16.410/413
 Principles of Autonomy and Decision Making

Lecture 18: (Mixed-Integer) Linear Programming for Vehicle Routing and Motion Planning

Emilio Frazzoli

Aeronautics and Astronautics
Massachusetts Institute of Technology

November 15, 2010

Assignments

Readings

- Lecture notes
- [IOR] Chapter 11.

(Mixed) Integer Linear Programming

- Many problems of interest can be formulated as mathematical programs in which some of the decision variables are constrained to take one of a finite set of values
- Typically, these represent logical decisions: visit a location or not, do a task before another, pass to the left or to the right of an obstacle, etc.
- These can often be modeled as "LP's", in which some of the variables must take discrete values (or binary $0 / 1$ values.)
- Let us look at some examples.

Vehicle Routing Problems

- We have already studied a basic problem in robotics and automation, i.e., the computation of a shortest path between a start and a goal location.
- In many applications, e.g., UAV mission planning problems, it is of interest to compute paths for one or more vehicles to reach a number of locations, while optimizing some performance criterion.
- Vehicle Routing Problems are essentially shortest path problems for multiple vehicles and/or multiple destinations, subject to a variety of constraints or performance objectives.
- VRPs come in a large number of varieties, we will look at some examples.

The Traveling Salesman Problem

- The Traveling Salesman Problem (TSP) is an example of a VRP, in which a single vehicle must visit N locations (cities) following a minimum-cost closed path, starting and ending at a depot.
- Formal definition, as a graph problem: Let $G=(V, E, w)$ be a complete undirected weighted graph, whose vertices include the depot V_{0}, and the locations to be visited V_{1}, \ldots, V_{N}. Compute a minimum-weight Hamiltonian cycle for G (i.e., a closed path through all vertices).
- Prototypical hard combinatorial problem (NP-hard).
(But polynomial-time approximations exist for metric TSPs, i.e., TSPs in which the weights satisfy the triangle inequality!)
- It is possible to write the TSP in a LP form...

A naïve LP formulation

- Binary decision variables $x_{e}, e \in E: x_{e}=1$ if the path includes edge e, and $x_{e}=0$ otherwise.
- Let S be a proper subset of V, i.e., $\emptyset \subset S \subset V$, and indicate with $\delta(S) \subset E$ the set of edges that have exactly one endpoint in V.
- It is tempting to formulate the problem as

$$
\begin{array}{ll}
\min & \sum_{e \in E} w(e) x_{e} \\
\text { s.t.: } & \sum_{e \in \delta(\{v\})} x_{e}=2, \quad \forall v \in V \\
& 0 \leq x_{e} \leq 1, \quad \forall e \in E .
\end{array}
$$

- What can go wrong?

Sub-tour elimination

- In general, it may happen that
- the values x_{e} are not 0 or 1 (unlike in the shortest path problem, the constraint matrix in the LP is not totally unimodular).
- the edges such that $x_{e}>0$ may form more than one (sub)tour.
- So it is necessary to add integrality constraints, and sub-tour elimination constraints:

$$
\begin{array}{ll}
\min & \sum_{e \in E} w(e) x_{e} \\
\text { s.t.: } & \sum_{e \in \delta(\{v\})} x_{e}=2, \quad \forall v \in V \\
& \sum_{e \in \delta(S)} x_{e} \geq 2, \quad \forall S \subset V, \operatorname{card}(S) \geq 3 \\
& x_{e} \in\{0,1\}, \quad \forall e \in E .
\end{array}
$$

Sub-tour elimination in practice

- Sub-tour elimination constraints are exponentially many.
- In practice, one can attempt to solve the problem without sub-tour elimination constraints. If the solution contains subtours, add constraints eliminating those subtours, and repeat.
- In each case, if the integrality constraint is relaxed, the problem is a LP. If the solution of the LP is integral and contains no subtour, that solution is optimal.

