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(Mixed) Integer Linear Programming

Many problems of interest can be formulated as mathematical
programs in which some of the decision variables are constrained to
take one of a finite set of values

Typically, these represent logical decisions: visit a location or not, do a
task before another, pass to the left or to the right of an obstacle, etc.

These can often be modeled as “LP’s”, in which some of the variables
must take discrete values (or binary 0/1 values.)

Let us look at some examples.
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Vehicle Routing Problems

We have already studied a basic problem in robotics and automation,
i.e., the computation of a shortest path between a start and a goal
location.

In many applications, e.g., UAV mission planning problems, it is of
interest to compute paths for one or more vehicles to reach a number
of locations, while optimizing some performance criterion.

Vehicle Routing Problems are essentially shortest path problems for
multiple vehicles and/or multiple destinations, subject to a variety of
constraints or performance objectives.

VRPs come in a large number of varieties, we will look at some
examples.
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The Traveling Salesman Problem

The Traveling Salesman Problem (TSP) is an example of a VRP, in
which a single vehicle must visit N locations (cities) following a
minimum-cost closed path, starting and ending at a depot.

Formal definition, as a graph problem:
Let G = (V ,E ,w) be a complete undirected weighted graph, whose
vertices include the depot V0, and the locations to be visited
V1, . . . ,VN . Compute a minimum-weight Hamiltonian cycle for G
(i.e., a closed path through all vertices).

Prototypical hard combinatorial problem (NP-hard).
(But polynomial-time approximations exist for metric TSPs, i.e.,
TSPs in which the weights satisfy the triangle inequality!)

It is possible to write the TSP in a LP form...
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A näıve LP formulation

Binary decision variables xe , e ∈ E : xe = 1 if the path includes edge
e, and xe = 0 otherwise.

Let S be a proper subset of V , i.e., ∅ ⊂ S ⊂ V , and indicate with
δ(S) ⊂ E the set of edges that have exactly one endpoint in V .

It is tempting to formulate the problem as

min
∑
e∈E

w(e) xe

s.t.:
∑

e∈δ({v})

xe = 2, ∀v ∈ V

0 ≤ xe ≤ 1, ∀e ∈ E .

What can go wrong?
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Sub-tour elimination

In general, it may happen that
the values xe are not 0 or 1 (unlike in the shortest path problem, the
constraint matrix in the LP is not totally unimodular).
the edges such that xe > 0 may form more than one (sub)tour.

So it is necessary to add integrality constraints, and sub-tour
elimination constraints:

min
∑
e∈E

w(e) xe

s.t.:
∑

e∈δ({v})

xe = 2, ∀v ∈ V

∑
e∈δ(S)

xe ≥ 2, ∀S ⊂ V , card(S) ≥ 3

xe ∈ {0, 1}, ∀e ∈ E .
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Sub-tour elimination in practice

Sub-tour elimination constraints are exponentially many.

In practice, one can attempt to solve the problem without sub-tour
elimination constraints. If the solution contains subtours, add
constraints eliminating those subtours, and repeat.

In each case, if the integrality constraint is relaxed, the problem is a
LP. If the solution of the LP is integral and contains no subtour, that
solution is optimal.
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Skipping cities in TSP

What if there are options allowing the moving agent to visit only a
subset of all the points? E.g., it is ok to skip ns of the given points,
for some ns < N.
Introduce a new binary variable bv for each vertex: bv = 1 if the tour
“skips” vertex v , and bv = 0 otherwise.
Then, one can write the problem as

min
∑

e∈E
w(e) xe

s.t.:
∑

e∈δ({v})
xe = 2− 2bv , ∀v ∈ V ,∑

e∈δ(S)
xe ≥ 2− 2

∑
v∈S

bv , ∀S ⊂ V , card(S) ≥ 3,∑
v∈V

bv = ns,

xe ∈ {0, 1}, ∀e ∈ E ,

bv ∈ {0, 1}, ∀v ∈ V .
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Example
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A Complex multi-UAV Mission

Infantry

Infantry

TechnicalsSAMs

SAMs

Technicals

Armor

Medical

SEAD
UAV1 UAV2

Primary base

Alternate base

Mission specs

Infantry unit pinned down by
insurgents in an urban area.

