

Image credit: NASA.

Assignment

- Homework:
- Problem Set \#8: Linear Programming, due today, Wednesday, November $16^{\text {th }}$.
- Problem Set \#9: Probabilistic Reasoning, out today, due Wednesday, November $24^{\text {th }}$.
- Readings:
- Today: Review of Probabilities and Probabilistic Reasoning.
- AIMA Chapter 13.
- AIMA Chapter 14, Sections. 1-5.
- Monday: HMMs, localization \& mapping
- AIMA Chapter 15, Sections. 1-3.

Notation

- S, Q, R, P Logical sentences
- $\Phi \quad$ Background theory (a sentence).
- not, and (\wedge), or (v), implies (\rightarrow), "if and only if " (iff, \equiv).

Standard logical connectives where iff \equiv "if and only if".

- $M(S)$, entails, \perp Models of sentence S, entails, false.
- A, B, C Sets.
- U, $\phi \quad$ Universe of all elements, empty set.
- \cup, \cap, \sim, - Set union, intersection, inverse and difference.
- $\equiv \quad$ Equivalent to.
- V : Variable or vector of variables.
- $\mathrm{V}_{\mathrm{i}}: \quad$ The ith variable of vector V .
- $\mathrm{V}, \mathrm{v}_{\mathrm{i}}$: A particular assignment to V ; short form for $\mathrm{V}=\mathrm{v}, \mathrm{V}_{\mathrm{i}}=\mathrm{v}_{\mathrm{i}}$.
- V : $\quad \mathrm{V}$ at time t .
- Vil: A sequence of V from time i to time j.

Notation

- S: States or state vector.
- O: Observables or observation vector.
- X: Mode or mode vector.
- S0, S1 Stuck at 0/1 mode.
- Prefix (k) L Returns the first k elements of list L.
- Sort L by R Sorts list L in increasing order based on relation R.
- $s_{i} \quad$ ith sample in sample space U.
- $P(X) \quad$ The probability of X occurring.
- $P(X \mid Y) \quad$ The probability of X, conditioned on Y occurring.
- $A \perp C \mid B) \quad A$ is conditionally independent of C given B.

Outline

- Motivation
- Set Theoretic View of Propositional Logic
- From Propositional Logic to Probabilities
- Probabilistic Inference
- General Queries and Inference Methods
- Bayes Net Inference
- Model-based Diagnosis
(Optional)

Multiple Faults Occur

- three shorts, tank-line and pressure jacket burst, panel flies off.

Lecture 16: Framed as CSP.

- How do we compare the space of alternative diagnoses?
- How do we explain the cause of failure?
- How do we prefer diagnoses that explain failure?
Image source: NASA. APOLLO 13

Due to the unknown mode, there tends to be an exponential number of diagnoses.

1. Introduce fault models.

- More constraining, hence more easy to rule out.
- Increases size of candidate space.

2. Enumerate most likely diagnoses X_{i} based on probability.

Prefix (k) (Sort $\left\{\mathrm{X}_{\mathrm{i}}\right\}$ by decreasing $\mathrm{P}\left(\mathrm{X}_{\mathrm{i}} \mid \mathrm{O}\right)$)

- Most of the probability mapm mis icoyered by a few diagnoses. 11/17/10
in

Idea: Include known fault modes (S0 = "stuck at $0, " \mathrm{~S} 1=$ "stuck at 1, ") as well as Unknown.

Diagnoses: (42 of 64 candidates)
Fully Explained Failures:

- $[A=G, B=G, C=S 0]$

Partially Explained:

- $[A=G, B=S 1, C=S 0]$
- $[A=G, B=U, C=S 0]$
- $[A=S 0, B=G, C=G]$
- $[A=U, B=S 1, C=G]$
- .
- $[A=S 0, B=U, C=G]$

Faults Isolated, No Explanation:

- $[A=G, B=G, C=U]$
- $[A=G, B=U, C=G]$
- $[A=U, B=G, C=G]$

Estimate Dynamically with a Bayes Filter

Image by MIT OpenCourseWare.

© Source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse.

