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Intent recognition & adaptation are siblings
• Intent recognition & robot adaptation are both necessary 

to build intelligent robots that work with people

Concurrent Plan Recognition & Execution for Human-Robot Teams  |  Steven J. Levine Slide 2

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/.

https://ocw.mit.edu/help/faq-fair-use/


Intent recognition & adaptation are siblings

• Intent recognition & robot adaptation are both necessary 
to build intelligent robots that work with people

Concurrent Plan Recognition & Execution for Human-Robot Teams  |  Steven J. Levine Slide 3

© Boeing. All rights reserved. This content is excluded from our Creative Commons
license. For more information, see https://ocw.mit.edu/help/faq-fair-use/.

© Rethink Robotics. All rights reserved. This content is
excluded from our Creative Commons license. For more
information, see https://ocw.mit.edu/help/faq-fair-use/.

https://ocw.mit.edu/help/faq-fair-use/
https://ocw.mit.edu/help/faq-fair-use/


SlideConcurrent Plan Recognition & Execution for Human-Robot Teams  |  Steven J. Levine

Intent recognition & adaptation must be integrated
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Intent recognition & adaptation must be integrated

• Much prior work on intent recognition, and on robotic 
adaptation, but largely as separate research 

• We present a unified approach to plan recognition & 
robotic adaptation for plans with choice 

• Single algorithm concurrently achieves both  

• Result: mixed-initiative execution where robots & humans 
work together as team
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Pike: an executive for human-robot teams

• Given a plan with choice (contingent, temporally flexible):

• Make decisions online (consistent with human’s intent)

• Dispatch activities at proper times

• Monitor execution for problems
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How to recognize intent & adapt?

Intent recognition recognizing
is decisions consistent with team’

Robot adaptation making

{ } { }
s task goals

• Assume rational, cooperative agents

• Prune any (irrational) decisions resulting in plan failure:

• Unmet action preconditions: Causal link reasoning

• Missed deadlines: Temporal conflicts

• Unanticipated failures: Online execution monitoring
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Approach in a nutshell
• Key to our approach:

• Plan representation with choices & actions for human, robot

Concurrent Plan Recognition & Execution for Human-Robot Teams  |  Steven J. Levine Slide 8



Contingent, temporally-flexible plans
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Temporal Planning Network with Uncertainty (TPNU)
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Temporal Planning Network with Uncertainty (TPNU)



Contingent, temporally-flexible plans
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Temporal Planning Network with Uncertainty (TPNU)

This candidate subplan is temporally inconsistent.

¬(xA2
= coffee ∧ xA4

= bagel)Conflict:
(Conrad 2009)



Contingent, temporally-flexible plans
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Temporal Planning Network with Uncertainty (TPNU)
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First part: making a drink
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Extracting labeled causal links
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Suppose person picks up mug…

Concurrent Plan Recognition & Execution for Human-Robot Teams  |  Steven J. Levine Slide
 

15



…so can’t pour juice later…
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…so robot should get coffee now.
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• Intent Recognition: recognizing human’s choices
consistent with at least one team subplan

• Robot adaptation: making robot's choices consistent
with at least one remaining team subplan

18



Pike in larger architecture

• Activity Recognizer: observes human choices
• State estimator: reports current world state
• Activity Dispatcher: calls lower-level planning & execution
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Contingent, temporally-flexible  
Plan
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Causal links justify action preconditions

• Insufficient for contingent, temporally-flexible plans:

• What if producer doesn’t execute?

• What if consumer doesn’t execute?