Egress routes blocked by technicals,
protected by SAM units.

Help infantry unit to reach a base
with a medic in minimum
time/minimum total flight time.

Friendly units

Two UAVs capable of taking out
ground targets, but vulnerable to
SAMs.

One SEAD UAV.

One armored unit.

One medical unit.

Frazzoli (MIT) Lecture 18: (MI)LP for Motion Planning November 15, 2010 11 / 31



A Complex multi-UAV Mission

Infantry

Infantry

TechnicalsSAMs

SAMs

Technicals

Armor

Medical

SEAD
UAV1 UAV2

Primary base

Alternate base

In LTL

Attack enemy infantry �Pinfantry

Attack either Technical 1 or 2
�(PTech1 ∧ PTech2).

UAV1 and UAV2 cannot engage
Technical 1, unless SAM site 1 has
been destroyed:
¬(STech1,UAV1−2)W(PSAM1).

UAV1 and UAV2 cannot engage the
SAM sites at al:
� (¬SSAM1,UAV1 ∧ ¬SSAM1,UAV2 ∧ . . .)

...
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Optimal solution

Infantry

Infantry

TechnicalsSAMs

SAMs

Technicals

Armor

Medical

SEAD
UAV1 UAV2

Primary base

Alternate base

Medical

SEAD

SEAD

UAV1

UAV1

UAV1
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A class of Trajectory Optimization problems

Vehicle Dynamics

Consider a dynamical system described by equations of the form:

d

dt
x(t) = f (x(t), u(t)), x(0) = x0.

Trajectory optimization

Common trajectory optimization problems take the form
“compute the optimal input function u such that:

a target point is reached within a given time (or in minimum time);

the total control effort (e.g., fuel burned) is minimized;

the instantaneous control effort is bounded by umax;

the maximum speed is bounded by vmax;

the vehicle remains within some given (convex) boundaries.”
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Mathematical Formalization

All these problems can be stated as optimal control problems, of the
form:

min
u(·)

Γ(x(T )) +

∫ T

0
γ(x(t), u(t)) dt,

s.t.:
d

dt
x(t) = f (x(t), u(t)), ∀t ∈ [0,T ],

g(x(t), u(t)) ≤ 0., ∀t ∈ [0,T ].
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Linear Programming for trajectory optimization

If a numerical solution is sought, usually the optimal control problem
is discretized, e.g., assuming that u is a piecewise-constant function.
Instead of looking for an optimal function (infinite-dimensional
object), write the problem in terms of a finite number of decision
variables.

If all the functions appearing in the optimal control problems are
linear (or can be approximated by a linear function), then the
discretized problem can be written as an LP:

min
(u[0],u[1],...u[N])

CT x [N] +
N∑
i=0

(
cT x [i ] + dTu[i ]

)
,

s.t.: x [i + 1] = Ax [i ] + Bu[i ], ∀i ∈ {0, . . . ,N},
gT x [i ] + hTu[i ] ≤ m, ∀i ∈ {0, . . . ,N}.
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Example: planar spacecraft with 4 thrusters
Consider a square spacecraft moving on a plane, in
deep space.
The spacecraft is equipped with 4 thrusters, each
firing on one side of the spacecraft, along a line
aligned with the spacecraft’s center of mass.
The spacecrafts dynamics are well modeled by a
double integrator:

d2

dt2

[
x1(t)
x2(t)

]
=

[
u+

1 (t)− u−
1 (t)

u+
2 (t)− u−

2 (t)

]
.

x2

x1

u
+
1 u

−

1

u
−

2

u
+
2

Integration of the above differential equations, assuming a zero-order
hold on the control inputs, yields:


x1(t + ∆t)
x2(t + ∆t)
ẋ1(t + ∆t)
ẋ2(t + ∆t)


