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The Motion Planning problem

Get from point A to point B avoiding obstacles

E. Frazzoli (MIT) L15: Sampling-Based Motion Planning November 3, 2010 2 / 30



The Motion Planning problem

Consider a dynamical control system defined by an ODE of the form

dx/dt = f (x , u), x(0) = xinit, (1)

where x is the state, u is the control.

Given an obstacle set Xobs ⊂ Rd , and a goal set Xgoal ⊂ Rd , the objective of the
motion planning problem is to find, if it exists, a control signal u such that the
solution of (1) satisfies x(t) /∈ Xobs for all t ∈ R+, and x(t) ∈ Xgoal for all t > T ,
for some finite T ≥ 0. Return failure if no such control signal exists.

Basic problem in robotics (and intelligent life in general).

Provably very hard: a basic version (the Generalized Piano Mover’s problem)
is known to be PSPACE-hard [Reif, ’79].
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Mobility, Brains, and the lack thereof

The Sea Squirt, or Tunicate, is an organism capable of mobility until it finds a
suitable rock to cement itself in place. Once it becomes stationary, it digests its
own cerebral ganglion, or “eats its own brain” and develops a thick covering, a

“tunic” for self defense. [S. Soatto, 2010, R. Bajcsy, 1988]
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Motion planning in practice

Many techniques have been proposed to solve such problems in practical
applications, e.g.,

Algebraic planners: Explicit representation of
obstacles. Use complicated algebra (visibility
computations/projections) to find the path.
Complete, but impractical.

Discretization + graph search:
Analytic/grid-based methods do not scale well to
high dimensions. Graph search methods (A∗, D∗,
etc.) can be sensitive to graph size. Resolution
complete.

Potential fields/navigation functions: Virtual
attractive forces towards the goal, repulsive forces
away from the obstacles. No completeness
guarantees, unless “navigation functions” are
available—very hard to compute in general.

These algorithms achieve tractability by foregoing completeness altogether, or
achieving weaker forms of it, e.g., resolution completeness.
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Sampling-based algorithms

A recently proposed class of motion planning algorithms that has been very
successful in practice is based on (batch or incremental) sampling methods:
solutions are computed based on samples drawn from some distribution.
Sampling algorithms retain some form of completeness, e.g., probabilistic or
resolution completeness.

Incremental sampling methods are particularly attractive:

Incremental-sampling algorithms lend themselves easily to real-time, on-line
implementation.

Applicable to very general dynamical systems.

Do not require the explicit enumeration of constraints.

Adaptively multi-resolution methods
(i.e., make your own grid as you go along, up to the necessary resolution).
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Probabilistic RoadMaps (PRM)

Introduced by Kavraki and Latombe in 1994.

Mainly geared towards “multi-query” motion planning problems.

Idea: build (offline) a graph (i.e., the roadmap) representing the
“connectivity” of the environment; use this roadmap to figure out paths
quickly at run time.

Learning/pre-processing phase:
1 Sample n points from Xfree = [0, 1]d \ Xobs.
2 Try to connect these points using a fast “local planner” (e.g., ignore

obstacles).
3 If connection is successful (i.e., no collisions), add an edge between the points.

At run time:
1 Connect the start and end goal to the closest nodes in the roadmap.
2 Find a path on the roadmap.

First planner ever to demonstrate the ability to
solve general planning problems in > 4-5 dimensions!
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Probabilistic RoadMap example

238 S. M. LaValle: Planning Algorithms

BUILD ROADMAP
1 G.init(); i ← 0;
2 while i < N
3 if α(i) ∈ Cfree then
4 G.add vertex(α(i)); i ← i + 1;
5 for each q ∈ neighborhood(α(i),G)
6 if ((not G.same component(α(i), q)) and connect(α(i), q)) then
7 G.add edge(α(i), q);

Figure 5.25: The basic construction algorithm for sampling-based roadmaps. Note
that i is not incremented if α(i) is in collision. This forces i to correctly count the
number of vertices in the roadmap.

α(i)

Cobs

Cobs

Figure 5.26: The sampling-based roadmap is constructed incrementally by at-
tempting to connect each new sample, α(i), to nearby vertices in the roadmap.

Generic preprocessing phase Figure 5.25 presents an outline of the basic
preprocessing phase, and Figure 5.26 illustrates the algorithm. As seen throughout
this chapter, the algorithm utilizes a uniform, dense sequence α. In each iteration,
the algorithm must check whether α(i) ∈ Cfree. If α(i) ∈ Cobs, then it must
continue to iterate until a collision-free sample is obtained. Once α(i) ∈ Cfree,
then in line 4 it is inserted as a vertex of G. The next step is to try to connect α(i)
to some nearby vertices, q, of G. Each connection is attempted by the connect
function, which is a typical LPM (local planning method) from Section 5.4.1.
In most implementations, this simply tests the shortest path between α(i) and
q. Experimentally, it seems most efficient to use the multi-resolution, van der
Corput–based method described at the end of Section 5.3.4 [379]. Instead of the
shortest path, it is possible to use more sophisticated connection methods, such
as the bidirectional algorithm in Figure 5.24. If the path is collision-free, then
connect returns true.

