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Optimal Satisfiability and  
Conflict-directed A* 

Brian C. Williams 
16.410 / 16.413 

October 27th, 2010 
Brian C. Williams, copyright 2000 

Assignment 

•  Remember: 
•  Problem Set #6 Propositional Logic, due Today. 
•  16:413 Project Part 1: Sat-based Activity Planner,  

due Wednesday, November 3rd. 
•  Problem Set #7 Diagnosis, Conflict-directed A* and RRTs,  

due Wednesday, November 10th. 

•  Reading 
–  Today: Brian C. Williams, and Robert Ragno, "Conflict-directed A* and its 

Role in Model-based Embedded Systems," Special Issue on Theory and 
Applications of Satisfiability Testing, Journal of Discrete Applied Math, 
January 2003. 
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   When you have eliminated the impossible, 
whatever remains, however improbable, 
must be the truth.     

- Sherlock Holmes. The Sign of the Four. 

Model-based Diagnosis as 	

Conflict-directed Best First Search	


1.  Generate most likely Hypothesis.	

2.  Test Hypothesis.	

3.  If Inconsistent, learn reason for inconsistency ���

(a Conflict).	

4.  Use conflicts to leap over similarly infeasible options ���

to next best hypothesis.	


Compare Most Likely Hypothesis  
to Observations 

Helium tank	


Fuel tank	
Oxidizer tank	


Main	

Engines	


Flow1 = zero	

Pressure1 = nominal	


Pressure2= nominal	


Acceleration = zero	


It is most likely that all components are okay.	
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Isolate Conflicting Information 

Helium tank	


Fuel tank	
Oxidizer tank	


Main	

Engines	


Flow 1= zero	


The red component modes conflict with the model and observations.	


Helium tank	


Fuel tank	
Oxidizer tank	


Main	

Engines	


Flow 1= zero	


Leap to the Next Most Likely Hypothesis 
that Resolves the Conflict 

The next hypothesis must remove the conflict. 	
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New Hypothesis Exposes Additional Conflicts 

Pressure1 = nominal	
 Pressure2= nominal	


Acceleration = zero	


Helium tank	


Fuel tank	
Oxidizer tank	


Main	

Engines	


Another conflict, try removing both.	


Final Hypothesis Resolves all Conflicts  

Helium tank	


Fuel tank	
Oxidizer tank	


Main	

Engines	


Pressure1 = nominal	

Flow1 = zero	


Pressure2= nominal	

Flow2 = positive	


Acceleration = zero	


Implementation: Conflict-directed A* search.	
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Outline 

•  Model-based Diagnosis 
•  Optimal CSPs 
•  Informed Search 
•  Conflict-directed A*  
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Constraint Satisfaction Problem 
CSP = <X, DX,C> 

– variables X with domain DX. 
– Constraint C(X):  DX → {True, False}. 

Problem: Find X in DX s.t. C(X) is True. 

R,G,B 

 G R, G 

Different-color constraint 
V1 

V2 V3 
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Optimal CSP 
OCSP= <Y, g, CSP> 

–  Decision variables Y with domain DY. 
–  Utility function g(Y): DY → ℜ. 
–  CSP over variables <X;Y>. 

Find leading arg max g(Y) 
                        Y ∈ Dy 

 s.t. ∃ X ∈ DX s.t. C(X,Y) is True. 

  g: multi-attribute utility with preferential independence, 
      value constraint, … 

  CSP: propositional state logic, simple temporal problem, 
           mixed logic-linear program, … 
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CSPs Are Frequently Encoded in 
Propositional State Logic 

(mode(E1) = ok implies 
   (thrust(E1) = on if and only if flow(V1) = on and flow(V2) = on)) and 
   (mode(E1) = ok or mode(E1) = unknown) and 
   not (mode(E1) = ok and mode(E1) = unknown) 

E1 

V1 V2 
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Multi Attribute Utility Functions 
g(Y) = G(g1(y1), g2(y2), . . .) 

where 
 G(u1, u2 … un) = G(u1,G(u2 … un)) 
 G(u1) = G(u1, IG) 

Example: Diagnosis 
 gi(yi=modeij) = P(yi = modeij) 
 G(u1,u2) = u1 x u2 
 IG = 1 
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Mutual Preferential Independence (MPI) 

Assignment δ1 is preferred over δ2  
if g(δ1) < g(δ2).  

For any set of decision variables W ⊆ Y,  
our preference between two assignments to 
W is independent of the assignment to the 
remaining variables W – Y. 
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MPI Example: Diagnosis 

If A1 = G is more likely than A1 = U, 

then 
        {A1 = G, A2 = G, A3 = U, X1 = G, X2 = G}  

is preferred to 
        {A1 = U, A2 = G, A3 = U, X1 = G, X2 = G}. 

