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Outline

Game theory and sequential games (recap previous lecture)

Dynamical (control) systems and optimal control

Dynamic Game Theory

Numerical Methods

A special case: Pursuit-evasion.
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Game theory (Recap)

Zero-sum Games
Gains/losses of each player is balanced by the gains/losses of the all the other players.

Cooperative vs. non-cooperative.
Cooperative if groups of players may enforce binding agreements.

Nash equilibrium
No player can gain more by unilaterally changing strategy.

An example
Remember the prisoner’s dilemma:

Player B cooperates Player B defects
Player A cooperates (-1,-1) (-10, 0)

Player A defects (0,-10) (-5,-5)

Non-zero sum.
Cooperation could have been enforced; otherwise may or may not arise.
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Game Theory (Recap)
Zero-sum Two-player Sequential games

Key characteristics
Two players

Zero-sum reward

Sequential moves
(from a finite set)

Perfect information

Terminates in a finite
number of steps

We have used alpha-beta pruning to solve such games.
Today, we will study non-cooperative dynamic games.
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Dynamic games

Dynamic games:

Actions available to each agent depends on its current state
which evolves according to a certain dynamical system.
Sets of states/actions is usually a continuum.

In many cases, the agents involved in the game are subject to dynamics.

Some (major/relevant) application areas:

Dogfight

Aircraft landing subject to wind (or other) disturbance

Air traffic control

Economics & Management Science
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History of Dynamic Games

Introduction of dynamic games is attributed to
Rufus Isaacs (1951).

Book: R. Isaacs, Differential Games: A
mathematical theory with applications to warfare
and pursuit, control and optimization, 1965.

Later the theory was developed by many
contributors including A. Merz and J. Breakwell.

More recent contributions by T. Basar and
coworkers.

Book: Basar and Olsder, Dynamic
Noncooperative Game Theory, 1982.
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Dynamic Games Literature

Dynamic games has a very rich literature.
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Dynamical systems

Two definitions of time:

Discrete Time
t ∈ N: time takes values in {0,1,2, . . . }.

Can be thought of as "steps".
Good models of computers and digital systems.

Continuous Time
t ∈ R≥0: time takes values in [0,∞).

Models of systems arising from (large-scale) physical phenomena
Examples: airplanes, cars, room temperature, planets moving around the sun

(Autonomous) Discrete-time Dynamical Systems described by difference equations:

x [t + 1] = f (x [t ])

(Autonomous) Continuous-time Dynamical Systems described by differential equations:

ẋ =
dx
dt

(t) = f (x(t)), x(t) ∈ X (state space)

S. Karaman ( MIT) L25: Differential Games December 8, 2010 10 / 32



Dynamical Control Systems

Almost all engineering systems have a certain set of inputs.

The behavior of the system is determined
by its current state and the inputs.

Discrete-time dynamical control systems

Difference equation: x [t + 1] = f (x [t ],u[t ]).

Continuous-time dynamical control systems

Differential equation: ẋ(t) = f (x(t),u(t)), x(t) ∈ X ,u(t) ∈ U.

From now on we will only discuss continuous-time systems, although the
discussion can easily be extended to discrete-time systems
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Dynamical Control Systems: Examples

Single integrator
ẋ = u, |u| ≤ 1.

Can be extended to multiple dimensions easily.

Dubins’ car
States: x , y , θ; Input: u ∈ [−1, 1].

ẋ = v cos(θ)

ẏ = v sin(θ)

θ̇ = u

The car can not turn on a dime, i.e., has a minimum turning radius.
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Optimal Control

Often times in engineering, we would like design to maximize a certain
performance (equivalently minimize a cost function)

Let g(x ,u) : X ×U → R+ associate state-input pairs with a cost "density".
Define:

L(u) =

∫ T

t=0
g(x(t),u(t))dt ,

where ẋ(t) = f (x(t),u(t)) for all t ∈ [0,T ] (T might be infinity).

Optimal control problem is to find u(t) such that L(u) is minimized.

Optimal control is widely studied. Generally, solution methods are based
on dynamic programming and the principle of optimality.

Analytical techniques apply when, e.g., linear dynamics (f linear) and
quadratic cost (g quadratic).
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Differential games

Dynamical systems with many independently-controlled inputs
Player 1 controls u1(t) ∈ U1, Player 2 controls u2 ∈ U2:

ẋ = f (x ,u1(t),u2(t))

The state evolves according to both players decisions.

