

Image credit: NASA.

- Model-based Diagnosis
- Optimal CSPs
- Informed Search
- Conflict-directed A*

Mutual Preferential Independence (MPI) Assignment δ_1 is preferred over δ^2 if $g(\delta_1) < g(\delta_2)$. For any set of decision variables $W \subseteq Y$, our preference between two assignments to W is independent of the assignment to the remaining variables W - Y.

Outline • Model-based Diagnosis • Optimal CSPs • Informed Search - A* - Branch and Bound • Conflict-directed A*

A* Search:	State of Search	
Problem: •	State Space Search Problem. Initial State. Children of Search Node = adjacent states. True if search node at a goal-state. Search Nodes to be expanded. Search Nodes already expanded. Search starts at Θ , with no expanded nodes.	
g(state) <i>h(state)</i>	Cost to state Admissible Heuristic - Optimistic cost to go.	
Search Node: • State • Parent	Node in the search tree. State the search is at. Parent in search tree.	
 Nodes[Problem]: Enqueue(node, f) Remove-Best(f) 	Adds node to those to be expanded. Removes best cost queued node according to f.	
10/27/10	21	

A* Search	
Function A*(problem, h) returns the best solution or failure. Problem pre-initial f(x) ← g[problem](x) + h(x) loop do if Nodes[problem] is empty then return failure node ← Remove-Best(Nodes[problem], f) state ← State(node) remove any n from Nodes[problem] such that Sta Expanded[problem] ← Expanded[problem] ∪ {sta new-nodes ← Expand(node, problem) for each new-node in new-nodes unless State(new-node) is in Expanded[problem] if Goal-Test[problem] applied to State(node) succeed then return node end	lized. Dynamic Programming Principle ate(n) = state ate} n] n] n] n] n] n] n] n (n) = state ate ate] n] n] n] n (n) = state ate] n] n] n] n (n) = state ate] b (n) = state ate b (n) = state b (n) = state state state state state state state
10/27/10	30

- Model-based Diagnosis
- Optimal CSPs
- Informed Search
 - A*
 - Branch and Bound
- Conflict-directed A*

- Model-based Diagnosis
- Optimal CSPs
- Informed Search
- Conflict-directed A*

- Model-based Diagnosis
- Optimal CSPs
- Conflict-directed A*
 - Generating the Best Kernel
 - Performance Comparison

- Model-based Diagnosis
- Optimal CSPs
- Conflict-directed A*
 - Generating the Best Kernel
 - Performance Comparison

Performance: With and Without Conflicts

Problem Parameters				Constraint-based A* (no conflicts)		Conflict-directed A*			Mean CD-CB Ratio	
Dom Size	Dec Vars	Clau -ses	Clau -se Ingth	Nodes Expande d	Queue Size	Nodes Expand	Queue Size	Conflicts used	Nodes Expanded	Queue Size
5	10	10	5	683	1,230	3.3	6.3	1.2	4.5%	5.6%
5	10	30	5	2,360	3,490	8.1	17.9	3.2	2.4%	3.5%
5	10	50	5	4,270	6,260	12.0	41.3	2.6	0.83%	1.1%
10	10	10	6	3,790	13,400	5.7	16.0	1.6	2.0%	1.0%
10	10	30	6	1,430	5,130	9.7	94.4	4.2	4.6%	5.8%
10	10	50	6	929	4,060	6.0	27.3	2.3	3.5%	3.9%
5	20	10	5	109	149	4.2	7.2	1.6	13.0%	13.0%
5	20	30	5	333	434	6.4	9.2	2.2	6.0%	5.4%
5	20	50	5	149	197	5.4	7.2	2.0	12.0%	11.0%
10/27/10 72										

Model-based Diagnosis as Conflict-directed Best First Search

When you have eliminated the impossible, whatever remains, however improbable, must be the truth.

- Sherlock Holmes. The Sign of the Four.

- 1. Generate most likely Hypothesis.
- 2. Test Hypothesis.
 - 3. If Inconsistent, learn reason for inconsistency (a Conflict).
- 4. Use conflicts to leap over similarly infeasible options to next best hypothesis.

- Model-based Diagnosis
- Optimal CSPs
- Conflict-directed A*
 - Generating the Best Kernel
 - Performance Comparison
 - Appendix:
 - Intelligent Tree Expansion
 - Extending to Multiple Solutions
 - Review of A*

- Model-based Diagnosis
- Optimal CSPs
- Conflict-directed A*
 - Generating the Best Kernel
 - Performance Comparison
 - Appendix:
 - Intelligent Tree Expansion
 - Extending to Multiple Solutions
 - Review of A*

16.410 / 16.413 Principles of Autonomy and Decision Making Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.