Outline 
•  Model-based Diagnosis 
•  Optimal CSPs 
•  Informed Search  

– A*  
– Branch and Bound 

•  Conflict-directed A*  
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C 

S 

B 

G 
A 

D 2 

5 

4 

2 
3 

2 

5 1 

Informed Search 

Problem:  
•  Given graph <V,E> with weight function w: E →ℜ, and vertices S, G in V,  
•  Find a path S →p G with the shortest path length δ(S,G) where 

•  w(p) = Σ w(vi-1,vi). 
•  δ(u,v) = min {w(p) : u →p v } 

g = 8 
S 

D 

B A 

C G 

C G 

D 

C G 

2 5 

6 4 

9 9 8 

6 10 

8 

0 

Extend search tree nodes 
to include path length g 

Brian Williams, Fall  05 18 

A B 

x x

start 
goal 

Best-first Search with 
Uniform Cost spreads 
evenly from the start. 
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start 
goal 

 A* biases uniform cost 
towards the goal by using h. 

•  f = g + h 

•  g = distance from start. 

•  h = estimated distance  
         to goal. 

A B 

x x

Best-first Search with 
Uniform Cost spreads 
evenly from the start. 

A* finds an optimal solution  
if h never over estimates. 

Then h is called “admissible” 

Greedy goes for the 
goal, but forgets its 
past. 

Brian Williams, Fall  05 20 

A* 

0 
C 

S 

B 

G 
A 

D 2 

5 

4 

2 
3 

2 

5 1 

2 

1 

0 
1 

3 

Heuristic Value h in Red 
Edge cost in Green 

•  Best-first Search with Q ordered by admissible f = g + h. 

S 

B 

C D D G 

G C G C 

A 

0 

4 

5 

8 

7 

10 8 10 10 

7 10 
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A* Search: State of Search 
Problem:   State Space Search Problem. 
•  Θ    Initial State. 
•  Expand(node)  Children of Search Node = adjacent states. 
•  Goal-Test(node)  True if search node at a goal-state. 
•  Nodes   Search Nodes to be expanded. 
•  Expanded   Search Nodes already expanded. 
•  Initialize   Search starts at Θ, with no expanded nodes. 

g(state)    Cost to state 
h(state)    Admissible Heuristic - Optimistic cost to go. 

Search Node:   Node in the search tree. 
•  State   State the search is at. 
•  Parent   Parent in search tree. 

Nodes[Problem]: 
•  Enqueue(node, f )  Adds node to those to be expanded. 
•  Remove-Best(f)  Removes best cost queued node according to f. 
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A* Search 
Function A*(problem, h) 
  returns the best solution or failure. Problem pre-initialized. 
  f(x) ← g[problem](x) + h(x) 
  loop do 

    node ← Remove-Best(Nodes[problem], f) 

    new-nodes  ← Expand(node, problem) 
    for each new-node in new-nodes  

        then Nodes[problem]← Enqueue(Nodes[problem], new-node, f ) 

end 

Expand 
Best-first 
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A* Search 
Function A*(problem, h) 
  returns the best solution or failure. Problem pre-initialized. 
  f(x) ← g[problem](x) + h(x) 
  loop do 
    if Nodes[problem] is empty  then return failure 
    node ← Remove-Best(Nodes[problem], f) 

    new-nodes  ← Expand(node, problem) 
    for each new-node in new-nodes  

        then Nodes[problem] ← Enqueue(Nodes[problem], new-node, f ) 
    if Goal-Test[problem] applied to State(node) succeeds  
      then return node 
end 

Terminate 
when . . . 
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S 

D A 2 4 

Expand Vertices More Than Once 

0 
path length 

S 

A 

D 2 
1 

4 
G 

•  The shortest path from S to G  
is (G D A S). 

1 

edge cost 

•  D is reached first using  
path (D S). 

Suppose we expanded only the  
first path that visits each vertex X? 
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S 

D A 2 5 

D 3 

Expand Vertices More Than Once 

0 
path length 

S 

A 

D 2 
1 

4 
G 

•  The shortest path from S to G  
is (G D A S). 

1 

edge cost 

•  D is reached first using  
path (D S). 

•  This prevents path (D A S) 
from being expanded. Suppose we expanded only the  

first path that visits each vertex X? 
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S 

D 

D A 2 5 

3 

Expand Vertices More Than Once 

0 
path length 

S 

A 

D 2 
1 

4 
G 

•  The shortest path from S to G  
is (G D A S). 

1 

edge cost 

•  D is reached first using  
path (D S). 

•  This prevents path (D A S) 
from being expanded. Suppose we expanded only the  

first path that visits each vertex X? 

10 G 
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S 

D 

D A 2 5 

3 

Expand Vertices More Than Once 

0 
path length 

S 

A 

D 2 
1 

4 
G 

•  The shortest path from S to G  
is (G D A S). 

