

Image credit: NASA.

Notation

- $\mathbf{S}^{t+1} \quad$ set of hidden variables in the $\mathrm{t}+1$ time slice
- $\mathbf{s}^{t+1} \quad$ set of values for those hidden variables at $t+1$
- $\mathbf{o}^{\mathbf{t + 1}}$
- $0^{1: t}$ set of observations at time t+1
- α set of observations from all times from 1 to t normalization constant

Multiple Faults Occur

- three shorts, tank-line and pressure jacket burst, panel flies off.

Lecture 12: Framed as CSP.

- How do we compare the space of alternative diagnoses?
- How do we prefer diagnoses that explain failure?

Image source: NASA. APOLLO 13

Due to the unknown mode, there tends to be an exponential number of diagnoses.

1. Introduce fault models.

- More constraining, hence more easy to rule out.
- Increases size of candidate space.

2. Enumerate most likely diagnoses X_{i} based on probability.

Prefix (k) (Sort $\left\{\mathrm{X}_{\mathrm{i}}\right\}$ by decreasing $\mathrm{P}\left(\mathrm{X}_{\mathrm{i}} \mid \mathrm{O}\right)$)

- Most of the probability mass is covered by a few diagnoses.

10/26/10

Model-based Diagnosis

Xor(i):

- G(i):

Out(i) $=\ln 1$ (i) xor $\ln 2(\mathrm{i})$

- Stuck_0(i):

Out $(\bar{i})=0$

- U(i):

Input:

- Finite Domain Variables
$-\quad<\mathrm{X}, \mathrm{Y}\rangle$ - X mode variables model variables observable variables $\mathrm{O} \subseteq \mathrm{Y}$.
- $\Phi(\mathrm{X}, \mathrm{Y})$
- $\quad 0$
- $\mathrm{P}\left(\mathrm{X}_{\mathrm{i}}\right)$

[de Kleer \& Williams, 87, 89]

Assumptions:

- Modes are static
- uniform dist on logical models.
- $\mathrm{X}_{\mathrm{i}} \perp \mathrm{X}_{\mathrm{j}}$ for $\mathrm{i} \neq \mathrm{j} \quad$ (apriori)
- $\mathrm{O}_{\mathrm{i}} \perp \mathrm{O}_{\mathrm{j}} \mid \mathrm{X} \quad$ for $\mathrm{i} \neq \mathrm{j}$

Consistency-based
Probabilistic,
Sequential Observations

Compute Conditional Probability via Bayes Rule

 (Method 6)$P(X \mid o)=\frac{P(o \mid X) P(X)}{P(o)} \quad=\alpha P(o \mid X) P(X)$

$$
=\frac{P(o \mid X) P(X)}{\sum_{x \in X} P(o, x)}
$$

$$
=\frac{P(o \mid X) P(X)}{\sum_{x \in X} P(o \mid x) P(x)}
$$

Candidate Prior Probabilities

$$
P(X)=\prod_{i} P\left(X_{i} \mid X_{1: i-1}\right) \quad \text { Chain rule }
$$

Assume $\mathrm{X}_{\mathrm{i}} \perp \mathrm{X}_{\mathrm{j}}$ for $\mathrm{i} \neq \mathrm{j}$:

$$
P(X)=\prod_{X_{i} \in X} P\left(X_{i}\right)
$$

	A	B	C	
$\mathrm{P}(\mathrm{G})$.99	.99	.99	$P(A=G, B=G, C=G)=.97$
$\mathrm{P}(\mathrm{S} 1)$.008	.008	.001	$P(A=S 1, B=G, C=G)=.008$
$\mathrm{P}(\mathrm{S} 0)$.001	.001	.008	$P(A=S 1, B=G, C=S 0)=.00006$
$\mathrm{P}(\mathrm{U})$.001	.001	.001	$P(A=S 1, B=S 1, C=S 0)=.0000005$

Estimate probability by assuming a uniform distribution (Method 7)

$$
P(X \mid o)=\alpha P(o \mid X) P(X)
$$

How do we compute $\mathrm{P}(\mathrm{o} \mid \mathrm{X})$, from logical formulae $\Phi(\mathrm{X}, \mathrm{Y})$?
Given theory Φ, sentence $\mathrm{Q} \ldots$...

Problem: Logic doesn't specify $\mathrm{P}\left(\mathrm{s}_{\mathrm{i}}\right)$ for models of consistent sentences.

Estimate probability by assuming a uniform distribution (Method 7)

Problem: Logic doesn't specify $\mathrm{P}\left(\mathrm{s}_{\mathrm{i}}\right)$ for models of consistent sentences. \Rightarrow Assume all models are equally likely \rightarrow count models.

$$
P(Q \mid \Phi)=\frac{P(Q, \Phi)}{P(\Phi)}=\frac{\sum_{s_{i} \in \mathcal{Q} \nmid \varphi} P\left(s_{i}\right)}{\sum_{s_{i} \in \Phi} P\left(s_{i}\right)}=\frac{|M(Q \wedge \Phi)|}{|M(\Phi)|}
$$

Model-based Diagnosis using model counting:

$$
P(o \mid x)=\frac{P(o, x)}{P(x)}=\frac{|M(o \wedge x \wedge \Phi(x, Y))|}{|M(x \wedge \Phi(x, Y))|}
$$

