
16.410-13 Recitation 9 Problems 

Problem 1: A∗ Search 

Robot Navigation Consider the maze given in the following figure. Name 3 admissible heuristics for this 
problem. What would be a good admissible heuristics? 

Write down the steps that an A∗ search would go through using the best heuristic you can think of. You 
may find it convenient to write the cost-to-go values for each tile on the figure. 

Traveling in Romania You are tak 

ing your vacation in East Europe. You

have just crossed the border from Hun 

gary to Romania. It turned out Romania

is a beautiful country.


You have started in Arad on the Hungary border. You would like to see Bucharest. Use the Euclidean 
distance cost-to-go heuristic in answering the following questions (heuristic values are given above). 

•	 Find a path that gets you to Bucharest using the Greedy search. Draw the search tree. 

•	 Use A∗ to find an optimal that takes you to Bucharest. Draw the search tree. 

•	 Describe how you would construct a “controller” that takes you to Bucharest from anywhere in Romania 
in case you get lost somewhere. Show the execution of the Dijkstra algorithm. 

1 

Oradea

Zerind

Arad

Timisoara
Lugoj

Mehadia

Dobreta
Craiova

Pitesti

Rimnicu 
Vilcea

Sibiu
Fagaras

Bucharest

Giurgiu
Eforie

HirsovaUrziceni

Vaslui

Lasi

Neamt71

75

118

111

70

75
120

146

97

138

80

151

140 99

211

101
85

90

86

98

142

92

87

Arad
Bucharest
Craiova
Dobreta
Eforie
Fagaras
Giurgiu
Hirsova
Lasi
Lugoj
Mehadia
Neamt
Oradea
Pitesti
Rimnicu Vilcea
Sibiu
Timisoara
Urziceni
Vaslui
Zerind

366
0

160
242
161
176

77
151
226
244
241
234
380

10
193
253
329

80
199
374

Straight-line distance 
to Bucharest

A Map of Romania

Image by MIT OpenCourseWare.



Problem 2: Admissible Heuristics 
Puzzle Recall the 4-puzzle. Remember the heuristics that you have learned in 

1 3 3 1 

1 3 3 1 

1 3 3 
1 

1 3 3 
1 

1 3 3 
1 

1 3 3 1 

1 3 3 1 

the class. Describe the Manhattan distance heuristic. Prove that the Manhattan 
distance heuristic is an admissible heuristic. 
Now, consider the following heuristic. Two tiles tj and tk are in a linear conflict if 
tj and tk are the same line, the goal positions of tj and tk are both in that line, tj 

is to the right of tk, and goal position of tj is to the left of the goal position of tk. 
The linear conflict heuristic moves any two tiles that are in linear conflict without 
colliding them. See the figure in left. 
Is this heuristic admissible? Either prove that it is admissible, or disprove by a 
counter-example. Is this heuristic better than the Manhattan distance heuristic. 
Rubik puzzle Rubik puzzle is one of the hardest combinatorial problems to date 
(see the figure below). We would like to solve it using the A∗ algorithm. What 
would be a good admissible heuristic for this problem? 

Problem 3: Collision Checking 

Recall that sampling-based motion planning algorithms require an “oracle” that checks whether or not a 
path collides with an obstacle or not. Assume that you have circle-shaped rigid body robot that moves on 
a plane (2 dimensions). The radius of the robot is R. Each obstacle in the environment is also shaped 
as a circle. The obstacles are given in the form of a list such that each obstacle is described by the triple 
(xi, yi, ri), where xi the x-axis coordinate, yi is the y-axis coordinate, and ri is the radius of the obstacle. 

2 

Image by MIT OpenCourseWare.



Checking collision with a single obstacle Devise a method to quickly check whether a given straight 
path collides with a given obstacle (there is only one obstacle). You can use vector operations (e.g., the dot 
product or vector multiplications and simple addition and multiplication). 

HINT: Remember the configuration space idea. 

Efficiently checking collision with multiple obstacles Devise a method to store the obstacles in a 
data structure so that checking collision with obstacles is more efficient than checking collision each obstacle 
one by one. Analyze the complexity of your collision checking algorithm. How does it scale with the number 
of obstacles? Compare this to the complexity of checking collision each obstacle one by one. 

3 



MIT OpenCourseWare 
http://ocw.mit.edu 

16.410 / 16.413 Principles of Autonomy and Decision Making 
Fall 2010 

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 

http://ocw.mit.edu
http://ocw.mit.edu/terms