Outline

- Motivation
- Set Theoretic View of Propositional Logic
- From Propositional Logic to Probabilities
- Probabilistic Inference

Propositional Logic Set Theoretic Semantics

Given sentence S :

Set Theoretic Semantics: $\mathrm{S} \equiv$ True

U	
$\mathrm{M}($ True $) \equiv$ Universe U	

Set Theoretic Semantics:
$\mathrm{S} \equiv \operatorname{not} \mathrm{Q}$

$\mathrm{M}(\operatorname{not} \mathrm{Q}) \equiv \mathrm{U}-\mathrm{M}(\mathrm{Q})$

Set Theoretic Semantics: $\mathrm{S} \equiv \mathrm{Q}$ and R

$\mathrm{M}(\mathrm{Q}$ and R$) \equiv \mathrm{M}(\mathrm{Q}) \cap \mathrm{M}(\mathrm{R})$

Set Theoretic Semantics:
False

Set Theoretic Semantics: Q or R

$M(\mathrm{Q}$ or R$) \equiv \mathrm{M}(\mathrm{Q}) \cup \mathrm{M}(\mathrm{R})$

Set Theoretic Semantics: Q implies R

"Q implies R " is True iff Q entails R
$\mathrm{M}(\mathrm{Q}$ implies R$) \equiv \mathrm{M}(\mathrm{Q}) \subseteq \mathrm{M}(\mathrm{R})$

Set Theoretic Semantics:

 P implies Q
" Q implies R " is True iff " Q and not R " is inconsistent "Q implies R " is True iff $\mathrm{M}(\mathrm{Q}$ and not R$) \equiv \phi$

Axioms of Sets over Universe U

1. $\mathrm{A} \cup \mathrm{B} \equiv \mathrm{B} \cup \mathrm{A}$
2. $\mathrm{A} \cup(\mathrm{B} \cup \mathrm{C}) \equiv \mathrm{A} \cup(\mathrm{B} \cup \mathrm{C}) \quad$ Associativity
3. $\mathrm{A} \cap(\mathrm{B} \cup \mathrm{C}) \equiv \mathrm{A} \cap \mathrm{B} \cup \mathrm{A} \cap \mathrm{C}$ Distributivity
4. $\sim(\sim A) \equiv A$
5. $\sim(A \cap B) \equiv(\sim A) \cup(\sim B)$
6. $\mathrm{A} \cap(\sim \mathrm{A}) \equiv \phi$
7. $\mathrm{A} \cap \mathrm{U} \equiv \mathrm{A}$
\Rightarrow propositional logic axioms follow from these axioms.

Outline

- Motivation
- Set Theoretic View of Propositional Logic
- From Propositional Logic to Probabilities
- Degrees of Belief
- Discrete Random Variables
- Probabilistic Inference

Why Do We Need Degrees of Belief?

"Given theory Φ, sentence $\mathrm{Q} . .$. "

Degrees of Belief

Probability P: Events $\rightarrow[0,1]$
is a measure of the likelihood that an Event is true.

Like counting weighted models in logic.

Axioms of Probability

$$
\text { P: Events } \rightarrow \text { Reals }
$$

1. For any event $\mathrm{A}, \mathrm{P}(\mathrm{A}) \geq 0$.
2. $\mathrm{P}(\mathrm{U})=1$.
3. If $\mathrm{A} \cap \mathrm{B}=\phi$, then $\mathrm{P}(\mathrm{A} \cup \mathrm{B})=\mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{B})$.
\Rightarrow All conventional probability theory follows.

Conditional Probability: $\mathrm{P}(\mathrm{Q} \mid \Phi)$

Is Q true given Φ ? $\quad \square$ What is $\mathrm{P}(" \mathrm{Q}$ given Φ ")?

$$
\mathrm{P}\left(\mathrm{~s}_{\mathrm{j}} \mid \Phi\right)=\mathrm{P}\left(\mathrm{~s}_{\mathrm{j}}\right) / \mathrm{P}(\Phi)
$$

if $s_{j} \in \Phi$
otherwise

$$
=\frac{\mathrm{P}\left(\mathrm{~s}_{j}, \underline{\Phi}\right)}{\mathrm{P}(\Phi)}
$$

Conditional Probability: $\mathrm{P}(\mathrm{Q} \mid \Phi)$

Is Q true given Φ ? $\quad \Rightarrow$ What is $\mathrm{P}(" \mathrm{Q}$ given Φ ")?

$P(Q \mid \Phi)=\sum_{s_{j} \in Q} P\left(s_{j} \mid \Phi\right)=\sum_{s_{j} \in Q} \frac{P\left(s_{j}, \Phi\right)}{P(\Phi)}=\frac{P(Q, \Phi)}{P(\Phi)}$

Degree of Belief

"Given theory Φ, sentence Q"
"... is inconsistent." "... could be true." "... must be true."

