16.410/413
 Principles of Autonomy and Decision Making

Lecture 14: Informed Search

Emilio Frazzoli

Aeronautics and Astronautics
Massachusetts Institute of Technology
November 1, 2010

Outline

(1) Informed search methods: Introduction

- Shortest Path Problems on Graphs
- Uniform-cost search
- Greedy (Best-First) Search

2 Optimal search

3 Dynamic Programming

A step back

- We have seen how we can discretize collision-free trajectories into a finite graph.
- Searching for a collision-free path can be converted into a graph search.
- Hence, we can solve such problems using the graph search algorithms discussed in Lectures 2 and 3 (Breadth-First Search, Depth-First Search, etc.).

A step back

- We have seen how we can discretize collision-free trajectories into a finite graph.
- Searching for a collision-free path can be converted into a graph search.
- Hence, we can solve such problems using the graph search algorithms discussed in Lectures 2 and 3 (Breadth-First Search, Depth-First Search, etc.).
- However, roadmaps are not just "generic" graphs.
- Some paths are much more preferable with respect to others (e.g., shorter, faster, less costly in terms of fuel/tolls/fees, more stealthy, etc.).
- Distances have a physical meaning.
- Good guesses for distances can be made, even without knowing optimal paths.

A step back

- We have seen how we can discretize collision-free trajectories into a finite graph.
- Searching for a collision-free path can be converted into a graph search.
- Hence, we can solve such problems using the graph search algorithms discussed in Lectures 2 and 3 (Breadth-First Search, Depth-First Search, etc.).
- However, roadmaps are not just "generic" graphs.
- Some paths are much more preferable with respect to others (e.g., shorter, faster, less costly in terms of fuel/tolls/fees, more stealthy, etc.).
- Distances have a physical meaning.
- Good guesses for distances can be made, even without knowing optimal paths.

Can we utilize this information to find efficient paths, efficiently?

Shortest Path Problems on Graphs

Input: $\langle V, E, w$, start, goal \rangle :

- V : (finite) set of vertices.
- $E \subseteq V \times V:$ (finite) set of edges.
- $w: E \rightarrow \mathbb{R}_{>0}, e \mapsto w(e):$ a function that associates to each edge a strictly positive weight (cost, length, time, fuel, prob. of detection).
- start, goal $\in V$: respectively, start and end vertices.

Output: $\langle P\rangle$

- P is a path (starting in start and ending in goal, such that its weight $w(P)$ is minimal among all such paths.
- The weight of a path is the sum of the weights of its edges.

Example: point-to-point shortest path

Find the minimum-weight path from s to g in the graph below:

Solution: a simple path $P=\langle g, d, a, s\rangle(P=\langle g, d, b, s\rangle$ would be acceptable, too), with weight $w(P)=8$.

Uniform-Cost Search

$Q \leftarrow\langle$ start $\rangle ; \quad / /$ Initialize the queue with the starting node while Q is not empty do

Pick (and remove) the path P with lowest cost $g=w(P)$ from the queue Q; if head $(P)=$ goal then return P; // Reached the goal foreach vertex v such that $($ head $(P), v) \in E$, do //for all neighbors add $\langle v, P\rangle$ to the queue Q; // Add expanded paths
return FAILURE ; // Nothing left to consider.

Uniform-Cost Search

$Q \leftarrow\langle$ start $\rangle ; \quad / /$ Initialize the queue with the starting node while Q is not empty do

Pick (and remove) the path P with lowest cost $g=w(P)$ from the queue Q; if head $(P)=$ goal then return P; // Reached the goal foreach vertex v such that $($ head $(P), v) \in E$, do //for all neighbors add $\langle v, P\rangle$ to the queue Q;
return FAILURE ;
// Nothing left to consider.