The same component condition in line 6 checks to make sure α(i) and q are
in different components of G before wasting time on collision checking. This en-
sures that every time a connection is made, the number of connected components

“Practical” algorithm:
Incremental construction
Connect points within a radius r , starting from “closest” ones.
Do not attempt to connect points that are already on the same connected
component of the PRM.

What kind of properties does this algorithm have? Will it find a solution if there is
one? Is this an optimal solution? What is the complexity of the algorithm?
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Probabilistic Completeness

Definition (Probabilistic completeness)

An algorithm ALG is probabilistically complete if, for any robustly feasible motion
planning problem defined by P = (Xfree, xinit,Xgoal),

lim
N→∞

Pr (ALG returns a solution to P) = 1.

A “relaxed” notion of completeness

Applicable to motion planning problems with a robust solution. A robust
solution remains a solution if obstacles are “dilated” by some small δ.

Robust NOT Robust
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Asymptotic Optimality

Definition (Asymptotic optimality)

An algorithm ALG is asymptotically optimal if, for any motion planning problem
P = (Xfree, xinit,Xgoal) and cost function c that admit a robust optimal solution
with finite cost c∗,

P
({

lim
i→∞

Y ALG
i = c∗

})
= 1.

The function c associates to each path σ a non-negative cost c(σ), e.g.,
c(σ) =

∫
σ
χ(s) ds.

The definition is applicable to optimal motion planning problem with a
robust optimal solution. A robust optimal solution is such that it can be
obtained as a limit of robust (non-optimal) solutions.

Not robust Robust
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Complexity

How can we measure complexity for an algorithm that does not necessarily
terminate?

Treat the number of samples as “the size of the input.” (Everything else
stays the same)

Also, complexity per sample: how much work (time/memory) is needed to
process one sample.

Useful for comparison of sampling-based algorithms.

Cannot compare with deterministic, complete algorithms.
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Simple PRM (sPRM)

sPRM Algorithm

V ← {xinit} ∪ {SampleFreei}i=1,...,N−1; E ← ∅;
foreach v ∈ V do

U ← Near(G = (V ,E ), v , r) \ {v};
foreach u ∈ U do

if CollisionFree(v , u) then E ← E ∪ {(v , u), (u, v)}
return G = (V ,E );

The simplified version of the PRM algorithm has been shown to be
probabilistically complete. (No proofs available for the “real” PRM!)

Moreover, the probability of success goes to 1 exponentially fast, if the
environment satisfies certain “good visibility” conditions.

New key concept: combinatorial complexity vs. “visibility”

E. Frazzoli (MIT) L15: Sampling-Based Motion Planning November 3, 2010 11 / 30



Remarks on PRM

sPRM is probabilistically complete and asymptotically optimal.

PRM is probabilistically complete but NOT asymptotically optimal.

Complexity for N samples: Θ(N2).

Practical complexity-reduction tricks:

k-nearest neighbors: connect to the k nearest neighbors. Complexity
Θ(N logN). (Finding nearest neighbors takes logN time.)

Bounded degree: connect at most k neighbors among those within radius r .

Variable radius: change the connection radius r as a function of N. How?
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Rapidly-exploring Random Trees

Introduced by LaValle and Kuffner in 1998.

Appropriate for single-query planning problems.

Idea: build (online) a tree, exploring the region of the state space that can be
reached from the initial condition.

At each step: sample one point from Xfree, and try to connect it to the
closest vertex in the tree.

Very effective in practice, “Voronoi bias”
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Rapidly-exploring Random Trees

RRT

V ← {xinit}; E ← ∅;
for i = 1, . . . ,N do

xrand ← SampleFreei ;
xnearest ← Nearest(G = (V ,E ), xrand);
xnew ← Steer(xnearest, xrand) ;
if ObtacleFree(xnearest, xnew) then

V ← V ∪ {xnew}; E ← E ∪ {(xnearest, xnew)} ;

return G = (V ,E );

The RRT algorithm is probabilistically complete.

The probability of success goes to 1 exponentially fast, if the environment
satisfies certain “good visibility” conditions.
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Rapidly-exploring Random Trees (RRTs)
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Voronoi bias

Definition (Voronoi diagram)

Given n sites in d dimensions, the Voronoi diagram of the sites is a partition of Rd

into regions, one region per site, such that all points in the interior of each region
lie closer to that regions site than to any other site.