Skipping cities in TSP

- What if there are options allowing the moving agent to visit only a subset of all the points? E.g., it is ok to skip n_{s} of the given points, for some $n_{\mathrm{s}}<N$.
- Introduce a new binary variable b_{v} for each vertex: $b_{v}=1$ if the tour "skips" vertex v, and $b_{v}=0$ otherwise.
- Then, one can write the problem as

$$
\begin{array}{ll}
\min & \sum_{e \in E} w(e) x_{e} \\
\text { s.t.: } & \sum_{e \in \delta(\{v\})} x_{e}=2-2 b_{v}, \quad \forall v \in V \\
& \sum_{e \in \delta(S)} x_{e} \geq 2-2 \sum_{v \in S} b_{v}, \quad \forall S \subset V, \operatorname{card}(S) \geq 3, \\
& \sum_{v \in V} b_{v}=n_{\mathrm{s}}, \\
& x_{e} \in\{0,1\}, \quad \forall e \in E \\
& b_{v} \in\{0,1\}, \quad \forall v \in V .
\end{array}
$$

Example

A Complex multi-UAV Mission

Alternate base

Primary base

Mission specs

- Infantry unit pinned down by insurgents in an urban area.
- Egress routes blocked by technicals, protected by SAM units.
- Help infantry unit to reach a base with a medic in minimum time/minimum total flight time.

Friendly units

- Two UAVs capable of taking out ground targets, but vulnerable to SAMs.
- One SEAD UAV.
- One armored unit.
- One medical unit.

A Complex multi-UAV Mission

In LTL

- Attack enemy infantry $\diamond P_{\text {infantry }}$
- Attack either Technical 1 or 2 $\diamond\left(P_{\text {Tech }} \wedge P_{\text {Tech2 }}\right)$.
- UAV1 and UAV2 cannot engage Technical 1, unless SAM site 1 has been destroyed:
$\neg\left(S_{\text {Tech } 1, \mathrm{UAV} 1-2}\right) \mathcal{W}\left(P_{\text {SAM } 1}\right)$.
- UAV1 and UAV2 cannot engage the SAM sites at al: $\square\left(\neg S_{\mathrm{SAM} 1, \mathrm{UAV} 1} \wedge \neg S_{\mathrm{SAM} 1, \mathrm{UAV} 2} \wedge \ldots\right)$
- ...

Primary base

Alternate base

Optimal solution

A class of Trajectory Optimization problems

Vehicle Dynamics

Consider a dynamical system described by equations of the form:

$$
\frac{d}{d t} x(t)=f(x(t), u(t)), \quad x(0)=x_{0} .
$$

Trajectory optimization

Common trajectory optimization problems take the form "compute the optimal input function u such that:

- a target point is reached within a given time (or in minimum time);
- the total control effort (e.g., fuel burned) is minimized;
- the instantaneous control effort is bounded by $u_{\max }$;
- the maximum speed is bounded by $v_{\max }$;
- the vehicle remains within some given (convex) boundaries."

Mathematical Formalization

All these problems can be stated as optimal control problems, of the form:

$$
\begin{array}{ll}
\min _{u(\cdot)} & \Gamma(x(T))+\int_{0}^{T} \gamma(x(t), u(t)) d t, \\
\text { s.t.: } & \frac{d}{d t} x(t)=f(x(t), u(t)), \quad \forall t \in[0, T], \\
& g(x(t), u(t)) \leq 0 ., \quad \forall t \in[0, T] .
\end{array}
$$

Linear Programming for trajectory optimization

- If a numerical solution is sought, usually the optimal control problem is discretized, e.g., assuming that u is a piecewise-constant function. Instead of looking for an optimal function (infinite-dimensional object), write the problem in terms of a finite number of decision variables.
- If all the functions appearing in the optimal control problems are linear (or can be approximated by a linear function), then the discretized problem can be written as an LP:

$$
\begin{aligned}
\min _{(u[0], u[1], \ldots u[N])} & C^{T} x[N]+\sum_{i=0}^{N}\left(c^{T} x[i]+d^{T} u[i]\right), \\
\text { s.t.: } & x[i+1]=A x[i]+B u[i], \quad \forall i \in\{0, \ldots, N\}, \\
& g^{T} x[i]+h^{T} u[i] \leq m, \quad \forall i \in\{0, \ldots, N\} .
\end{aligned}
$$