Example of Uniform-Cost Search: Step 1

$Q:$| path | cost |
| :---: | :---: |
| $\langle s\rangle$ | 0 |

Example of Uniform-Cost Search: Step 2

Example of Uniform-Cost Search: Step 3

$Q:$| state | cost |
| :---: | :---: |
| $\langle c, a, s\rangle$ | 4 |
| $\langle b, s\rangle$ | 5 |
| $\langle d, a, s\rangle$ | 6 |

Example of Uniform-Cost Search: Step 4

$Q:$| state | cost |
| :---: | :---: |
| $\langle b, s\rangle$ | 5 |
| $\langle d, a, s\rangle$ | 6 |
| $\langle d, c, a, s\rangle$ | 7 |

Example of Uniform-Cost Search: Step 5

$Q:$| state | cost |
| :---: | :---: |
| $\langle d, a, s\rangle$ | 6 |
| $\langle d, c, a, s\rangle$ | 7 |
| $\langle g, b, s\rangle$ | 10 |

Example of Uniform-Cost Search: Step 6

$Q:$| state | cost |
| :---: | :---: |
| $\langle d, c, a, s\rangle$ | 7 |
| $\langle g, d, a, s\rangle$ | 8 |
| $\langle g, b, s\rangle$ | 10 |

Example of Uniform-Cost Search: Step 7

$Q:$| state | cost |
| :---: | :---: |
| $\langle g, d, a, s\rangle$ | 8 |
| $\langle g, d, c, a, s\rangle$ | 9 |
| $\langle g, b, s\rangle$ | 10 |

Remarks on UCS

- UCS is an extension of BFS to the weighted-graph case (UCS = BFS if all edges have the same cost).
- UCS is complete and optimal (assuming costs bounded away from zero).
- UCS is guided by path cost rather than path depth, so it may get in trouble if some edge costs are very small.
- Worst-case time and space complexity $O\left(b^{W^{*} / \epsilon}\right)$, where W^{*} is the optimal cost, and ϵ is such that all edge weights are no smaller than ϵ.

Greedy (Best-First) Search

- UCS explores paths in all directions, with no bias towards the goal state.
- What if we try to get "closer" to the goal?
- We need a measure of distance to the goal. It would be ideal to use the length of the shortest path... but this is exactly what we are trying to compute!
- We can estimate the distance to the goal through a "heuristic function," $h: V \rightarrow \mathbb{R}_{\geq 0}$. In motion planning, we can use, e.g., the Euclidean distance to the goal (as the crow flies).
- A reasonable strategy is to always try to move in such a way to minimize the estimated distance to the goal: this is the basic idea of the greedy (best-first) search.

Greedy (Best-First) Search

$Q \leftarrow\langle$ start $\rangle ; \quad / /$ Initialize the queue with the starting node while Q is not empty do

Pick the path P with minimum heuristic cost $h($ head $(P))$ from the queue Q; if head $(P)=$ goal then return P; // We have reached the goal foreach vertex v such that $($ head $(P), v) \in E$, do
L add $\langle v, P\rangle$ to the queue Q;
return FAILURE ;
// Nothing left to consider.

Example of Greedy (Best-First) Search: Step 1

$Q:$| path | cost | h |
| :---: | :---: | :---: |
| $\langle\boldsymbol{s}\rangle$ | 0 | 10 |

Example of Greedy (Best-First) Search: Step 2

$Q:$| path | cost | h |
| :---: | :---: | :---: |
| $\langle a, s\rangle$ | 2 | 2 |
| $\langle b, s\rangle$ | 5 | 3 |

Example of Greedy (Best-First) Search: Step 3

$Q:$| path | cost | h |
| :---: | :---: | :---: |
| $\langle c, a, s\rangle$ | 4 | 1 |
| $\langle b, s\rangle$ | 5 | 3 |
| $\langle d, a, s\rangle$ | 6 | 4 |

Example of Greedy (Best-First) Search: Step 4

$Q:$| path | cost | h |
| :---: | :---: | :---: |
| $\langle b, s\rangle$ | 5 | 3 |
| $\langle d, a, s\rangle$ | 6 | 4 |
| $\langle d, c, a, s\rangle$ | 7 | 4 |

Example of Greedy (Best-First) Search: step 5

$Q:$| path | cost | h |
| :---: | :---: | :---: |
| $\langle g, b, s\rangle$ | 10 | 0 |
| $\langle d, a, s\rangle$ | 6 | 4 |
| $\langle d, c, a, s\rangle$ | 7 | 4 |

Remarks on Greedy (Best-First) Search

- Greedy (Best-First) search is similar in spirit to Depth-First Search: it keeps exploring until it has to back up due to a dead end.
- Greedy search is not complete and not optimal, but is often fast and efficient, depending on the heuristic function h.
- Worst-case time and space complexity $O\left(b^{m}\right)$.