Payoff function:
For each player i ∈ {1, 2}, define g i : X × U1 × U2 → R+

Li(u1, u2) =

∫ T

t=0
g i(x(t), u1(t), u2(t))

Each player wants maximize her own payoff (knowing that the other player is
doing the same).

Another type of dynamic game is the difference game which is defined by
difference equations instead of differential equations.

This formulation can be extended to multiple players easily.
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Example: Pursuit-evasion

Consider an airplane

ẋ1(t) = f 1(x1(t),u1(t))

and a missile chasing the airplane

ẋ2(t) = f 1(x2(t),u2(t))

That is,

ẋ =

[
ẋ1(t)
ẋ2(t)

]
= f (x(t),u1(t),u2(t)) =

[
f 1(x1(t),u1(t))
f 2(x2(t),u2(t))

]
Define

T (x) = min{t | x1(t) = x2(t)}, T (x) =∞ if x1(t) 6= x2(t) for all t .

Let us define utilities as

L1(u1,u2) = T (x) L2(u1,u2) = −T (x)
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Types of differential games: Information patterns

Information pattern
ηi (t): the information available to player i at time t .

Open-loop information pattern

ηi (t) = {x0}, t ∈ [0,T ].

Each player observes the initial condition of others
and picks an open-loop control: ui (t) : [0,∞)→ U i .

During the evolution of the system, the players can not change their controls.

Closed-loop information pattern

ηi (t) = {x(t ′),0 ≤ t ′ ≤ t}, t ∈ [0,T ]

Each player picks a closed loop control (that depends on the trajectory of the
system, i.e., the other player’s control inputs): Γi (t , x) : [0,∞)× X → U i .

That is, player’s can adjust their controls depending on the state of the system.
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Types of differential games: Payoff structures

Zero-sum games
Payoffs of the players sum up to zero (or, equivalently a constant), i.e.,

L1(u1,u2) + L2(u1,u2) = 0.

This can be extended to multiple players easily.

Examples of zero-sum games:
Pursuit-evasion, dog fight (?).

Generally, management science examples are non-zero sum.
Markets (determine market clearing prices), Choosing divident rates (to
keep shareholders happy), Supply chain management (game against
demand rates).
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Types of differential games: Equilibria concepts
Nash Equilibrium

Nash equilibrium concept
No player can improve payoff by unilaterally changing her strategy.

(u1∗,u2∗) is a Nash equilibrium point if

L1(u1∗,u2∗) ≥ L1(u1,u2∗), for all u1.

L2(u1∗,u2∗) ≥ L2(u1∗,u2), for all u2.

Nash equilibrium concept can be extended to multiple players easily.

Most markets end up in a Nash equilibrium.
No company can improve payoff (aggregate gains) by unilaterally changing strategy
(production rates).
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Types of differential games: Equilibria concepts
Saddle-point Equilibrium

Saddle-point Equilibria Concept
Saddle-point equilibrium arises in zero-sum differential games.

Assume there is a single payoff function: J(u1,u2).

Player 1 wants to maximize, Player 2 wants to minimize.

(u1∗,u2∗) is a saddle point equilibrium point if

J(u1,u2∗) ≤ J(u1∗,u2∗) ≤ J(u1∗,u2).

Note that this can not be extended to multiple players.
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Types of differential games: Equilibria concepts
Stackelberg Equilibrium

Stackelberg equilibrium
One player is the leader announces her strategy first,
the followers play accordingly.

From the leader’s point of view:

max
u1

min
u2

J(u1,u2).

Most markets works according to this rules.
Coca Cola sets the price, all others follow.
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Open-loop vs. Closed-loop

Lady in the lake
A lady is swimming in a circular-shaped lake. Right when
she is in the middle a man comes nearby with the intention
of catching her when she comes out.

The man can not swim.

The lady can swim slower than the man can run

The lady can run faster than the man.

Man wins if he captures the lady; lady wins if she escapes.

Man

Lake

Lady

In this case, open-loop strategies do not make sense (at least for the
man).
What is a closed-loop strategy for the lady to wins?
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Effects of dynamics

Homicidal Chauffeur
A homicidal driver wants to kill a pedestrian. The pedestrian is slow but much
more agile.