1 

edge cost 

•  D is reached first using  
path (D S). 

•  This prevents path (D A S) 
from being expanded. Suppose we expanded only the  

first path that visits each vertex X? 

10 G 

•  The suboptimal path (G D S)  
is returned.  Eliminate the Visited List. 

 Return solution when taken off queue. 

Brian Williams, Fall  05 28 

8 9 
u v 

1 

5 7 
x y 

2 

0 

10 

5 
7 

9 2 3 4 6 s 

Shortest Paths Contain  
Only Shortest Paths 

•  Subpaths of shortest paths are shortest paths. 
•  s →p v  = <s, x, u, v>  Shortest, then …. 
•  s →p u  = <s, x, u>  Shortest 
•  s →p x  = <s, x>  Shortest 
•  x →p v  = <x, u, v>  Shortest 
•  x →p v  = <x, u>  Shortest 
•  u →p v  = <u, v>  Shortest 
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8 9 

u v
1

5 7 

x y

2

0 

10 

5

7

9
2 3 4 6s

Shortest Paths can be  
Grown From Shortest Paths 

 The length of shortest path s →p u → v 
   is δ(s,v) = δ(s,u) + w(u,v) such that  
   ∀ <u,v> ∈ E   δ(s,v) ≤ δ(s,u) + w(u,v). 

Dynamic Programming Principle: 

"   Given the shortest path to U, don’t extend other paths to U;  
delete them (expanded list). 

"   When A* dequeues the first partial path with head node U,  
this path is guaranteed to be the shortest path from S to U. 
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A* Search 
Function A*(problem, h) 
  returns the best solution or failure. Problem pre-initialized. 
  f(x) ← g[problem](x) + h(x) 
  loop do 
    if Nodes[problem] is empty  then return failure 
    node ← Remove-Best(Nodes[problem], f) 
    state ← State(node) 
    remove any n from Nodes[problem] such that State(n) = state 
    Expanded[problem] ← Expanded[problem] ∪ {state}  
    new-nodes  ← Expand(node, problem) 
    for each new-node in new-nodes  
      unless State(new-node) is in Expanded[problem] 
        then Nodes[problem] ← Enqueue(Nodes[problem], new-node, f ) 
    if Goal-Test[problem] applied to State(node) succeeds  
      then return node 
end 

Dynamic 
Programming 
Principle  . . . 
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Outline 
•  Model-based Diagnosis 
•  Optimal CSPs 
•  Informed Search  

– A*  
– Branch and Bound 

•  Conflict-directed A*  
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Branch and Bound 

0 
C 

S 

B 

G 
A 

D 2 

5 

4 

2 
3 

2 

5 1 

2 

1 

0 
1 

3 

Heuristic Value h in Red 
Edge cost in Green 

•  Maintain the best solution found thus far (incumbent). 

•  Prune all subtrees worse than the incumbent. 

S 

B 

C D D G 

G C G C 

A 

0 

4 

5 

8 

7 

10 8 10 10 

7 

Incumbent: 
 cost U = 
 path P = 

∞, 
(), 

8 
(S A D G) 

10 
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Branch and Bound 

0 
C 

S 

B 

G 
A 

D 2 

5 

4 

2 
3 

2 

5 1 

2 

1 

0 
1 

3 

Heuristic Values of g in Red 
Edge cost in Green 

•  Maintain the best solution found thus far (incumbent). 

•  Prune all subtrees worse than the incumbent. 

•  Any search order allowed (DFS, Reverse-DFS, BFS, Hill w BT…). 
S 

B 

C D D G 

G C G C 

A 

0 

4 

5 

8 

7 

10 8 10 10 

7 

Incumbent: 
 cost U = 
 path P = 

∞, 
(), 

10, 
(S B G) 

8 
(S A D G) 

10 
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Simple Optimal Search  
Using Branch and Bound 

1.  Initialize Q with partial path (S); Incumbent U = ∞, P = (); 
2.  If Q is empty, return Incumbent U and P, 

Else, remove a partial path N from Q; 
3.  If f(N) >= U, Go to Step 2. 
4.  If head(N) = G, then U = f(N) and P = N  (a better path to the goal) 
5.  (Else) Find all children of head(N) (its neighbors in <V,E>) and  

create one-step extensions from N to each child. 
6.  Add extended paths to Q. 
7.  Go to Step 2. 