Outline

1 Informed search methods: Introduction
(2) Optimal search

- A search

3 Dynamic Programming

The A search algorithm

The problems

- Uniform-Cost search is optimal, but may wander around a lot before finding the goal.
- Greedy search is not optimal, but in some cases it is efficient, as it is heavily biased towards moving towards the goal. The non-optimality comes from neglecting "the past."

The A search algorithm

The problems

- Uniform-Cost search is optimal, but may wander around a lot before finding the goal.
- Greedy search is not optimal, but in some cases it is efficient, as it is heavily biased towards moving towards the goal. The non-optimality comes from neglecting "the past."

The idea

- Keep track both of the cost of the partial path to get to a vertex, say $g(v)$, and of the heuristic function estimating the cost to reach the goal from a vertex, $h(v)$.
- In other words, choose as a "ranking" function the sum of the two costs:

$$
f(v)=g(v)+h(v)
$$

- $g(v)$: cost-to-come (from the start to v).
- $h(v)$: cost-to-go estimate (from v to the goal).
- $f(v)$: estimated cost of the path (from the start to v and then to goal).

A Search

$Q \leftarrow\langle$ start $\rangle ; \quad / /$ Initialize the queue with the starting node while Q is not empty do

Pick the path P with minimum estimated cost $f(P)=g(P)+h($ head $(P))$ from the queue Q;
if head $(P)=$ goal then return P; // We have reached the goal
foreach vertex v such that $($ head $(P), v) \in E$, do add $\langle v, P\rangle$ to the queue Q;
return FAILURE ;
// Nothing left to consider.

Example of A Search: Step 1

$Q:$| path | g | h | f |
| :---: | :---: | :---: | :---: |
| $\langle s\rangle$ | 0 | 10 | 10 |

Example of A Search: step 2

Example of A Search: step 3

$Q:$| path | g | h | f |
| :---: | :---: | :---: | :---: |
| $\langle c, a, s\rangle$ | 4 | 1 | 5 |
| $\langle b, s\rangle$ | 5 | 3 | 8 |
| $\langle d, a, s\rangle$ | 6 | 5 | 11 |

Example of A Search: step 4

$Q:$| path | g | h | f |
| :---: | :---: | :---: | :---: |
| $\langle b, s\rangle$ | 5 | 3 | 8 |
| $\langle d, a, s\rangle$ | 6 | 5 | 11 |
| $\langle d, c, a, s\rangle$ | 7 | 5 | 12 |

Example of A Search: step 5

$Q:$| path | g | h | f |
| :---: | :---: | :---: | :---: |
| $\langle g, b, s\rangle$ | 10 | 0 | 10 |
| $\langle d, a, s\rangle$ | 6 | 5 | 11 |
| $\langle d, c, a, s\rangle$ | 7 | 5 | 12 |

Remarks on the A search algorithm

- A search is similar to UCS, with a bias induced by the heuristic h. If $h=0, \mathrm{~A}=\mathrm{UCS}$.
- The A search is complete, but is not optimal. What is wrong? (Recall that if $h=0$ then $A=U C S$, and hence optimal...)

A* Search

- Choose an admissible heuristic, i.e., such that $h(v) \leq h^{*}(v)$. (The star means "optimal.")
- The A search with an admissible heuristic is called A^{*}, which is guaranteed to be optimal.