Driver is modeled by a Dubins’ car.
The pedestrian is a single integrator with bounded velocity.
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Computational Methods

Direct methods:
Formulate a mathematical program and solve.

How shall we handle the min-max type of objective function?

Bilevel programming is one promising approach.
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Computational Methods

Indirect methods:
Using necessary and sufficient conditions, write down a partial differential
equation (PDE) that the solution must satisfy.

Solve this PDE using level sets, multiple-shooting, collocation, etc.

Computational Techniques for the Verification
of Hybrid Systems

CLAIRE J. TOMLIN, IAN MITCHELL, ALEXANDRE M. BAYEN, AND MEEKO OISHI

PROCEEDINGS OF THE IEEE, VOL. 91, NO. 7, JULY 2003
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Incremental Sampling-based Methods

Consider a two-player zero-sum pursuit-evasion game

ẋe = fe(xe(t),ue(t)), ẋp = fp(xp(t),up(t)),

where e is the evader and p is the pursuer.
d
dt

x(t) =
d
dt

[
xe(t)

xp(t)

]
= f (x(t),u(t)) =

[
fe (xe(t), ue(t))

fp (xp(t), up(t))

]
, for all t ∈ R≥0,

Define
(i) Xgoal: goal region,
(ii) Xobs,i: obstacle region for both players i ∈ {e, p},
(iii) Xcapt: capture set.

Define terminal time of the game

T = min{t ∈ R≥0 : x(t) ∈ Xgoal ∪ Xcapt}

Define the payoff function

L(ue,up) =

{
T , if x(T ) ∈ Xgoal;

∞, otherwise.

Evader tries to minimize, pursuer tries to maximize.
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Incremental Sampling-based Methods
Problem description

Open-loop information structure:
The players pick open-loop controls and let the dynamical system evolve.

Stackelberg equilibrium:
The evader picks her strategy first, the pursuer observes
the evader and picks his strategy accordingly.

We can think of this as an unbalanced information structure:
Evader’s information structure: open-loop
Pursuer’s information structure: closed-loop

Also, assume that the pursuer is in a stable equilibrium.

A motivating example: Aircraft avoiding missiles.

Missiles detected by the satellite, but not
directly observed by the airplane.

The airplane must find a safe way
through the field.
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Incremental Sampling-based Methods
The Algorithm

We will use incremental sampling-based motion planning methods. In particular,
the RRT∗ algorithm.

Let EvaderTree and PursuerTree denote the tree of feasible trajectories
maintained by the evader and the pursuer, respectively.

GrowEvaderTree adds one vertex to EvaderTree and returns this vertex.

Algorithm:
1. Initialize EvaderTree and PursuerTree.
2. For i := 1 to n do
3. xnew,e ← GrowEvaderTree.
4. If {xp ∈ PursuerTree | ‖xnew,e − xp‖f (i), (xnew,e, xp) ∈ Xcapt} 6= ∅ then.
5. delete xnew,e.
6. EndIf
7. xnew,p ← GrowPursuerTree.
8. delete {xe ∈ EvaderTree | ‖xe − xnew,p‖ ≤ f (i), (xnew, xp) ∈ Xcapt}
9. EndFor

For computational efficiency pick f (i) ≈ log n
n .
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Incremental Sampling-based Methods
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Incremental Sampling-based Methods
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Incremental Sampling-based Methods

Evader Pursuer

Evader Pursuer
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Incremental Sampling-based Methods

Probabilistic Soundness
The probability that the solution returned by the algorithm is sound
converges to one as the number of samples approaches infinity.

Probabilistic Completeness
The probability that the algorithm returns a solution, if one exists,
converges to one as the number of samples approaches infinity.

The algorithm is incremental and sampling-based:

An approximate solution is computed quickly and improved if the time allows.

The approach is amenable to real-time computation,

Also, computationally effective extensions to high dimensional state-spaces,

May be valuable in online settings.
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Conclusions

In this lecture, we have studied dynamic games:

Description of time: Discrete-time, Continuous-time.

Information patterns: Open-loop, Closed-loop (feedback).

Payoff structures: Zero-sum, Nonzero-sum games.

Equilibrium concepts: Nash, Saddle-point, and Stackelberg.

Simple examples: Lady in the lake, Homicidal chauffeur.

Numerical solutions: Direct methods, Indirect methods.

Incremental sampling-based algorithms
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