Let <V,E> be a Graph    Let Q be a list of simple partial paths in <V,E> 
Let S be the start vertex in <V,E> and Let G be a Goal vertex in <V,E>. 
Let f = g + h  be an admissible heuristic function. 
U and P are the cost and path of the best solution thus far (Incumbent). 
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Outline 
•  Model-based Diagnosis 
•  Optimal CSPs 
•  Informed Search 
•  Conflict-directed A*  

10/27/10 36 

Increasing 
Cost 

Feasible 

Infeasible 

A*  
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Increasing 
Cost 

Feasible 

Infeasible 

Conflict-directed A*  
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Increasing 
Cost 

Feasible 

Infeasible 
Conflict 1 

Conflict-directed A*  
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Increasing 
Cost 

Feasible 

Infeasible 
Conflict 1 

Conflict-directed A*  
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Increasing 
Cost 

Feasible 

Infeasible 
Conflict 2 

Conflict 1 

Conflict-directed A*  
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Increasing 
Cost 

Feasible 

Infeasible 
Conflict 2 

Conflict 1 

Conflict-directed A*  
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Increasing 
Cost 

Feasible 

Infeasible 

C
onflict 3 

Conflict 2 

Conflict 1 

Conflict-directed A*  
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Increasing 
Cost 

Infeasible 

C
onflict 3 

Conflict 2 

Conflict 1 

Conflict-directed A*  

Feasible 
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Solving Optimal CSPs 
Through Generate and Test 

Generate	

Candidate	


Test	

Candidate	


Consistent?	
Keep	


(Optional) Update	

Cost	


Below	

Threshold?	


Extract	

Conflict	


Done	
 Yes	
 No	


Yes	
 No	


Leading Candidates	

Based on Cost	
 Conflict-directed A* 

Constraint Solver 
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Conflict-directed A* 
Function Conflict-directed-A*(OCSP) 
  returns the leading minimal cost solutions. 
  Conflicts[OCSP] ← {} 
  OCSP ← Initialize-Best-Kernels(OCSP) 
  Solutions[OCSP] ← {} 
  loop do 
    decision-state ← Next-Best-State-Resolving-Conflicts(OCSP) 

    new-conflicts ← Extract-Conflicts(CSP[OCSP], decision-state) 
    Conflicts[OCSP]  
      ← Eliminate-Redundant-Conflicts(Conflicts[OCSP] ∪ new-conflicts) 
end 

Conflict-guided 
Expansion 
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Conflict-directed A* 
Function Conflict-directed-A*(OCSP) 
  returns the leading minimal cost solutions. 
  Conflicts[OCSP] ← {} 
  OCSP ← Initialize-Best-Kernels(OCSP) 
  Solutions[OCSP] ← {} 
  loop do 
    decision-state ← Next-Best-State-Resolving-Conflicts(OCSP) 
    if no decision-state returned or 
      Terminate?(OCSP) 
      then return Solutions[OCSP] 
    if Consistent?(CSP[OCSP ], decision-state) 
      then add decision-state to Solutions[OCSP] 
    new-conflicts ← Extract-Conflicts(CSP[OCSP], decision-state) 
    Conflicts[OCSP]  
      ← Eliminate-Redundant-Conflicts(Conflicts[OCSP] ∪ new-conflicts) 
end 
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Increasing 
Cost 

Infeasible 

C
onflict 3 

Conflict 2 

Conflict 1 

Conflict-directed A*  
•  Each feasible subregion described by a kernel assignment. 
  Approach: Use conflicts to search for kernel assignment 
containing the best cost candidate. 

Kernel 1 

Kernel 2 

Kernel 3 
Feasible 
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Recall: Mapping Conflicts to Kernels 

Conflict Ci: A set of decision variable assignments that are ���
   inconsistent with constraints Φ.	


	
Ci ^ Φ is inconsistent # #  	
Φ entails ¬Ci 	
	


Constituent Kernel: An assignment a that resolves a conflict Ci.	


	
a entails ¬ Ci	


Kernel: A minimal set of decision variable assignments  
that resolves all known conflicts C. 

 A entails ¬ Ci for all Ci in C 

11

0

A	


B	


C

D	


E

F

G	


X	


Y	


Z

1

1

1

0

1

0

1
1

1

A1 

A2 

A3 

X1 

X2 

A	


B	


C

D	


E

1

1

1

0

1

F

G

X	


Y	


Z

0

1

A1 

A3 

X1 

? 
? 

? 
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{X1=U} 

A1=? ∧ A2=U ∧ A3=? ∧ X1=? ∧ X2=? 

           A1=G ∧ A2=U ∧ A3=G ∧ X1=G ∧ X2=G 

•  Select best utility value for unassigned variables (Why?). 

Extracting a kernel’s best state  
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Next Best State Resolving 
Conflicts 

function Next-Best-State-Resolving-Conflicts(OCSP) 
  best-kernel ← Next-Best-Kernel(OCSP) 
  if best-kernel = failure 
    then return failure 
    else return kernel-Best-State[problem](best-kernel)  
end 

function Kernel-Best-State(kernel) 
  unassigned ← all variables not assigned in kernel 
  return kernel ∪ {Best-Assignment(v) | v ∈ unassigned} 
End 

function Terminate?(OCSP) 
  return True iff Solutions[OCSP] is non-empty 

Algorithm for only finding the first solution, multiple later. 