Example: planar spacecraft with 4 thrusters

- Consider a square spacecraft moving on a plane, in deep space.
- The spacecraft is equipped with 4 thrusters, each firing on one side of the spacecraft, along a line aligned with the spacecraft's center of mass.
- The spacecrafts dynamics are well modeled by a double integrator:

$$
\frac{d^{2}}{d t^{2}}\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]=\left[\begin{array}{l}
u_{1}^{+}(t)-u_{1}^{-}(t) \\
u_{2}^{+}(t)-u_{2}^{-}(t)
\end{array}\right]
$$

- Integration of the above differential equations, assuming a zero-order hold on the control inputs, yields:

$$
\underbrace{\left[\begin{array}{c}
x_{1}(t+\Delta t) \\
x_{2}(t+\Delta t) \\
\dot{x}_{1}(t+\Delta t) \\
\dot{x}_{2}(t+\Delta t)
\end{array}\right]}_{x[i+1]}=\underbrace{\left[\begin{array}{cccc}
1 & 0 & \Delta t & 0 \\
0 & 1 & 0 & \Delta t \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]}_{A_{\mathrm{d}}} \underbrace{\left[\begin{array}{c}
x_{1}(t) \\
x_{2}(t) \\
\dot{x}_{1}(t) \\
\dot{x}_{2}(t)
\end{array}\right]}_{x[i]}+\underbrace{\left[\begin{array}{cccc}
\frac{1}{2} \Delta t^{2} & 0 & -\frac{1}{2} \Delta t^{2} & 0 \\
0 & \frac{1}{2} \Delta t^{2} & 0 & -\frac{1}{2} \Delta t^{2} \\
\Delta t & 0 & -\Delta t & 0 \\
0 & \Delta t & 0 & -\Delta t
\end{array}\right]}_{B_{\mathrm{d}}} \underbrace{\left[\begin{array}{c}
u_{1}^{+}(t) \\
u_{2}^{+}(t) \\
u_{1}^{-}(t) \\
u_{2}^{-}(t)
\end{array}\right]}_{u[i]} .
$$

Example: LP formulation

- It is desired to reposition the spacecraft to the origin at rest in N steps, using minimum fuel.
- Objective: $\min _{u} \sum_{i=0}^{N}[1,1,1,1] u[i]=\underbrace{[1,1, \ldots, 1]}_{4 \times(N+1)}\left[\frac{\frac{u[0]}{u[1]}}{\frac{\ldots}{u[N]}}\right]$.
- Terminal constraint:

$$
\begin{aligned}
x[N] & =A_{\mathrm{d}} x[N-1]+B_{\mathrm{d}} u[N-1] \\
& =A_{\mathrm{d}}^{2} x[N-2]+A_{\mathrm{d}} B_{\mathrm{d}} u[N-2]+B_{\mathrm{d}} u[N-1]=\ldots \\
& =A_{\mathrm{d}}^{N} x[0]+\left[A_{\mathrm{d}}^{N-1} B_{\mathrm{d}}, A_{\mathrm{d}}^{N-2} B_{\mathrm{d}}, \ldots, B_{\mathrm{d}}\right]\left[\frac{\frac{u[0]}{u[1]}}{\frac{\ldots}{u[N]}}\right]=0 .
\end{aligned}
$$

- Thrust magnitude bounds: $u[i] \leq u_{\max }, \quad \forall i \in\{0,1, \ldots, N\}$.
- Non-negativity constraints: $u[i] \geq 0, \quad \forall i \in\{0,1, \ldots, N\}$.