Vertices of the RRT that are more “isolated” (e.g., in unexplored areas, or at
the boundary of the explored area) have larger Voronoi regions—and are
more likely to be selected for extension.
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RRTs in action

Talos, the MIT entry to the 2007 DARPA Urban Challenge, relied on an
“RRT-like” algorithm for real-time motion planning and control.

The devil is in the details: provisions needed for, e.g.,

Real-time, on-line planning for a safety-critical vehicle with substantial
momentum.
Uncertain, dynamic environment with limited/faulty sensors.

Main innovations [Kuwata, et al. ’09]

Closed-loop planning: plan reference trajectories for an closed-loop model of
the vehicle under a stabilizing feedback.

Safety invariance: Always maintain the ability to stop safely within the
sensing region.

Lazy evaluation: the actual trajectory may deviate from the planned one,
need to efficiently re-check the tree for feasibility.

The RRT-based P+C system performed flawlessly throughout the race.
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Limitations of current incremental sampling methods

The MIT DARPA Urban Challenge code, as well as other incremental sampling
methods, suffer from the following limitations:

No characterization of the quality (e.g., “cost”) of the trajectories returned
by the algorithm.

Keep running the RRT even after the first solution has been obtained, for as
long as possible (given the real-time constraints), hoping to find a better
path than that already available.

No systematic method for imposing temporal/logical constraints, such as,
e.g., the rules of the road, complicated mission objectives, ethical/deontic
code.

In the DARPA Urban Challenge, all logics for, e.g., intersection handling, had
to be hand-coded, at a huge cost in terms of debugging effort/reliability of
the code.
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RRTs and optimality

RRTs are great at finding feasible trajectories quickly...

However, RRTs are apparently terrible at finding good trajectories.

What is the reason for such behavior?
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A negative result [K&F RSS’10]

Let Y RRT
n be the cost of the best path in the RRT at the end of iteration n.

It is easy to show that Y RRT
n converges (to a random variable), i.e.,

lim
n→∞

Y RRT
n = Y RRT

∞ .

The random variable Y RRT
∞ is sampled from a distribution with zero mass at

the optimum:

Theorem (Almost sure suboptimality of RRTs)

If the set of sampled optimal paths has measure zero, the sampling distribution is
absolutely continuous with positive density in Xfree, and d ≥ 2, then the best path
in the RRT converges to a sub-optimal solution almost surely, i.e.,

Pr
[
Y RRT
∞ > c∗

]
= 1.
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Some remarks on the negative result

Intuition: RRT does not satisfy a necessary condition for asymptotic
optimality, i.e., that the root node has infinitely many subtrees that extend at
least a distance ε away from xinit.

The RRT algorithm “traps” itself by disallowing new better paths to emerge.

Heuristics such as

running the RRT multiple times [Ferguson & Stentz, ’06]
running multiple trees concurrently,
deleting and rebuilding parts of the tree etc.

work better than the standard RRT, but also result in almost-sure
sub-optimality.

A careful rethinking of the RRT algorithm seems to be required to
ensure (asymptotic) optimality.
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Rapidly-exploring Random Graphs (RRGs)

A new incremental sampling algorithm:

RRG algorithm

V ← {xinit}; E ← ∅;
for i = 1, . . . ,N do

xrand ← SampleFreei ;
xnearest ← Nearest(G = (V ,E), xrand);
xnew ← Steer(xnearest, xrand) ;
if ObtacleFree(xnearest, xnew) then

Xnear ← Near(G = (V ,E), xnew,min{γRRG(log(cardV )/ cardV )1/d , η}) ;
V ← V ∪ {xnew}; E ← E ∪ {(xnearest, xnew), (xnew, xnearest)} ;
foreach xnear ∈ Xnear do

if CollisionFree(xnear, xnew) then E ← E ∪ {(xnear, xnew), (xnew, xnear)}

return G = (V ,E);

At each iteration, the RRG tries to connect to the new sample all vertices in
a ball of radius rn centered at it. (Or just default to the nearest one if such
ball is empty.)
in general the RRG builds graphs with cycles.
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Properties of RRGs

Theorem (Probabilistic completeness)

Since V RRG
n = V RRT

n , for all n, it follows that RRG has the same completeness
properties as RRT, i.e.,

Pr
[
V RRG
n ∩ Xgoal = ∅

]
= O(e−bn).