10/27/10 

26 

10/27/10 51 

Assume Independent Failures: 
•  PG(mi) >> PU(mi) 

•  Psingle >> Pdouble 

•  PU(A2) > PU(A1) > PU(A3) > PU(X1) > PU(X2) 

Example: Diagnosis 
A	


B	

C	

D	


E	


F	


G	


X	


Y	


Z	


1	


1	

1	

0	


1	


0	


1	


A1 

A2 

A3 

X1 

X2 

10/27/10 52 

•  Conflicts / Constituent Kernels 
–  none 

•  Best Kernel:  
–  {} 

•  Best Candidate:  
–  ? 

First Iteration 
A	


B	

C	

D	


E	


F	


G	


X	


Y	


Z	


1	


1	

1	

0	


1	


0	


1	


A1 

A2 

A3 

X1 

X2 
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{  } 

A1=? ∧ A2=? ∧ A3=? ∧ X1=? ∧ X2=? 

           A1=G ∧ A2=G ∧ A3=G ∧ X1=G ∧ 2=G 

•  Select best value for unassigned variables 

Extracting the kernel’s best state  
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•  Conflicts / Constituent Kernels 
–  none 

•  Best Kernel:  
–  {} 

•  Best Candidate: 
–  A1=G ∧ A2=G ∧ A3=G ∧ X1=G ∧ X2=G  
–  ? 

First Iteration 
A	


B	

C	

D	


E	


F	


G	


X	


Y	


Z	


1	


1	

1	

0	


1	


0	


1	


A1 

A2 

A3 

X1 

X2 
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Test: A1=G ∧ A2=G ∧ A3=G ∧ X1=G ∧ X2=G 

A	


B	

C	

D	


E	


F	


G	


X	


Y	


Z	
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1	

1	
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0	


1	


A1 

A2 

A3 

X1 

X2 
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Test: A1=G ∧ A2=G ∧ A3=G ∧ X1=G ∧ X2=G 

A	


B	

C	

D	


E	


F	


G	


X	


Y	


Z	


1	


1	

1	

0	


1	


0	


1	


A1 

A2 

A3 

X1 

X2 

0	


1	
 1	
 Symptom	


•  Extract Conflict and Constituent Kernels: 
     ¬ [A1=G ∧ A2=G ∧ X1=G]   

       A1=U ∨ A2=U ∨ X1=U 
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•  Conflicts  Constituent Kernels 
–  A1=U ∨ A2=U ∨ X1=U 

•  Best Kernel:  
–  A2=U      (why?) 

•  Best Candidate:  
–  A1=G ∧ A2=U ∧ A3=G ∧ X1=G ∧ X2=G 

Second Iteration 
•  PG(mi) >> PU(mi) 

•  Psingle >> Pdouble 

•  PU(A2) > PU(A1) >  
PU(A3) > PU(X1) > PU(X2) 

11
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Test: A1=G ∧ A2=U ∧ A3=G ∧ X1=G ∧ X2=G 

A	


B	

C	

D	


E	
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Test: A1=G ∧ A2=U ∧ A3=G ∧ X1=G ∧ X2=G 

1	


1	


A	


B	

C	
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0	
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0	
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A1 

A3 

X1 

X2 

•  Extract Conflict: 
 ¬ [A1=G ∧ A3=G ∧ X1=G ∧ X2=G]   

       A1=U ∨ A3=U ∨ X1=U ∨ X2=U 
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•  Conflicts  Constituent Kernels 
–  A1=U ∨ A2=U ∨ X1=U 

–  A1=U ∨ A3=U ∨ X1=U ∨ X2=U 

•  Best Kernel:  
–  A1=U 

•  Best Candidate:  
–  A1=U ∧ A2=G ∧ A3=G ∧ X1=G ∧ X2=G 

Third Iteration 
•  PG(mi) >> PU(mi) 

•  Psingle >> Pdouble 

•  PU(A2) > PU(A1) >  
PU(A3) > PU(X1) > PU(X2) 

1

1

1
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1
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Test: A1=U ∧ A2=U ∧ A3=G ∧ X1=G ∧ X2=G 

A	


B	
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X1 
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Test: A1=U ∧ A2=U ∧ A3=G ∧ X1=G ∧ X2=G 

0	


0	


A	


B	

C	

D	


E	
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G	


X	


Y	


Z	


1	


1	

1	

0	


1	
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1	

1	
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A3 

X1 
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•  Consistent! 