Example: Receding Horizon Strategy

What if N steps are not sufficient to reach the target?

- Add a terminal cost, weighing the distance from the origin.
- New cost: $d+\mathbf{1}^{T} u$.
- Relax terminal constraints: $\left[\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ -1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & k & 0 \\ 0 & 0 & 0 & k \\ 0 & 0 & -k & 0 \\ 0 & 0 & 0 & -k\end{array}\right] \times[N] \leq d \mathbf{1}$
- Receding horizon implementation:
- Plan for N steps;
- Execute the first $n<N$;
- Iterate (i.e., plan for for another N steps, etc.)

Receding horizon output

Avoiding static obstacles

- What if there is an obstacle (i.e., the space station) in the path of the spacecraft?
- Need to enforce collision avoidance constraints.
- Collision avoidance constraints are not convex, and they cannot be written as a LP.
- In a LP, all constraints are and, i.e., they all must hold at the same time.
- Similar conclusions hold for moving obstacles, plume impingement constraints, etc., as well as for multi-vehicle collision avoidance.

Reformulation as MILP

- It is possible to rewrite the "or" collision avoidance constraints in the form of "and" constraints, e.g., (M is a "large number").

$$
\begin{aligned}
& x_{1}[i] \leq 1+M b_{1}[i], \text { and } \\
&-x_{1}[i] \leq-4+M b_{2}[i], \text { and } \\
& x_{2}[i] \leq 2+M b_{3}[i], \text { and } \\
&-x_{2}[i] \leq-3+M b_{4}[i], \text { and } \\
& \leq \leq 3, \text { and } \\
& b_{1}[i]+b_{2}[i]+b_{3}[i]+b_{4}[i] \leq\leq 0,1\} \\
& b_{1}[i], b_{2}[i], b_{3}[i], b_{4}[i]=(\forall i \in\{0, \ldots, N\})
\end{aligned}
$$

- The "or" trouble has been moved to the binary variables b, which can only take the value 0 or the value 1 .
- Apart from the binary variables, the rest of the problem "looks like a LP."
- This leads to a case of Mixed-Integer Linear Program (MILP).

Arbitrarily shaped obstacles

- If you have obstacles of arbitrary shapes, you can approximate their convex hull arbitrarily well with linear constraints. At least one of them must be applied ("or")
- Non-convex obstacles can be split up
 into convex pieces, and the same technique can be applied.
- In 3d, the lines become planes, polygons become polyhedra, but the idea remains the same.

Mixed-Integer Linear Programs

- The general form of a MILP is the following:

$$
\begin{array}{ll}
\min _{x} & c^{T} x+d^{T} z \\
\text { s.t.: } & A x+B z \leq b \\
& x \geq 0 \\
& z \in\{0,1\}^{N_{z}}
\end{array}
$$

- Looks like a regular LP, with the difference that at least some of the decision variables are constrained to integer values (or, without loss of generality, Boolean/binary values).
- MILPs can approximate a very large class of problems (including nonlinear, non-convex, optimization problems), in particular including problems with logical variables.
(E.g., pass to the left $O R$ to the right of an obstacle, visit target A or target B, etc.)

Complexity of BIPs

- Consider the following Binary Integer Program:

$$
\begin{array}{ll}
\min _{x} & d^{T} z \\
\text { s.t.: } & B z \leq b \\
& z \in\{0,1\}^{N_{z}}
\end{array}
$$

- Is it more or less difficult to solve than a similar LP?
- In principle, there are only a finite number of possible solutions...
- However, there are $2^{N_{z}}$ of them!
- In general, IPs (and BIPs, and MILPs) require exponential time to solve.

LP relaxation

- What if we relax the integrality constraints? E.g., instead of setting $z \in\{0,1\}$, we allow $z \in[0,1]$ (i.e., $0 \leq z \leq 1$).
- In this way the MILP is reduced to a standard LP, and can be solved easily.
- There are three possible outcomes:
(1) The LP is not feasible: then the MILP is not feasible either.
(2) The LP is feasible, and the optimal solution is such that it satisfies the integrality constraints: then the solution from the LP is the optimal solution for the MILP as well (!)
(3) The LP is feasible, but the optimal solution is not integral: how to recover a solution for the MILP?