︸ ︷︷ ︸

x[i+1]

=


1 0 ∆t 0
0 1 0 ∆t
0 0 1 0
0 0 0 1


︸ ︷︷ ︸

Ad


x1(t)
x2(t)
ẋ1(t)
ẋ2(t)


︸ ︷︷ ︸

x[i ]

+


1
2

∆t2 0 − 1
2

∆t2 0

0 1
2

∆t2 0 − 1
2

∆t2

∆t 0 −∆t 0
0 ∆t 0 −∆t


︸ ︷︷ ︸

Bd


u+

1 (t)

u+
2 (t)

u−1 (t)

u−2 (t)


︸ ︷︷ ︸

u[i ]

.
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Example: LP formulation

It is desired to reposition the spacecraft to the origin at rest in N steps,
using minimum fuel.

Objective: minu
∑N

i=0[1, 1, 1, 1]u[i ] = [1, 1, . . . , 1]︸ ︷︷ ︸
4×(N+1)


u[0]

u[1]

. . .

u[N]

.

Terminal constraint:

x [N] = Adx [N − 1] + Bdu[N − 1]

= A2
dx [N − 2] + AdBdu[N − 2] + Bdu[N − 1] = . . .

= AN
d x [0] + [AN−1

d Bd,A
N−2
d Bd, . . . ,Bd]


u[0]

u[1]

. . .

u[N]

 = 0.

Thrust magnitude bounds: u[i ] ≤ umax, ∀i ∈ {0, 1, . . . ,N}.
Non-negativity constraints: u[i ] ≥ 0, ∀i ∈ {0, 1, . . . ,N}.
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Example: Receding Horizon Strategy

What if N steps are not sufficient to reach the target?

Add a terminal cost, weighing the distance from the origin.

New cost: d + 1Tu.

Relax terminal constraints:



1 0 0 0
0 1 0 0
−1 0 0 0
0 −1 0 0
0 0 k 0
0 0 0 k
0 0 −k 0
0 0 0 −k


x [N] ≤ d1

Receding horizon implementation:

Plan for N steps;

Execute the first n < N;

Iterate (i.e., plan for for another N steps, etc.)
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Receding horizon output

3

Discretizing Fixed Arrival Time Discretizing Fixed Arrival Time

Reformulated as LP

Receding Horizon

Start Ss

Goal Sg

Receding Horizon

Start Ss

Goal Sg

Look ahead Thor and plan with mixed fuel-distance cost function

3

Discretizing Fixed Arrival Time Discretizing Fixed Arrival Time

Reformulated as LP

Receding Horizon

Start Ss

Goal Sg

Receding Horizon

Start Ss

Goal Sg

Look ahead Thor and plan with mixed fuel-distance cost function

4

Receding Horizon

Start Ss

Goal Sg

After Treplan steps (1<=Treplan<=Thor) plan again to a horizon of Thor.

Receding Horizon

Start Ss

Goal Sg

Repeat until goal reached.

Consider Weighted Cost Function 

and a finite receding horizon

• Can’t solve continuous problem 

numerically so we must discretize it.

• Using a finite horizon T with N discrete 

time steps

Estimate of remaining cost

Convert to Linear Form

Examples Ad and Bd

4

Receding Horizon

Start Ss

Goal Sg

After Treplan steps (1<=Treplan<=Thor) plan again to a horizon of Thor.

Receding Horizon

Start Ss

Goal Sg

Repeat until goal reached.

Consider Weighted Cost Function 

and a finite receding horizon

• Can’t solve continuous problem 

numerically so we must discretize it.

• Using a finite horizon T with N discrete 

time steps

Estimate of remaining cost

Convert to Linear Form

Examples Ad and Bd
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Avoiding static obstacles

What if there is an obstacle (i.e., the
space station) in the path of the
spacecraft?