A2 
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Outline 
•  Model-based Diagnosis 
•  Optimal CSPs 
•  Conflict-directed A* 

– Generating the Best Kernel 
– Performance Comparison 

X1=U, X2=U, ���
A1=U, A3=U	


X1=U	
 A1=U	
 A2=U	


X2=U	
 M1=U	

A3=U	
X1=U	


A1=U ∧ X2=U	
 A2=U ∧ A3=U	
X1=U	
 A1=U	


Generating The Best Kernel of The Known Conflicts 

X1=U,  A1=U , A2=U	


Constituent Kernels 

•  Minimal set covering is an instance of breadth first search.	


 Insight: 
•  Kernels found by minimal set covering	
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A2=U	
 X1=U	
A1=U	

A2=U ∨ A1=U ∨ X1=U	


{ } 

To Expand a Node: 
•  Select an unresolved Conflict. 
•  Each child adds a constituent kernel of Conflict. 
•  Prune any node that is 

–  Inconsistent, or 
–  A superset of a known kernel. 

Expanding a Node to  
Resolve a Conflict  

Constituent kernels 

X1=U, X2=U, ���
A1=U, A3=U	


X1=U	
 A1=U	
 A2=U	


A1=U	


Generating The Best Kernel of The Known Conflicts 

X1=U, A1=U, A2=U	


Constituent Kernels 

•  Minimal set covering is an instance of breadth first search.	

  To find the best kernel, expand tree in best first order.	


 Insight: 
•  Kernels found by minimal set covering	
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Admissible h(α): Cost of best state 
that extends partial assignment α 

              ∧ A1=? ∧ A3=? ∧ X1=? ∧ X2=? 

               x PA1=G x PA3=G x PX1=G x PX2=G  

•  Select best value of unassigned variables. 

f =  g   +   h 

PA2=u 

A2=U 

10/27/10 68 

Admissible Heuristic h 
•  Let g = <G,gi,Y> describe a multi-attribute utility fn 

•  Assume the preference for one attribute xi is independent of another xk 
–  Called Mutual Preferential Independence: 

For all u, v ∈Y 
If gi(u) ≥ gi(v) then for all w 

G(gi(u),gk(w)) ≥ G(gi(v),gk(w)) 

An Admissible h: 
–  Given a partial assignment, to X ⊆ Y 
–  h selects the best value of each unassigned variable Z = X – Y 

         h(Y) = G({gzi_max| zi∈Z, max    gzi(vij))})    
                                                         vij∈Dzi 

–  A candidate always exists satisfying h(Y). 
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Terminate when all conflicts resolved 

Function Goal-Test-Kernel (node, problem) 
  returns True IFF node is a complete decision state. 
  if forall K in Constituent-Kernels(Conflicts[problem]), 
       State[node] contains a kernel in K 
    then return True 
 else return False 

10/27/10 70 

Next Best Kernel of Known Conflicts 
Function Next-Best-Kernel (OCSP) 
  returns the next best cost kernel of Conflicts[OCSP]. 
  f(x) ← G[OCSP] (g[OCSP](x), h[OCSP](x)) 
  loop do 
    if Nodes[OCSP] is empty  then return failure 
    node ← Remove-Best(Nodes[OCSP], f) 
    add State[node] to Visited[OCSP] 
    new-nodes  ← Expand-Conflict(node, OCSP) 
    for each new-node ∈ new-nodes  
      unless ∃ n ∈ Nodes[OCSP] such that State[new-node] = State[n] 
                  OR State[new-node] ∈ Visited[problem] 
        then Nodes[OCSP] ← Enqueue(Nodes[OCSP], new-node, f ) 
    if Goal-Test-Kernel[OCSP] applied to State[node] succeeds  
      Best-Kernels[OCSP]   
         ← Add-To-Minimal-Sets(Best-Kernels[OCSP], best-kernel)  
      if best-kernel ∈ Best-Kernels[OCSP] 
         then return State[node] 
end 

An instance 
of A*  
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Outline 
•  Model-based Diagnosis 
•  Optimal CSPs 
•  Conflict-directed A* 

– Generating the Best Kernel 
– Performance Comparison 

10/27/10 72 

Problem  
Parameters 

Constraint-based 
A* (no conflicts) 

Conflict-directed A* Mean CD-CB Ratio 

Dom 
Size 

Dec 
Vars 

Clau
-ses 

Clau 
-se  
lngth 

Nodes 
Expande
d 

Queue 
Size 

Nodes 
Expand 

Queue 
Size 

Conflicts 
used 

Nodes 
Expanded 

Queue  
Size 

5 10 10 5 683 1,230 3.3 6.3 1.2   4.5%   5.6% 
5 10 30 5 2,360 3,490 8.1 17.9 3.2   2.4%   3.5% 
5 10 50 5 4,270 6,260 12.0 41.3 2.6   0.83%   1.1% 

10 10 10 6 3,790 13,400 5.7 16.0 1.6   2.0%   1.0% 
10 10 30 6 1,430 5,130 9.7 94.4 4.2   4.6%   5.8% 
10 10 50 6 929 4,060 6.0 27.3 2.3   3.5%   3.9% 

5 20 10 5 109 149 4.2 7.2 1.6 13.0% 13.0% 
5 20 30 5 333 434 6.4 9.2 2.2   6.0%   5.4% 
5 20 50 5 149 197 5.4 7.2 2.0 12.0% 11.0% 

Performance: 
With and Without Conflicts 
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Multiple Fault Diagnosis of  
Systems with Novel Failures 

Consistency-based Diagnosis: Given symptoms, 
find diagnoses that are consistent with symptoms. 

