

Image credit: NASA.

<section-header><text><text><text><text><list-item><list-item><list-item>

Estimate probability by assuming a uniform distribution (Method 7)

Problem: Logic doesn't specify $P(s_i)$ for models of consistent sentences. \Rightarrow Assume all models are equally likely \rightarrow count models.

$$P(Q \mid \Phi) = \frac{P(Q, \Phi)}{P(\Phi)} = \frac{\sum_{s_i \in Q \cap \Phi} P(s_i)}{\sum_{s_i \in \Phi} P(s_i)} = \frac{|M(Q \land \Phi)|}{|M(\Phi)|}$$

Model-based Diagnosis using model counting:

$$P(o \mid x) = \frac{P(o, x)}{P(x)} = \frac{|M(o \land x \land \Phi(x, Y))|}{|M(x \land \Phi(x, Y))|}$$

10/28/07

copyright Brian Williams, 2005-09

10

Estimating the Observation Probability $P(o_i | M, o_{1:n-1})$ in GDE

GDE used naïve Bayes AND assumed consistent observations for candidate m are equally likely.

 $P(o_n | x, o_{1:n-1})$ is estimated using model $\Phi(x, Y)$ according to:

- If $o_{1:n-1} \land x \land \Phi(x,Y)$ entails o_n Then $P(o_n | x, o_{1:n-1}) = 1$
- If $o_{1:ni-1} \land x \land \Phi(x,Y)$ entails $O_n \neq o_n$ Then $P(o_n \mid m, o_{1:n-1}) = 0$
- Otherwise, Assume all consistent assignments to O_n are equally likely: let D_{Cn} ≡ {o_c∈ D_{On} | o_{1:n-1} ∧ x ∧ Φ(x,Y) is consistent with O_n = o_c} Then P(o_n | x, o_{1:n-1}) = 1 / |D_{Cn}|

16.410 / 16.413 Principles of Autonomy and Decision Making Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.