Need to enforce collision avoidance
constraints.

Collision avoidance constraints are not
convex, and they cannot be written as a
LP.

In a LP, all constraints are and, i.e.,
they all must hold at the same time.

Similar conclusions hold for moving
obstacles, plume impingement
constraints, etc., as well as for
multi-vehicle collision avoidance.

(1, 2)

(4, 3)

x1[i] ≤ 1, or
x1[i] ≥ 4, or
x2[i] ≤ 2, or
x2[i] ≥ 3.

(∀i ∈ {0, . . . , N})
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Reformulation as MILP

It is possible to rewrite the “or” collision avoidance constraints in the
form of “and” constraints, e.g., (M is a “large number”).

x1[i ] ≤ 1 + Mb1[i ], and

−x1[i ] ≤ −4 + Mb2[i ], and

x2[i ] ≤ 2 + Mb3[i ], and

−x2[i ] ≤ −3 + Mb4[i ], and

b1[i ] + b2[i ] + b3[i ] + b4[i ] ≤ 3, and

b1[i ], b2[i ], b3[i ], b4[i ] ∈ {0, 1}
(∀i ∈ {0, . . . ,N})

The “or” trouble has been moved to the binary variables b, which can
only take the value 0 or the value 1.

Apart from the binary variables, the rest of the problem
”looks like a LP.”

This leads to a case of Mixed-Integer Linear Program (MILP).
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Arbitrarily shaped obstacles

If you have obstacles of arbitrary
shapes, you can approximate their
convex hull arbitrarily well with linear
constraints. At least one of them must
be applied (“or”)

Non-convex obstacles can be split up
into convex pieces, and the same
technique can be applied.

In 3d, the lines become planes,
polygons become polyhedra, but the
idea remains the same.
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Mixed-Integer Linear Programs

The general form of a MILP is the following:

min
x

cT x + dT z

s.t.: Ax + Bz ≤ b

x ≥ 0

z ∈ {0, 1}Nz

Looks like a regular LP, with the difference that at least some of the
decision variables are constrained to integer values (or, without loss of
generality, Boolean/binary values).

MILPs can approximate a very large class of problems (including
nonlinear, non-convex, optimization problems), in particular including
problems with logical variables.
(E.g., pass to the left OR to the right of an obstacle, visit target A or
target B, etc.)
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Complexity of BIPs

Consider the following Binary Integer Program:

min
x

dT z

s.t.: Bz ≤ b

z ∈ {0, 1}Nz

Is it more or less difficult to solve than a similar LP?

In principle, there are only a finite number of possible solutions...

However, there are 2Nz of them!

In general, IPs (and BIPs, and MILPs) require exponential time to
solve.
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LP relaxation

What if we relax the integrality constraints? E.g., instead of setting
z ∈ {0, 1}, we allow z ∈ [0, 1] (i.e., 0 ≤ z ≤ 1).

In this way the MILP is reduced to a standard LP, and can be solved
easily.

There are three possible outcomes:

1 The LP is not feasible: then the MILP is not feasible either.

2 The LP is feasible, and the optimal solution is such that it satisfies the
integrality constraints: then the solution from the LP is the optimal
solution for the MILP as well (!)

3 The LP is feasible, but the optimal solution is not integral: how to
recover a solution for the MILP?
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Integral LP relaxation

It turns out that some IPs always admit a LP relaxation with integral
solutions: hence, these IPs are very easy to solve.

Examples include the shortest path problem discussed in previous
lectures.
Other examples include problems in which the “A” matrix is totally
unimodular (i.e., all the determinants of non-singular square
submatrices are ±1), and the “b” vector is integral.