Simplify $\mathrm{P}(\mathrm{O} \mid \mathrm{M})$ using the Naïve Bayes Assumption (Method 7)
 $$
P(X \mid o)=\alpha P(o \mid X) P(X)
$$

Problem: $\mathrm{P}(\mathrm{o} \mid \mathrm{X})$ can be hard to determine for large $|\mathrm{o}|$.
Assume: observations o are independent given mode X .

$$
\begin{gathered}
\mathrm{o}_{1} \perp \mathrm{o}_{2} \ldots \perp \mathrm{o}_{\mathrm{n}} \mid \mathrm{X} \\
P(o \mid X)=P\left(o_{1} \mid X\right) P\left(o_{2} \mid X\right) \ldots P\left(o_{n} \mid X\right)
\end{gathered}
$$

by Naïve Bayes

11

$$
\begin{aligned}
& \text { Diagnosis with Sequential Observations } \\
& \begin{aligned}
P\left(X \mid o_{1: n}\right)= & \frac{P\left(o_{n} \mid X, o_{1: n-1}\right) P\left(X \mid o_{1: n-1}\right)}{P\left(o_{n} \mid o_{1: n-1}\right)}=\alpha P\left(o_{n} \mid X, o_{1: n-1}\right) P\left(X \mid o_{1: n-1}\right) \\
= & \frac{P\left(o_{n} \mid X, o_{1: n-1}\right) P\left(X \mid o_{1: n-1}\right)}{\sum_{x \in X} P\left(o_{n}, x \mid o_{1: n-1}\right)} \\
= & \frac{P\left(o_{n} \mid X, o_{1: n-1}\right) P\left(X \mid o_{1: n-1}\right)}{\sum_{x \in X} P\left(o_{n} \mid x, o_{1: n-1}\right) P\left(x \mid o_{1: n-1}\right)}
\end{aligned}
\end{aligned}
$$

Assume: observations o are independent given mode X .

$$
\begin{gathered}
\mathrm{o}_{1} \perp \mathrm{o}_{2} \ldots \perp \mathrm{o}_{\mathrm{n}} \mid \mathrm{X} \\
=\frac{P\left(o_{n} \mid X\right) P\left(X \mid o_{1: n-1}\right)}{\sum_{x \in X} P\left(o_{n} \mid x\right) P\left(x \mid o_{1: n-1}\right)}
\end{gathered}
$$

Estimating the Observation Probability $\mathbf{P}\left(\mathbf{o}_{\mathrm{i}} \mid \mathbf{M}, \mathbf{o}_{1: n-1}\right)$ in GDE

GDE used naïve Bayes AND assumed consistent observations for candidate m are equally likely.
$P\left(o_{n} \mid x, o_{1: n-1}\right)$ is estimated using model $\Phi(x, Y)$ according to:

- If $o_{1: n-1} \wedge x \wedge \Phi(x, Y)$ entails o_{n} Then $P\left(o_{n} \mid x, o_{1: n-1}\right)=1$
- If $\mathrm{O}_{1: \text { ni- }} \wedge \mathrm{x} \wedge \Phi(\mathrm{x}, \mathrm{Y})$ entails $\mathrm{O}_{\mathrm{n}} \neq \mathrm{o}_{\mathrm{n}}$ Then $P\left(o_{n} \mid m, o_{1: n-1}\right)=0$
- Otherwise, Assume all consistent assignments to O_{n} are equally likely: let $D_{C_{n}} \equiv\left\{o_{c} \in D_{o_{n}} \mid o_{1: n-1} \wedge x \wedge \Phi(x, Y)\right.$ is consistent with $\left.O_{n}=o_{c}\right\}$ Then $P\left(o_{n} \mid x, o_{1: n-1}\right)=1 /\left|D_{C_{n}}\right|$

Observe out = 1:

- $x=<A=G, B=G, C=G>$
- Prior: $\mathrm{P}(\mathrm{x}) \quad=.97$
- P (out $=0 \mid x)=1$
- $\mathrm{P}(\mathrm{x} \mid$ out $=0) \quad=\alpha \times 1 \times .97=.97$

$$
P\left(X \mid o_{t n}\right)=\alpha P\left(o_{n} \mid X\right) P\left(X \mid o_{\text {trn-1 }}\right)
$$

Observe out = 0:

- $x=<A=G, B=G, C=G>$
- Prior: $\mathrm{P}(\mathrm{x}) \quad=.97$
- P (out $=0 \mid x)=0$
- $P(x \mid$ out $=0) \quad=0 \times .97 \times \alpha=0$

Priors for Single Fault Diagnoses:

\[

\]

Due to the unknown mode, there tends to be an exponential number of diagnoses.

But "unknown" diagnoses represent a small fraction of the probability density space.
\square Most of the density space may be approximated by enumerating the few most likely diagnoses.

Diagnosing Dynamic Systems: Probabilistic Constraint Automata

Probabilistic transitions between modes

Estimating Dynamic Systems

Given sequence of commands and observations:

- Infer current distribution of (most likely) states.
- Infer most likely trajectories.

MIT OpenCourseWare
http://ocw.mit.edu

16.410 / 16.413 Principles of Autonomy and Decision Making

Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