• Determining ordering is non-trivial

• We generalize to labeled causal links

• Encode requisite choices for causal link to hold
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Producer Consumer



Labeled causal links
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Labeled causal links
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Causal link extraction in a nutshell*
• For each precondition of each consumer event:
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Causal link extraction in a nutshell*
• For each precondition of each consumer event:

• Find all producers provably before or during consumer
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Causal link extraction in a nutshell*
• For each precondition of each consumer event:

• Find all producers provably before or during consumer
• Add propositional & temporal constraints for each producer
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Causal link extraction in a nutshell*
• For each precondition of each consumer event:

• Find all producers provably before or during consumer
• Add propositional & temporal constraints for each producer
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[0,∞]

[0,∞]

p : {ac = c1}

p : {ac = c3}

[0,∞] : {ac = c3}

(ac = c1) (ac = c2 ∧ y = 1) (ac = c3)
[ ]

(z = 1) ⇒ ∨∨Constraint:

p : {ac = c2 ∧ y = 1}



Causal link extraction in a nutshell*
• For each precondition of each consumer event:

• Find all producers provably before or during consumer
• Add propositional & temporal constraints for each producer

• Find all potential threats probably before or during causal link
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Causal link extraction in a nutshell*
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p : {ac = c1} p : {ac = c2 ∧ y = 1}

(z = 1) ⇒
[
(ac = c1) ∨ (ac = c2 ∧ y = 1)

]



Causal link extraction in a nutshell*
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p : {ac = c1}

• For each precondition of each consumer event:
• Find all producers provably before or during consumer

• Add propositional & temporal constraints for each producer
• Find all potential threats probably before or during causal link

• Resolve via additional propositional & temporal constraints

p : {ac = c2 ∧ y = 1}



Causal link extraction in a nutshell*
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p : {ac = c1}

• For each precondition of each consumer event:
• Find all producers provably before or during consumer

• Add propositional & temporal constraints for each producer
• Find all potential threats probably before or during causal link

• Resolve via additional propositional & temporal constraints

p : {ac = c2 ∧ y = 1}

Constraint: ¬(z = 1 ∧ ac = c1 ∧ x = 2)



Causal link extraction in a nutshell*
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• For each precondition of each consumer event:
• Find all producers provably before or during consumer

• Add propositional & temporal constraints for each producer
• Find all potential threats probably before or during causal link

• Resolve via additional propositional & temporal constraints

p : {ac = c2 ∧ y = 1}

[0,∞] [0,∞]

b =

{
1 if threat comes before

2 if threat comes after



Causal link extraction in a nutshell*
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• For each precondition of each consumer event:
• Find all producers provably before or during consumer

• Add propositional & temporal constraints for each producer
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p : {ac = c2 ∧ y = 1}
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Causal link extraction in a nutshell*
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• For each precondition of each consumer event:
• Find all producers provably before or during consumer

• Add propositional & temporal constraints for each producer
• Find all potential threats probably before or during causal link

• Resolve via additional propositional & temporal constraints

p : {ac = c2 ∧ y = 1}

[0,∞] [0,∞]

[0,∞] : {b = 2 ∧ z = 1 ∧ ac = c2 ∧ y = 1 ∧ x = 2}



φec ⇒ ∨
i (ai = epi

∧ φep )
i

One candidate causal link must hold

Producers precede consumers

Threat resolutions

Threat resolutions

Threat resolutions

Threat resolutions
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)
[ε,∞] : {aec,p = epi} ∧ φepi

∧ φec from epi to ec

¬φC

)
φC φC

[ε,∞] : φC from ec to eti
φC φC

[ε,∞] : φC from epi
to eti

[ε,∞] : {bec,p,epi ,eti = 1} ∧ φC from eti to epi

[ε,∞] : {bec,p,epi ,eti = 2} ∧ φC from ec to eti

¬φC

)
Temporal conflicts (Conrad 2009)

Constraints

•

⇓
Constraints satisfied: team success! 

• Preconditions of all executed actions met

• No missed deadlines
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Compile constraints with ATMS
• Compile constraints for fast, online reactivity.

• Assumption-based Truth Maintenance System (ATMS):
knowledge base permitting fast querying of assumptions

• Fast online queries without re-solving CSP:

• “Can robot pick up coffee grounds now?”

• “Is plan still feasible?”

• Internally, employs label propagation to pre-compute
sets of consistent solutions
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Online execution
• Similar architecture to (Conrad 2009)

• Continually iterates over all events:
• Gathers constraints necessary to execute event now

• Queries ATMS: can commit to constraints?