The entries of a totally unimodular matrix are either 0 or ±1.
The matrix in the shortest path problem is in fact totally unimodular.
From the example in the shortest-paths Lecture:

A =



1 −1 −1 0 0 0 0 0 0
0 1 0 −1 −1 0 0 0 0
0 0 1 0 −1 −1 0 0 0
0 0 0 0 1 0 0 −1 0
0 0 0 1 0 1 0 1 −1
−1 0 1 0 0 1 0 0 0
1 0 0 0 0 0 0 0 0


.
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Branch and Bound

In general, it is not always the case that the LP relaxation yields a
valid solution.

A very effective technique is based on branch and bound techniques

Branch into many subproblems, solve them using the LP relaxation
(lower bound).

Keep track of the lower and upper bounds on the solutions found.

Key idea: if the lower bound on the subproblem is higher than the
current upper bound om the original problem, then the subproblem
does not need to be considered further.

Upper bound is given by a feasible solution. Lower bound is given by a
relaxed problem where zi ∈ {0, 1} is replaced with 0 ≤ z ≤ 1.
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Branch and Bound Algorithm

1 Solve the LP relaxation of the MILP, call J̄ the optimal cost.

2 If the LP solution is integral, terminate, J̄ is optimal. If the LP is
infeasible, terminate, the problem is not feasible. Else, set JU ←∞,
JL ← J̃.

3 Pick one of the z variables, and create two sub-problems setting this
variable to 0 and then to 1.

4 For each of the subproblem, solve the LP relaxation, call J̄ the
optimal cost.

5 If the LP solution is integral, then it is a candidate optimal solution.
Update JU ← min{JU , J̄}.

6 Else, if the LP solution is not integral, but J̄ > JU , then there is no
value in further exploring that subproblem. Prune the branch.

7 Else, if the LP is not integral, but J̄ < JU , then continue branching:
create other subproblems from this problem.

8 If the LP is infeasible, then prune the branch.
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Branch and Bound Algorithm

!

Spr 2006 16.323 16–16 

(B): min (c 
T x + dT z) s.t. Ax + Bz ≤ b 

x,z 

x ∈ X 

zi = 1 

= i0 ≤ zj ≤ 1, ∀j 

3. Solve a subproblem. Three possible outcomes: 

– Solution found. 0, 1}. Then this is a feasible ∀zj 
∗ ∈ { ⇒ 

solution to the original problem. Update the upper bound 

JUJU := min{ , Jsub
∗}. 

– Solution found. ∃zj 
∗ / 0, 1}. ⇒ If Jsub

∗ ≥ JU , then do not ∈ {
need to explore more. ⇒ Prune the branch. Otherwise, branch 

further. 

– ⇒

zi = 0 zi = 1

Infeasible

Integer solution

! JU 

Worse than JU

zj = 0 zj = 1

Infeasible. Prune the branch. 

Figure 4: Branching and pruning. 

• The pruning process eliminates the need to examine all possible inte-
ger solutions. 

– So differs from a full enumeration method in that not all feasible 

solutions need be evaluated – might it might be necessary 

May 9, 2006 

As in graph search, branch and bound may eliminate the need to
explore all the possible choices for the integer variables.

This and similar methods are at the basis of most state-of-the-art
open-source and commercial solvers, e.g., GLPK, LP SOLVE, and
ILOG CPLEX.
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Remarks on MILPs

Pros:
Very general formulation: you can write a very large class of motion planning
problems in this way.
The problems “look” like LPs.
Very powerful commercial solvers available: Ilogs CPLEX can solve many of
these problems quickly.
In some cases, amenable to real-time implementation
(Prof. How and his student have demonstrated real-time MILP-based planning
on UAVs)

Cons:
Too general formulation: any problem can be converted into a MILP (!)
With generality comes complexity: MILPS are NP-hard (i.e., require exponential
time to solve, in the worst case).
The dimension of the MILP can grow very quickly with the number of time
steps/obstacles/vehicles.
The number of “or” constraints, i.e., of integer variables, is the key complexity
driver.

In general:

Non-convex optimization problems are hard.
Approximation algorithms can come in handy: e.g., relaxations
In certain conditions, approximations actually provide the optimal solution!
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