Suspending Constraints:  Make no presumption 
about a component’s faulty behavior. 

1	
 Symptom	
1	


0	


A	


B	

C	

D	


E	


F	


G	


X	


Y	


Z	


1	


1	

1	

0	


1	


0	


1	

1	


1	


A1 

A2 

A3 

X1 

X2 

   When you have eliminated the impossible, 
whatever remains, however improbable, must be 
the truth.     

- Sherlock Holmes. The Sign of the Four. 

Model-based Diagnosis as  
Conflict-directed Best First Search 

1.  Generate most likely Hypothesis.	

2.  Test Hypothesis.	

3.  If Inconsistent, learn reason for inconsistency ���

(a Conflict).	

4.  Use conflicts to leap over similarly infeasible options ���

to next best hypothesis.	
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Outline 
•  Model-based Diagnosis 
•  Optimal CSPs 
•  Conflict-directed A* 

– Generating the Best Kernel 
– Performance Comparison 
– Appendix: 

•  Intelligent Tree Expansion 
•  Extending to Multiple Solutions 
•  Review of A* 
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A2=U	
 X1=U	
A1=U	


Order constituents by  
decreasing utility. 

{ } 

> > 

Expand Only Best Child & Sibling 

•  Traditionally all children expanded. 
•  Only need child containing best candidate. 
 Child with best estimated cost f = g+h. 

A2=U ∨ A1=U ∨ X1=U	


Constituent kernels 
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A2=U	


Order constituents by  
decreasing utility 

{ } 

Expand Only Best Child & Sibling 

A2=U ∨ A1=U ∨ X1=U	


Constituent kernels 

•  Traditionally all children expanded. 
•  Only need child with best candidate. 
 Child with best estimated cost f = g+h. 

10/27/10 78 

A1=U ∨ A3=U ∨ ���
X1=U ∨ X2=U	
 A1=U	


A2=U	
 A1=U	


When Do We Expand  
The Child’s Next Best Sibling? 

A2=U ∨ A1=U ∨ X1=U	


Constituent kernels 

•  When a best child has a subtree or leaf pruned,  
it may have lost its best candidate. 

•  One of the child’s siblings might now contain the best candidate. 
 Expand child’s next best sibling: 

–  when expanding children to resolve another conflict. 

{ } 
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Expand Node to Resolve Conflict 
function Expand-Conflict(node, OCSP) 
  return Expand-Conflict-Best-Child(node, OCSP) ∪ 
                 Expand-Next-Best-Sibling (node, OCSP) 

function Expand-Conflict-Best-Child(node, OCSP) 
  if for all Kγ in Constituent-Kernels(Γ[OCSP]) 
      State[node] contains a kernel ∈ Kγ 
  then return {} 
  else return Expand-Constituent-Kernel(node,OCSP)  

function Expand-Constituent-Kernel(node, OCSP) 
   Kγ  ← = smallest uncovered set ∈ Constituent-Kernels(Γ[OCSP]) 
   C   ← {yi = vij | {yi = vij} in Kγ, yi = vij is consistent with State[node]} 
   Sort C such that for all i  from 1 to |C| - 1, 
      Better-Kernel?(C[i],C[i+1], OCSP) is True 
   Child-Assignments[node]  ← C 
   yi = vij  ← C[1], which is the best kernel in Kγ consistent with State[node] 
   return {Make-Node({yi = vij}, node)} 

10/27/10 80 

Expand Node to Resolve Conflict 

function Expand-Next-Best-Sibling(node, OCSP) 
   if Root?[node] 
      then return {} 
      else {yi = vij} ← Assignment[node] 
              {yk = vkl} ← next best assignment in consistent 
                              child-assignments[Parent[node]] after {yi = 

vij} 
         if no next assignment {yk = vkl} 
            or Parent[node] already has a child with {yk = vkl} 
            then return {} 
            else return {Make-Node({yk = vkl}, Parent[node])} 
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Outline 
•  Model-based Diagnosis 
•  Optimal CSPs 
•  Conflict-directed A* 

– Generating the Best Kernel 
– Performance Comparison 
– Appendix: 

•  Intelligent Tree Expansion 
•  Extending to Multiple Solutions 
•  Review of A* 

X2=U	

A3=U	


X1=U, X2=U, ���
A1=U, A3=U	


X1=U	
 A1=U	
 A2=U	


X1=U	
 A1=U	
 A1=U ∧ X2=U	
 A2=U ∧ A3=U	


Multiple Solutions: Systematically Exploring Kernels 

X1=U, A1=U , A2=U	


Constituent Kernels 
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Child Expansion For Finding 
Multiple Solutions 

If Unresolved Conflicts: If All Conflicts Resolved: 

A2=U	
 A1=U	
 X1=U	


X2=G	
 X2=U	


¬ (A2=G ∧ A1=G ∧ X1=G)	


Conflict 
    { } 

  Select unresolved conflict. 
  Each child adds a 

constituent kernel. 