• If yes: execute event & dispatch appropriate activities

• Receives human’s choice outcomes (from activity recognizer)

• Monitors active causal links
• Upon violation: add appropriate constraints to ATMS

• Execution infeasible? Signal execution error.
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Online causal link execution monitoring

• Detects potential problems immediately

• Allows recovery actions (if modeled in plan)
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Online causal link execution monitoring

• Detects potential problems immediately

• Allows recovery actions (if modeled in plan)
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Disturbance: ¬p
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Experimental results

• Randomly-generated TPNU’s with
randomly-generated causal link
structure (probably harder)

• Compilation time roughly
proportional to candidate subplans,
(large variance)

• Reactive online performance
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Labeled all-pairs shortest path (APSP)
• Developed in (Conrad 2009)

• Three purposes:

1. Dispatchable form for online execution

2. Ordering over events for causal link extraction

3. Temporal conflict extraction

Concurrent Plan Recognition & Execution for Human-Robot Teams  |  Steven J. Levine Slide
 

51



Labeled all-pairs shortest path (APSP)

• What is temporal distance between these events?
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Labeled all-pairs shortest path (APSP)

• What is temporal distance between these events?

• Event dependent:
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{
[6, 11] if x = 1

[2, 11] if x = 2



Labeled all-pairs shortest path (APSP)

• Labeled all pairs shortest path computes these temporal
distances, as a function of environment

• Compact encoding using Labeled Value Set (LVS)
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Labeled all-pairs shortest path (APSP)

• Causal link extraction: provides ordering

• In this case, producer guaranteed to precede consumer

• Labeled causal link extracted
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Labeled Value Set (LVS)
• LVS encodes tightest known value for some condition, as

a function of environment

• t < aEx. Suppose           where adepends on environment

• LVS:   t < {(2, {x = 1, y = 2}), (3, {x = 1}), (6, {})}

• Query an L QVS with     operator: “what is tightest value
over all environments wher x = 1, y = 2e                   ”?

• Q({x = 1, y = 2}) = 2

• Q({y = 2}) = 6

• Dominance (ai, φi) (aj , φj): labeled pair            dominates            iff
ai < aj φi           and     subsumes  φj

LVS introduced in (Conrad 2009)
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Operations on LVS’s
• We use < to compare numbers, but generalizes to other

partial order relation R

• Operations on LVS’s:

• Adding new labeled pairs

• Query

• Binary operations, like +

• See (Conrad 2009) for full details
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Labeled all-pairs shortest path (APSP)
• Labeled APSP:

• Dispatchable form suitable for online execution

• Allows precedence inference for causal link extraction

• Detects temporal conflicts

• Computes an LVS for each pair of graph, representing
shortest distance as function of environment

• Generalization of Floyd Warshall algorithm that uses LVS
operations instead of standard + and <

• See (Conrad 2010) for details
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Optimization: Causal link dominance
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Optimization: Causal link dominance
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Optimization: Causal link dominance

• Dominance: Later-occurring producers that are active
whenever earlier ones are dominant.

• Reduce number of constraints & solutions
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Future Work
• Rank intent/adaptation hypotheses.

• Probability: consider only likely human intents first

• Richer model for state & human

• Hybrid state with continuous, spatial variables

• Hybrid causal links via flow tubes / funnels

• Robot to actively influence human

• Actively ask clarification questions

• Informing human of increasingly likely failures (deadlines
getting close, likely violated causal link, etc.)
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Questions
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Backup slides
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Environments represent sets of subplans

• Environment: partial assignment to choice variables

• Represents a set of possible subplans
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Environments represent sets of subplans

• {xR1 = juice, xA3 = bagel}Ex.,                                                 represents:
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Environments and subsumption
• Environment     subsumes     iff     contains all

assignments in    

• {xR1 = juiceex.,                             subsumes  xR1 = j} { uice, xA3 = bagel}