Example of A^{*} Search: step 1

Example of A^{*} Search: step 2

$Q:$| path | g | h | f |
| :---: | :---: | :---: | :---: |
| $\langle a, s\rangle$ | 2 | 2 | 4 |
| $\langle b, s\rangle$ | 5 | 3 | 8 |

Example of A^{*} Search: step 3

$Q:$| path | g | h | f |
| :---: | :---: | :---: | :---: |
| $\langle c, a, s\rangle$ | 4 | 1 | 5 |
| $\langle d, a, s\rangle$ | 6 | 1 | 7 |
| $\langle b, s\rangle$ | 5 | 3 | 8 |

Example of A^{*} Search: Step 4

$Q:$| path | g | h | f |
| :---: | :---: | :---: | :---: |
| $\langle d, a, s\rangle$ | 6 | 1 | 7 |
| $\langle b, s\rangle$ | 5 | 3 | 8 |
| $\langle d, c, a, s\rangle$ | 7 | 1 | 8 |

Example of A^{*} Search: step 5

$Q:$| path | g | h | f |
| :---: | :---: | :---: | :---: |
| $\langle g, d, a, s\rangle$ | 8 | 0 | 8 |
| $\langle b, s\rangle$ | 5 | 3 | 8 |
| $\langle d, c, a, s\rangle$ | 7 | 1 | 8 |

Proof (sketch) of A^{*} optimality

By contradiction

- Assume that A^{*} returns P, but $w(P)>w^{*}$ (w^{*} is the optimal path weight/cost).
- Find the first unexpanded node on the optimal path P^{*}, call it n.
- $f(n)>w(P)$, otherwise we would have expanded n.
- $f(n)=g(n)+h(n)$ by definition
- $\quad=g^{*}(n)+h(n)$ because n is on the optimal path.
- $\quad \leq g^{*}(n)+h^{*}(n)$ because h is admissible
- $\quad=f^{*}(n)=W^{*}$ because h is admissible
- Hence $W^{*} \geq f(n)>W$, which is a contradiction.

Admissible heuristics

How to find an admissible heuristic? i.e., a heuristic that never overestimates the cost-to-go.

Admissible heuristics

How to find an admissible heuristic? i.e., a heuristic that never overestimates the cost-to-go.

Examples of admissible heuristics

- $h(v)=0$: this always works! However, it is not very useful, and in this case $A^{*}=U C S$.
- $h(v)=$ distance (v, g) when the vertices of the graphs are physical locations.
- $h(v)=\|v-g\|_{p}$, when the vertices of the graph are points in a normed vector space.

Admissible heuristics

How to find an admissible heuristic? i.e., a heuristic that never overestimates the cost-to-go.

Examples of admissible heuristics

- $h(v)=0$: this always works! However, it is not very useful, and in this case $A^{*}=U C S$.
- $h(v)=$ distance (v, g) when the vertices of the graphs are physical locations.
- $h(v)=\|v-g\|_{p}$, when the vertices of the graph are points in a normed vector space.

A general method

Choose h as the optimal cost-to-go function for a relaxed problem, that is easy to compute.
(Relaxed problem: ignore some of the constraints in the original problem)

Admissible heuristics for the 8-puzzle

Initial state:

1		5
2	6	3
7	4	8

Goal state:

1	2	3
4	5	6
7	8	

Which of the following are admissible heuristics?

- $h=0$
- $h=1$
- $h=$ number of tiles in the wrong positon
- $h=$ sum of (Manhattan) distance between tiles and their goal position.

Admissible heuristics for the 8-puzzle

Initial state:

1		5
2	6	3
7	4	8

Goal state:

1	2	3
4	5	6
7	8	

Which of the following are admissible heuristics?

- $h=0$ YES, always good
- $h=1$
- $h=$ number of tiles in the wrong positon
- $h=$ sum of (Manhattan) distance between tiles and their goal position.

Admissible heuristics for the 8-puzzle

Initial state:

1		5
2	6	3
7	4	8

Goal state:

1	2	3
4	5	6
7	8	

Which of the following are admissible heuristics?

- $h=0$ YES, always good
- $h=1$ NO, not valid in goal state
- $h=$ number of tiles in the wrong positon YES, "teleport" each tile to the goal in one move
- $h=$ sum of (Manhattan) distance between tiles and their goal position.

Admissible heuristics for the 8-puzzle

Initial state:

1		5
2	6	3
7	4	8

Goal state:

1	2	3
4	5	6
7	8	

Which of the following are admissible heuristics?

