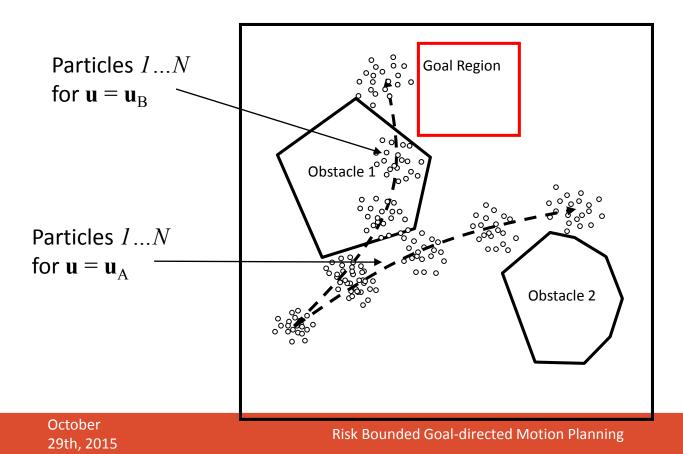
$$\mathbf{x}_{c,0}^{(i)} \sim p(\mathbf{x}_{c,0}) \quad v_t^{(i)} \sim p(v_t) \quad i = 1...N \quad t = 0...F$$



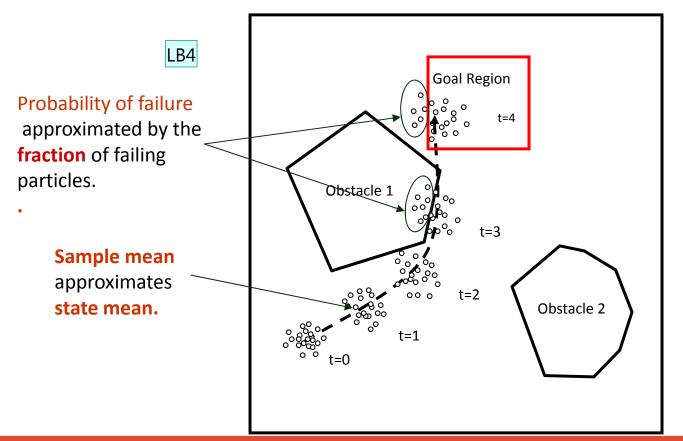
2. Calculate future state trajectory for each particle, leaving explicit, $\mathbf{x}_{c,0:T}^{(i)} = \begin{bmatrix} \mathbf{x}_{c,0}^{(i)} \\ \vdots \\ \mathbf{x}_{c,F}^{(i)} \end{bmatrix}$ **dependence** on control inputs $\mathbf{u}_{0:T-1}$.



2. Calculate future state trajectory for each particle, leaving explicit, dependence on control inputs $\mathbf{u}_{0:T-1}$.



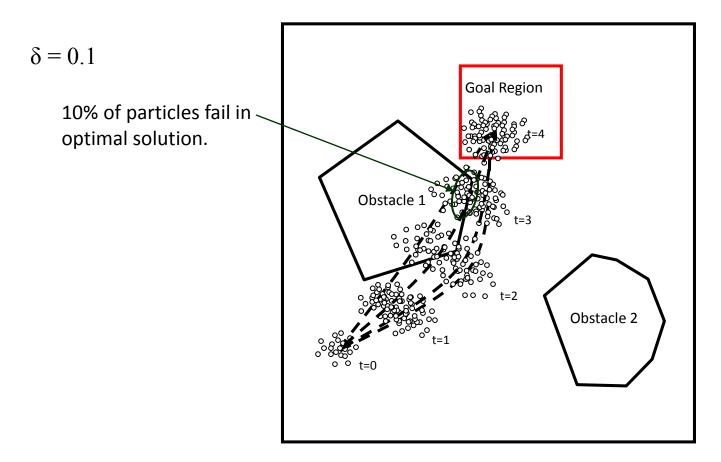
3. Express chance-constraints of optimization problem approximately in terms of particles.



True expectation approximated by sample mean of cost function: $E[h(\mathbf{u}_{0:F-1}, \mathbf{x}_{1:F})]$

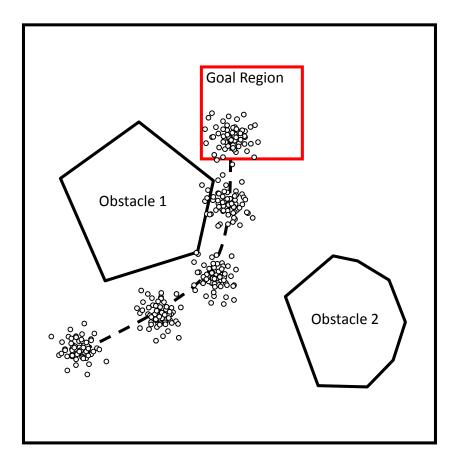
$$\approx \frac{1}{N} \sum_{i=1}^{N} h(\mathbf{u}_{0:F-1}, \mathbf{x}_{1:F}^{(i)})$$

4. Solve approximate **deterministic** optimization problem for $\mathbf{u}_{0:F-1}$.



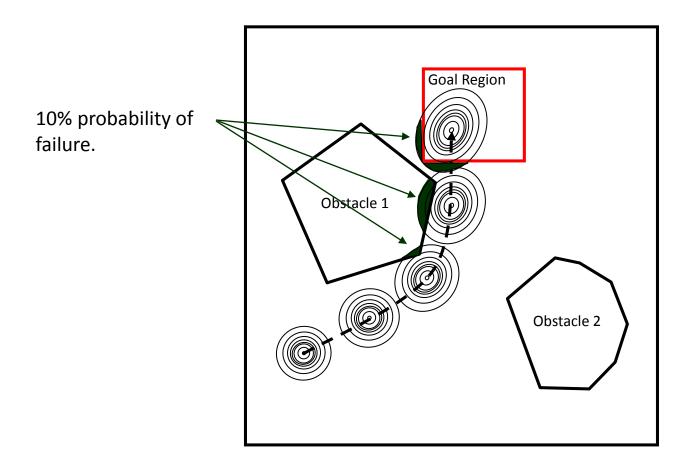
Convergence

- As $N \rightarrow \infty$, approximation becomes exact.