$\mathrm{P}(\mathrm{Q} \mid \Phi)=\quad 0$

$\frac{\mathrm{P}(\mathrm{Q}, \Phi)}{\mathrm{P}(\Phi)}$
1

Representing Sample Space Using Discrete Random Variables

Discrete Random Variable X :

- Domain $\mathrm{D}_{\mathrm{X}}=\left\{\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots \mathrm{x}_{\mathrm{n}}\right\}$
- mutually exclusive, collectively exhaustive.
- $\mathrm{P}(\mathrm{X}): \mathrm{D}_{\mathrm{X}} \rightarrow[0,1]$
- $\sum \mathrm{P}\left(\mathrm{x}_{\mathrm{i}}\right)=1$

Joint Distribution over $\mathrm{X}_{1}, \ldots \mathrm{X}_{\mathrm{n}}$:

- Domain $\quad \Pi \mathrm{D}_{\mathrm{Xi}}$
- $\mathrm{P}\left(\mathrm{X}_{1}, \ldots \mathrm{X}_{\mathrm{n}}\right):$ П $_{\mathrm{D}_{\mathrm{Xi}} \rightarrow[0,1]}$

- Notation: $\mathrm{P}\left(\mathrm{x}_{1}, \ldots \mathrm{x}_{\mathrm{n}}\right) \equiv \mathrm{P}\left(\mathrm{X}_{1}=\mathrm{x}_{1} \wedge \ldots \wedge \mathrm{X}_{\mathrm{n}}=\mathrm{x}_{\mathrm{n}}\right)$

Outline

- Motivation
- Set Theoretic View of Propositional Logic
- From Propositional Logic to Probabilities
- Probabilistic Inference
- General Queries and Inference Methods
- Bayes Net Inference
- Model-based Diagnosis
(Optional)

Types of Probabilistic Queries

Let $\mathrm{X}=<\mathrm{S} ; \mathrm{O}>$

- Belief Assessment
$-\mathrm{b}\left(\mathrm{S}_{\mathrm{i}}\right)=\mathrm{P}\left(\mathrm{S}_{\mathrm{i}} \mid \mathrm{o}\right)$
- Most Probable Explanation (MPE)
$-\mathrm{s}^{*}=\arg \max \mathrm{P}(\mathrm{s} \mid \mathrm{o})$ for all $\mathrm{s} \in \mathrm{D}_{\mathrm{S}}$
- Maximum Aposteriori Hypothesis (MAP)
- Given $A \subseteq S$
$\mathrm{a}^{*}=\arg \max \mathrm{P}(\mathrm{a} \mid \mathrm{o})$ for all $\mathrm{a} \in \mathrm{D}_{\mathrm{A}}$
- Maximum Expected Utility (MEU)
- Given decision variables D $\mathrm{d}^{*}=\arg \max \sum_{\mathrm{x}} \mathrm{u}(\mathrm{x}) \mathrm{P}(\mathrm{x} \mid \mathrm{d})$ for all $\mathrm{d} \in \mathrm{D}_{\mathrm{D}}$ 11/17/10

Common Inference Methods and Approximations used to Answer Queries

1. Product (chain) rule.
2. Product rule + conditional independence.
3. Eliminate variables by marginalizing.
4. Exploiting distribution during elimination.
5. Conditional probability via elimination.
6. Conditional probability via Bayes Rule.

Approximations:

1. Uniform Likelihood Assumption
2. Naïve Bayes Assumption

Outline

- Motivation

- Set Theoretic View of Propositional Logic
- From Propositional Logic to Probabilities
- Probabilistic Inference
- General Queries and Inference Methods
- Bayes Net Inference
- Model-based Diagnosis
(Optional)

Bayesian Network

Input: Directed acyclic graph:

- Nodes
- Arcs
- Conditional probability
denote random variables. tails denote parents P of child C .
$P(C \mid P)$ for each node.

Output: Answers to queries given earlier.

Product Rule + Conditional Independence (Method 2)
If A is conditionally independent of C given B (i.e., $\mathrm{A} \perp \mathrm{C} \mid \mathrm{B}$), then:

$$
P(A \mid B, C)=P(A \mid B)
$$

Suppose $\mathrm{A} \perp \mathrm{B}, \mathrm{C} \mid \mathrm{E}$ and $\mathrm{B} \perp \mathrm{C} \mid \mathrm{E}$, find $\mathrm{P}(\mathrm{A}, \mathrm{B}, \mathrm{C} \mid \mathrm{E})$:

$$
\begin{aligned}
P(A, B, C \mid E)=P(A \mid \beta, \notin, E) P(B \mid \notin, E) P(C \mid E) \\
\text { Product rule } \\
P(A, B, C \mid E)=P(A \mid E) P(B \mid E) P(C \mid E)
\end{aligned}
$$

Product Rule for Bayes Nets

- X_{i} is independent of its ancestors, given its parents:

$$
P(X)=\prod_{X_{i} \in X} P\left(X_{i} \mid \operatorname{Parents}\left(X_{i}\right)\right)
$$