- $h=0$ YES, always good
- $h=1$ NO, not valid in goal state
- $h=$ number of tiles in the wrong positon YES, "teleport" each tile to the goal in one move
- $h=$ sum of (Manhattan) distance between tiles and their goal position. YES, move each tile to the goal ignoring other tiles.

A partial order of heuristic functions

Some heuristics are better than others

- $h=0$ is an admissible heuristic, but is not very useful.
- $h=h^{*}$ is also an admissible heuristic, and it the "best" possible one (it give us the optimal path directly, no searches/backtracking)

Partial order

- We say that h_{1} dominates h_{2} if $h_{1}(v) \geq h_{2}(v)$ for all vertices v.
- Clearly, h^{*} dominates all admissible heuristics, and 0 is dominated by all admissible heuristics.

Choosing the right heuristic

In general, we want a heuristic that is as close to h^{*} as possible. However, such a heuristic may be too complicated to compute. There is a tradeoff between complexity of computing h and the complexity of the search.

Consistent heuristics

- An additional useful property for A^{*} heuristics is called consistency
- A heuristic $h: X \rightarrow \mathbb{R}_{\geq 0}$ is said consistent if

$$
h(u) \leq w(e=(u, v))+h(v), \quad \forall(u, v) \in E .
$$

- In other words, a consistent heuristics satisfies a triangle inequality.
- If h is a consistent heuristics, then $f=g+h$ is non-decreasing along paths:

$$
f(v)=g(v)+h(v)=g(u)+w(u, v)+h(v) \geq f(u) .
$$

- Hence, the values of f on the sequence of nodes expanded by A^{*} is non-decreasing: the first path found to a node is also the optimal path \Rightarrow no need to compare costs!

Outline

1 Informed search methods: Introduction

2 Optimal search
(3) Dynamic Programming

Dynamic Programming

The optimality principle

Let $P=(s, \ldots, v, \ldots g)$ be an optimal path (from s to g). Then, for any $v \in P$, the sub-path $S=(v, \ldots, g)$ is itself an optimal path (from v to g).

Using the optimality principle

- Essentially, optimal paths are made of optimal paths. Hence, we can construct long complex optimal paths by putting together short optimal paths, which can be easily computed.
- Fundamental formula in dynamic programming:

$$
h^{*}(u)=\min _{(u, v) \in E}\left[w((u, v))+h^{*}(v)\right] .
$$

- Typically, it is convenient to build optimal paths working backwards from the goal.

A special case of dynamic programming

Dijkstra's algorithm

$Q \leftarrow V$ \{All states get in the queue $\}$.
for all $v \in V, \bar{h}(v)=\left(\infty\right.$ if $v \in V_{\mathrm{G}}, 0$ otherwise $)$
while $Q \neq \emptyset$ do
$u \leftarrow \arg \min _{v \in Q} \bar{h}(v)\{$ Pick minimum-cost vertex in $Q\}$ for all $e=(v, u) \in E$ do $\bar{h}(v) \leftarrow \min \{\bar{h}(v), \bar{h}(u)+w(e)\}\{$ Relax costs $\}$

Recovering optimal paths

- The output of Dijkstra's algorithm is in fact the optimal cost-to-go function, h^{*}.
- From any vertex, we can compute the optimal outgoing edge via the dynamic programming equation.

Dijkstra's algorithm: example

- Dynamic programming requires the computation of all optimal sub-paths, from all possible initial states (curse of dimensionality).
- On-line computation is easy via state feedback: convert an open-loop problem into a feedback problem. This can be useful in real-world applications, where the state is subject to errors.

Concluding remarks

- A^{*} optimal and very effective in many situations. However, in some applications, it requires too much memory. Some possible approaches to address this problem include
- Branch and bound
- Conflict-directed A^{*}
- Anytime A^{*}
- Other search algorithms
- D^{*} and D^{*}-lite: versions of A^{*} for uncertain graphs.
- Hill search: move to the neighboring state with the lowest cost.
- Hill search with backup: move to the neighboring state with the lowest cost, keep track of unexplored states.
- Beam algorithms: keep the best k partial paths in the queue.

MIT OpenCourseWare
http://ocw.mit.edu

16.410 / 16.413 Principles of Autonomy and Decision Making

Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