Convergence

- As $N \rightarrow \infty$, approximation becomes exact.



Solution Methods for Chance-Constrained Problems

- Sampling based methods
 - Scenario-based
 - Bernardini and Bemporad, 2009
 - Particle control
 - Blackmore et al., 2010
- Non-sampling-based methods

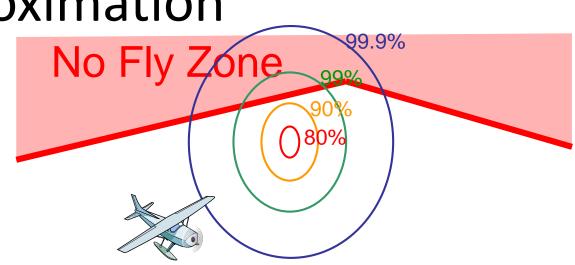
Elliptic approximation (direct extension of robust predictive control)

- van Hessem, 2004
- Risk allocation
 - Ono and Williams, 2008

Elliptic Approximation

Chance constraint:

Risk < 1%



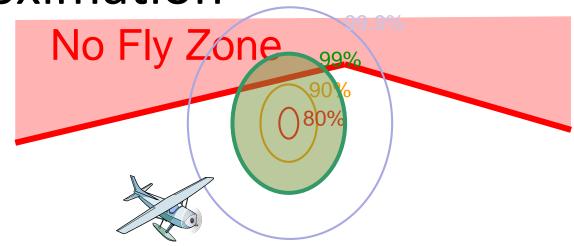
1. Derive probability distribution over future states as a function of control inputs.

Note: When planning in an N-dimensional state space over time steps, a joint distribution over an N-dimensional space must be considered.

Elliptic Approximation

Chance constraint:

Risk < 1%

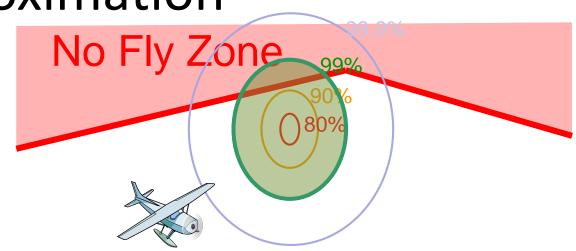


- 1. Derive probability distribution over future states as a function of control inputs.
- 2. Find a 99% probability ellipse.

Elliptic Approximation

Chance constraint:

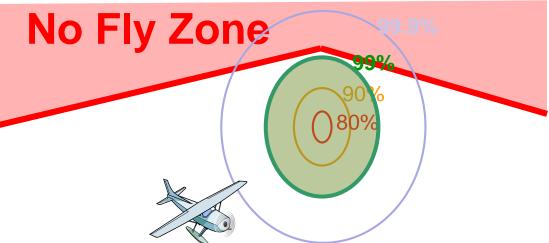
Risk < 1%



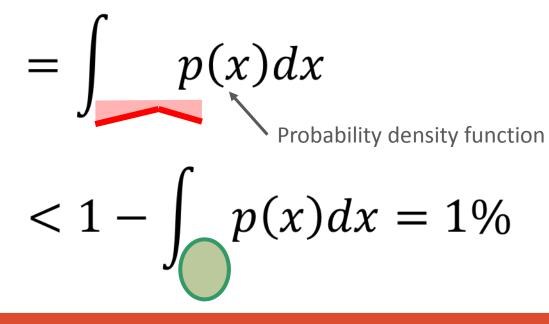
- 1. Derive probability distribution over future states as a function of control inputs.
- 2. Find a 99% probability ellipse.
- 3. Find control sequence that makes sure the probability ellipse is within the constraint boundaries.

Conservatism of Elliptic Approximation

Issue: often *very* conservative

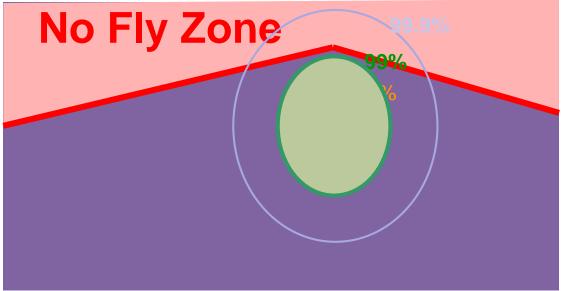


Real probability of failure

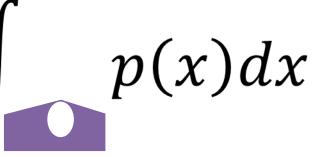


Conservatism of Elliptic Approximation

Issue: often *very* conservative.



Conservatism =



MIT OpenCourseWare https://ocw.mit.edu

16.412J / 6.834J Cognitive Robotics Spring 2016

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.