Product rule
$P(J, M, T, A, N, B, E)$

$=P(J \mid T, A) P(M \mid A, N) P(A \mid B, E) P(T) P(N) P(B) P(E)$ Independence

Computing Probabilistic Queries

Let $\mathrm{X}=<\mathrm{S} ; \mathrm{O}>$
Belief Assessment:
$-\quad b\left(S_{i}\right)=P\left(S_{i} \mid e\right)$
Most Probable Explanation (MPE):
$-\quad \mathrm{s}^{*}=\arg \max \mathrm{P}(\mathrm{s} \mid \mathrm{o})$ for all $\mathrm{s} \in \mathrm{D}_{\mathrm{S}}$
Maximum Aposteriori Hypothesis (MAP):

- Given $\mathrm{A} \subseteq \mathrm{S}$
$\mathrm{a}^{*}=\arg \max \mathrm{P}(\mathrm{s} \mid \mathrm{o})$ for all $\mathrm{a} \in \mathrm{D}_{\mathrm{A}}$

Solution: Some combination of

1. Start with joint distribution.
2. Eliminate some variables (marginalize).
3. Condition on observations.
4. Find assignment maximizing probability.

Eliminate Variables by Marginalizing (Method 3)

Given $P(A, B)$
find $P(A)$:

$$
P(A)=\sum_{b_{i} \in B} P\left(A, b_{i}\right)
$$

P(A, B)
$\mathrm{B} \in\{$ raining, dry $\}$

$\mathrm{A} \in$ \{cloudy, sunny\}

P(B)

Exploit Distribution During Elimination (Method 4)

- Bayes Net Chain Rule: X_{i} is independent of its ancestors, given its parents.

$$
P(X)=\prod_{X_{i} \in X} P\left(X_{i} \mid P \operatorname{Parents}\left(X_{i}\right)\right)
$$

Issue: Size of $\mathrm{P}(\mathrm{X})$ is exponential in $|\mathrm{X}|$ Soln: Move sums inside product.
$P(J, M, B, E)=\sum_{A, T, N} P(J \mid T, A) P(M \mid A, N) P(A \mid B, E) P(N) P(B) P(E) P(T)$
$=P(B) P(E) \sum_{A} P(A \mid B, E) \sum_{T} P(J \mid T, A) P(T) \sum_{N} P(M \mid A, N) P(N)$
11/17/10
copyright Brian Williams, 2005-10
41

Compute Conditional Probability via Elimination (Method 5)

$$
P(A \mid B)=\frac{P(A, B)}{P(B)}=\frac{P(A, B)}{\sum P\left(B, a_{i}\right)}=\alpha P(A, B)
$$

Note: The denominator is constant for all a_{i} in A
Example: $\mathrm{P}(\mathrm{A} \mid \mathrm{B})$?

Computing Probabilistic Queries

Let $\mathrm{X}=<\mathrm{S}, \mathrm{O}>$
Belief Assessment: $\mathrm{S}=<\mathrm{S}_{\mathrm{i}}, \mathrm{Y}>$
$-\quad b\left(S_{i}\right)=P\left(S_{i} \mid o\right)$

$$
=\frac{\sum_{s_{i}=D_{r}} P\left(S_{i}, y, o\right)}{\sum_{s_{i} \in D_{s_{i}}, \forall \in D_{r}} P\left(s_{i}, y, o\right)}
$$

Most Probable Explanation (MPE):
$-\mathrm{s}^{*}=\arg \max \mathrm{P}(\mathrm{s} \mid \mathrm{o})$ for all $\mathrm{s} \in \mathrm{D}_{\mathrm{S}} \quad=\arg \max _{s \in D_{s}} P(s, o)$
Maximum Aposteriori Hypothesis (MAP): $\mathrm{S}=<\mathrm{A}, \mathrm{Y}>$

- Given $\mathrm{A} \subseteq \mathrm{S}$ $\mathrm{a}^{*}=\arg \max \mathrm{P}(\mathrm{a} \mid \mathrm{o})$ for all $\mathrm{a} \in \mathrm{D}_{\mathrm{A}} \quad=\arg \max _{a \in D_{A}} \sum_{y \in D_{Y}} P(a, y, o)$

Outline

- Motivation
- Set Theoretic View of Propositional Logic
- From Propositional Logic to Probabilities
- Probabilistic Inference
- General Queries and Inference Methods
- Bayes Net Inference
- Model-based Diagnosis
(Optional)

Estimating States of Dynamic Systems (next week)

Given sequence of commands and observations:

- Infer current distribution of (most likely) states.
- Infer most likely trajectories.

MIT OpenCourseWare
http://ocw.mit.edu

16.410 / 16.413 Principles of Autonomy and Decision Making

Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