  Select unassigned variable yi. 
  Each child adds an 

assignment from Di. 

10/27/10 84 

A1=U 

Intelligent Expansion  
Below a Kernel 

Order assignments by  
decreasing utility. 

A2=G ∨ A2=U	


Select Unassigned Variable. 

Expand best child. 

Continue expanding 
best descendents. 

When leaf visited,, 
expand all next 
best ancestors.  (why?) 

A2=G	


A3=G	


X1=G	


X2=G	


A2=U	


A3=U	


X1=U	


X2=U	


{} 
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A1=U ∨ A3=U ∨ ���
X1=U ∨ X2=U	
 A1=U	


A2=U	
 A1=U	


Putting It Together:  
Expansion Of Any Search Node 

A2=U ∨ A1=U ∨ X1=U	


Constituent kernels 

•  When a best child loses any candidate,  
expand child’s next best sibling: 
–  If child has unresolved conflicts,  

expand sibling when child expands its next conflict.  
–  If child resolves all conflicts,     

expand sibling when child expands a leaf. 

{ } 

A2=G	


A3=G	


X1=G	


X2=G	


A2=U	


A3=U	


A1=U	


A2=U	
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   When you have eliminated the impossible,  
   whatever remains, however improbable,  
   must be the truth.     

- Sherlock Holmes. The Sign of the Four. 

Conflict-directed A* 

1.  Generate most likely hypothesis. 
2.  Test hypothesis. 
3.  If inconsistent, learn reason for inconsistency 

(a Conflict). 
4.  Use conflicts to leap over similarly infeasible options  

to next best hypothesis. 
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Outline 
•  Using conflicts in backtrack search 

– Dependency-directed backtracking 
– Conflict learning 
– Conflict-directed backjumping 

11/02/09 copyright Brian Williams, 2000-10 87 

Using Conflicts to Guide Search: 
Dependency-directed Search 

[Stallman & Sussman, 1978] 
Input:   Constraint satisfaction problem. 
Output:   Satisfying assignment. 

Repeat while a next candidate assignment exists. 
•  Generate candidate assignment c. 
•  Check candidate c against conflicts. 

–  If c is a superset of a conflict, 
Then loop to the next candidate. 

•  Check consistency of c. 
–  If inconsistent,  
–  Then extract and record a conflict from c. 
–  Else return c as a solution. 

⇒  Like a Graphplan memo, but generalizes an inconsistent solution. 

11/02/09 copyright Brian Williams, 2000-10 88 
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Procedure Dependency_directed_Backtracking
(<X,D,C>) 
Input:   A constraint network R = <X, D, C> 
Output: A solution, or notification that the network is inconsistent. 

   i ← 1;  ai = {}; conflicts = {}          Initialize variable counter, assignments, 
   D’i ← Di;     Copy domain of first variable. 
   while 1 ≤ i ≤ n 
      instantiate xi ← Select-DDB-Value(); Add to assignments ai. 
      if xi is null      No value was returned, 
         i ←  i - 1;       then backtrack 
      else 
         i ←  i + 1;       else step forward and 
         D’i ← Di;               copy domain of next variable 

 end while  
   if i = 0 
      return “inconsistent” 
   else 
      return ai , the instantiated values of {xi, …, xn} 
end procedure 

11/02/09 copyright Brian Williams, 2000-10 89 

Procedure Select-DDB-Value() 
Output: A value in D’i consistent with ai-1, or null, if none. 

   while D’i is not empty 
      select an arbitrary element a ∈ D’i and remove a from D’i; 
      ai ← ai-1,∪ {xi = a}; 
      if for every c in conflicts, not (ai superset c) 
         if consistent(ai-1, xi = a )  
            return a; 
         else conflicts ← conflicts ∪  
                                      minimal inconsistent subset of ai-1; 
   end while 
   return null 
end procedure 

11/02/09 copyright Brian Williams, 2000-10 90 



MIT OpenCourseWare
http://ocw.mit.edu 

16.410 / 16.413 Principles of Autonomy and Decision Making
Fall 2010

 

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 

http://ocw.mit.edu
http://ocw.mit.edu/terms