Integral LP relaxation

- It turns out that some IPs always admit a LP relaxation with integral solutions: hence, these IPs are very easy to solve.
- Examples include the shortest path problem discussed in previous lectures.
- Other examples include problems in which the "A" matrix is totally unimodular (i.e., all the determinants of non-singular square submatrices are ± 1), and the " b " vector is integral.
- The entries of a totally unimodular matrix are either 0 or ± 1.
- The matrix in the shortest path problem is in fact totally unimodular. From the example in the shortest-paths Lecture:

$$
A=\left[\begin{array}{ccccccccc}
1 & -1 & -1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & -1 & -1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & -1 & -1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & -1 & 0 \\
0 & 0 & 0 & 1 & 0 & 1 & 0 & 1 & -1 \\
-1 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

Branch and Bound

- In general, it is not always the case that the LP relaxation yields a valid solution.
- A very effective technique is based on branch and bound techniques
- Branch into many subproblems, solve them using the LP relaxation (lower bound).
- Keep track of the lower and upper bounds on the solutions found.
- Key idea: if the lower bound on the subproblem is higher than the current upper bound om the original problem, then the subproblem does not need to be considered further.
- Upper bound is given by a feasible solution. Lower bound is given by a relaxed problem where $z_{i} \in\{0,1\}$ is replaced with $0 \leq z \leq 1$.

Branch and Bound Algorithm

(1) Solve the LP relaxation of the MILP, call \bar{J} the optimal cost.
(2) If the LP solution is integral, terminate, \bar{J} is optimal. If the LP is infeasible, terminate, the problem is not feasible. Else, set $J^{U} \leftarrow \infty$, $J^{L} \leftarrow \tilde{J}$.
(3) Pick one of the z variables, and create two sub-problems setting this variable to 0 and then to 1 .
(9) For each of the subproblem, solve the LP relaxation, call \bar{J} the optimal cost.
(5) If the LP solution is integral, then it is a candidate optimal solution. Update $J^{U} \leftarrow \min \left\{J^{U}, \bar{J}\right\}$.
(0) Else, if the LP solution is not integral, but $\bar{J}>J^{U}$, then there is no value in further exploring that subproblem. Prune the branch.
(1) Else, if the LP is not integral, but $\bar{J}<J^{U}$, then continue branching: create other subproblems from this problem.
(8) If the LP is infeasible, then prune the branch.

Branch and Bound Algorithm

- As in graph search, branch and bound may eliminate the need to explore all the possible choices for the integer variables.
- This and similar methods are at the basis of most state-of-the-art open-source and commercial solvers, e.g., GLPK, LP_SOLVE, and ILOG CPLEX.

Remarks on MILPs

- Pros:
- Very general formulation: you can write a very large class of motion planning problems in this way.
- The problems "look" like LPs.
- Very powerful commercial solvers available: Ilogs CPLEX can solve many of these problems quickly.
- In some cases, amenable to real-time implementation (Prof. How and his student have demonstrated real-time MILP-based planning on UAVs)
- Cons:
- Too general formulation: any problem can be converted into a MILP (!)
- With generality comes complexity: MILPS are NP-hard (i.e., require exponential time to solve, in the worst case).
- The dimension of the MILP can grow very quickly with the number of time steps/obstacles/vehicles.
- The number of "or" constraints, i.e., of integer variables, is the key complexity driver.
- In general:
- Non-convex optimization problems are hard.
- Approximation algorithms can come in handy: e.g., relaxations
- In certain conditions, approximations actually provide the optimal solution!

MIT OpenCourseWare
http://ocw.mit.edu

16.410 / 16.413 Principles of Autonomy and Decision Making

Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