• Intuitively, all subplans represented by     also
represented by     (subset)
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Labeled causal links
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Labeled causal links
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• Label causal links with producer’s execution environment

• Ordering determined via labeled APSP
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Labeled causal link dominance
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• Dominance: Later-occurring producers with subsuming
environments dominate others

• Above, later occurring producer dominates earlier one.
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Extraction algorithm
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Algorithm 8: ExtractCausalLinkConstraints()

Input:
Output:

1 foreach ec ∈ E do
2 foreach p ∈ Preconditions(ec) do
3 ξ ← new LVS {} with relation ≺
4 foreach e �= ec ∈ E with p or ¬p in Effects(e) do
5 if not ec ≺ e and φe ∧ φec is feasible(!) then
6 AddLVS((e, φe), ξ)
7 end

8 end
9 Separate ξ into P and T

10 Create decision variable aec,p with domain P

11 AddConstraint
(
φec ⇒ ∨

i (ai = epi
∧ φepi

)
)

12 foreach epi ∈ P where not epi ≺ ec do
13 Add [ε,∞] : {aec,p = epi} ∧ φepi

∧ φec from epi to ec
14 end
15 foreach epi

∈ P do
16 foreach eti ∈ T do
17 φC ← {aec,p = epi} ∧ φepi

∧ φeti
∧ φec

18 if epi ≺ eti
∣∣
φC

and eti ≺ ec
∣∣
φC

then

19 AddConstraint
(
¬φC

)
20 else if epi ≺ eti

∣∣
φC

and eti ‖ ec
∣∣
φC

then

21 Add [ε,∞] : φC from ec to eti
22 else if epi ‖ eti

∣∣
φC

and eti ≺ ec
∣∣
φC

then

23 Add [ε,∞] : φC from epi to eti
24 else if epi ‖ eti

∣∣
φC

and ec ‖ eti
∣∣
φC

then

25 Create decision variable bec,p,epi ,eti with domain {1, 2}
26 Add [ε,∞] : {bec,p,epi ,eti = 1} ∧ φC from eti to epi

27 Add [ε,∞] : {bec,p,epi ,eti = 2} ∧ φC from ec to eti
28 end

29 end

30 end

31 end

32 end



TPN Encodings
• What useful things can be encoded by TPN’s?

• Resource / agent allocation

• Recovery actions

• Flexibility to execute different tasks (HTN-like)
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Random TPNU generation
• Random sequential, parallel, and choice structure

• Randomly-generated causal link structure (encoded
through plant domain) with potential threats

• Temporal “squeezing”

• Wide range of problem sizes
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Labeled causal link extraction
• Uses an LVS, except:

• Values are TPNU events, rather than numbers

• Relation R is not <  but rather succession (via labeled APSP):{
True if Qdea e (φa φb)

e R e = → b
a b

∪ ≤

• To find producers for consumer ec requiring p:

• Insert all    that produce   or      into LVS

• Extract threat resolution constraints from those producing  

• Extract labeled causal links from those producing  

• (See paper for full details)
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False otherwise

ep p ¬p

p

¬p
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Encoding in an ATMS
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{
z = 1 ⇒ (ac = 1 ∨ (ac = 2 ∧ y = 1))

¬(ac = 1 ∧ x = 2 ∧ z = 1)



A basic threat
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A basic threat
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A basic threat
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ac =

{
1 if first causal link enforced

2 if second causal link enforced



Extracting propositional constraints

{
z = 1 ⇒ (ac = 1 ∨ (ac = 2 ∧ y = 1)) At least 1 causal link holds

¬(ac = 1 ∧ x = 2 ∧ z = 1) Threat resolved
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ac =

{
1 if first causal link enforced

2 if second causal link enforced



Causal link extraction in a nutshell*
• For each precondition of each consumer event:

• Find all producer provably before or during consumer
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Causal link extraction in a nutshell*
• For each precondition of each consumer event:

• Find all producer provably before or during consumer

• Add propositional & temporal constraints for each producer
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