Theorem (Asymptotic Optimality)

If the Near procedure returns all nodes in V within a ball of volume

Vol = γ
log n

n
, γ > 2d(1 + 1/d),

under some additional technical assumptions (e.g., on the sampling distribution,
on the ε clearance of the optimal path, and on the continuity of the cost function),
the best path in the RRG converges to an optimal solution almost surely, i.e.,

Pr
[
Y RRG
∞ = c∗

]
= 1.
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Computational Complexity [K&F RSS ’10]

At each iteration, the RRG algorithm executes O(log n) extra calls to
ObstacleFree when compared to the RRT.

However, the complexity of the Nearest procedure is Ω(log n).
Achieved if using, e.g., a Balanced-Box Decomposition (BBD) Tree.

Theorem: Asymptotic (Relative) Complexity

There exists a constant β ∈ R+ such that

lim sup
i→∞

E
[

OPSRRG
i

OPSRRT
i

]
≤ β

In other words, the RRG algorithm has no substantial computational
overhead over RRT, and ensures asymptotic optimality.
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RRT∗: A tree version of the RRG [K&F RSS ’10]

RRT algorithm can account for, e.g., non-holonomic dynamics, and modeling errors.
RRG requires connecting the nodes exactly, i.e., the Steer procedure to be exact.
Exact steering methods are not available for general dynamical systems.

RRT∗ algorithm

RRT∗ is a variant of RRG that essentially
“rewires” the tree as better paths are
discovered.

After rewiring the cost has to be propagated
along the leaves.

If steering errors occur, subtrees can be
re-computed.

The RRT∗ algorithm inherits the asymptotic
optimality and rapid exploration properties of
the RRG and RRT.
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RRT∗ algorithm

RRT∗

V ← {xinit}; E ← ∅;
for i = 1, . . . ,N do

xrand ← SampleFreei ;
xnearest ← Nearest(G = (V ,E), xrand);
xnew ← Steer(xnearest, xrand) ;
if ObtacleFree(xnearest, xnew) then

Xnear ← Near(G = (V ,E), xnew,min{γRRG (log(cardV )/ cardV )1/d , η}) ;
V ← V ∪ {xnew};
xmin ← xnearest; cmin ← Cost(xnearest) + c(Line(xnearest, xnew));
foreach xnear ∈ Xnear do // Connect along a minimum-cost path

if CollisionFree(xnear, xnew) ∧ Cost(xnear) + c(Line(xnear, xnew)) < cmin

then
xmin ← xnear; cmin ← Cost(xnear) + c(Line(xnear, xnew))

E ← E ∪ {(xmin, xnew)};
foreach xnear ∈ Xnear do // Rewire the tree

if CollisionFree(xnew, xnear) ∧ Cost(xnew) + c(Line(xnew, xnear)) <
Cost(xnear) then xparent ← Parent(xnear);
E ← (E \ {(xparent, xnear)}) ∪ {(xnew, xnear)}

return G = (V ,E);
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RRT∗ experiment results
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RRT∗ and RRT in simulations
Monte-Carlo simulation – 500 trials
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RRT is shown in RED, RRT∗ is shown in BLUE.
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Summary

Key idea in RRG/RRT∗: to combine optimality and computational efficiency,
it is necessary to attempt connection to Θ(log N) nodes at each iteration.

Reduce volume of the “connection ball” as log(N)/N;
Increase the number of connections as log(N).

These principles can be used to obtain “optimal” versions of PRM, etc.:

Algorithm Probabilistic
Completeness

Asymptotic
Optimality

Computational
Complexity

sPRM Yes Yes O(N)

k-nearest sPRM No No O(logN)

RRT Yes No O(logN)

PRM∗ Yes Yes O(logN)

k-nearest PRM∗ Yes Yes O(logN)

RRG Yes Yes O(logN)

k-nearest RRG Yes Yes O(logN)

RRT∗ Yes Yes O(logN)

k-nearest RRT∗ Yes Yes O(logN)
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Conclusion

Thorough and rigorous analysis of the optimality properties of incremental
sampling-based motion planning algorithms.

We show that state-of-the-art algorithms such as RRT converge to a
NON-optimal solution almost-surely.

We provide new algorithms (RRG and the RRT∗), which almost-surely
converge to optimal solutions while incurring no significant cost overhead wrt
state-of-the-art-algorithms.

Bibliographical reference: S. Karaman and E. Frazzoli. Sampling-based
algorithms for optimal motion planning. Int. Journal of Robotics Research,
2011. To appear. Also available at http://arxiv.org/abs/1105.1186.

Current Work:

Optimal motion planning with temporal/logic constraints (e.g., µ-calculus).
Anytime solution of PDEs (Eikonal equation, Hamilton-Jacobi-Bellman, etc.)
Anytime solution of differential games
Stochastic optimal motion planning (process + sensor noise)
Multi-agent problems.
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