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Due to the unknown mode, there tends to be 

an exponential number of diagnoses. 

U 

Good 

Candidates with 
UNKNOWN failure 

modes 

G 
Good 

Candidates with 
KNOWN failure 

modes U 

Fault Models don’t help. 

F1 
Fn 

G 

U 

1 

Image credit: NASA.
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Due to the unknown mode, there tends to be  
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Fault Models don’t help. 

Most of the density space may be approximated by 
enumerating the few most likely diagnoses 

But “unknown” diagnoses represent a small fraction  
of the probability density space. 

U 

Sequential  
Model-based Diagnosis 

Input: 
•  Set of component mode variables M, with finite domains. 
•  Set of observables X, with finite domains. 
•  Device model Φ over M and X, in propositional logic. 

•  Prior distribution P(Mi) of mode assignments for each component i.  
•  Observation sequence X1,n = x1,n provided dynamically. 

Output: 
•  P(M)          Prior Probability of Failure 
•  P(M | X1,n = x1,n)        Posterior Given Observation 

updated after each observation is received. 

Assume: 
•  Independence of component mode prior distribution. 
•  Conditional independence of observations given candidate (Naïve Bayes). 
•  Uniform distribution of observables, given candidate. 
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Mode Estimation Example 

Inverter(i): 
•  G(i): Out(i) = not(In(i)) 
•  S1(i): Out(i) = 1 
•  S0(i): Out(i) = 0 
•  U(i): 

X Y A B C 0 0 

Nominal, Fault and Unknown Modes 

•  Isolates surprises 
•  Explains 

Sherlock 
[de Kleer & Williams, IJCAI 89] 

Candidate (Prior) Initial Probabilities 

P(G(A),G(B),G(C)) = .97 

P(S1(A),G(B),G(C)) = .008 

P(S1(A),G(B),S0(C)) = .00006 

P(S1(A),S1(B),S0(C)) = .0000005 

Assume Independence 
Of Initial Mode  
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Posterior Probability, after 
Observations X1,n = x1,n 

Bayes’ 
Rule Normalization Term 

Observations are conditionally independent 

For n > 1: 

Estimating the Observation 
Probability P(xi | M) 

Assumption: All consistent observations for Xi are equally likely 

P(xi | M) is estimated using model, Φ, according to: 

•  If previous observations X1,i-1 = x1,i-1, M and Φ entails Xi = xi 
Then P(xi | M) = 1 

•  If previous observations X1,i-1 = x1,i-1, M and Φ entails Xi ≠ vi 
Then P(xi | c) = 0 

•  Otherwise, Assume all consistent assignments to Xi are  
equally likely observations: 
let Dci ≡ {xc∈ DXi | c, Φ is consistent with Xi = xc } 
Then P(xi | M) = 1/|Dci| 
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Observe out = 1: 
•  m = <G(A),G(B),G(C)> 
•  Prior: P(m)      = .97 
•  P(out = 1 | m)  = ? 
•                          = 1 
•  P(m | out = 0)  = ? 
•                          = 1 x .97 x α 

X Y A B C 0 1 

in in out 

Observe out = 0: 
•  m = <G(A),G(B),G(C)> 
•  P(m)         = .97 
•  P(out = 0 | m)  = ? 
•                          = 0 
•  P(m | out = 0)  = ? 
•                          = 0 x .97 x α = 0 

X Y A B C 0 0 

in in out 
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Example: Tracking Single Faults 
•  Which are eliminated? 
•  Which are predict observations? 
•  Which are agnostic? 

Priors for Single  
Fault Diagnoses: 

X Y A B C 0 0 

in in out 

X Y A B C 0 

Leading diagnoses before output observed 

in out 
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X Y A B C 0 0 

Top 6 of 64 = 98.6% of P 

Leading diagnoses before output observed 

in out 

Due to the unknown mode, there tends to be  
an exponential number of diagnoses 
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But these diagnoses represent a small fraction  
of the probability density space. 

Most of the density space may be represented  
by enumerating the few most likely diagnoses 

U 
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Optimal CSP 

OCSP= <Y, g, CSP> 
– Decision variables Y with domain DY 

– Utility function g(Y): DY → ℜ 
– CSP is over variables <X,Y> 

Find Leading arg max g(Y) 
                        Y ∈ Dy 

 s.t. ∃ X ∈ DX s.t. C(X,Y) is True 

  Encode C in propositional state logic 

  g() is a multi-attribute utility function that is preferentially 
independent. 

Outline 

•  Self-Repairing Agents 
•  Formulating Diagnosis 
• Diagnosis from Conflicts 
•  Single Fault Diagnosis 
•  Extracting Conflicts 

11/02/09 copyright Brian Williams, 2000-10 18 
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Extracting Conflicts 
using Unit Propagation 

11/02/09 copyright Brian Williams, 2000-10 19 
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Symptom:  
    F is observed 0, but should be 1 if A1, A2 and X1 are okay. 

Conflict: {A1=G, A2=G, X1=G} is inconsistent. 

F 0 

1 
1 
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→ At least A1=U, A2=U or X1=U 
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Find Symptom Using Unit Propagation 
while Maintaining Support for Propagation 

procedure propagate(C)  
   Input:  C is a clause	

 if all literals in C are false except l, and l is unassigned  
 then assign true to l and  
   record C as a support for l and 
   for each clause C’ mentioning “not l”,  
      propagate(C’) 
end propagate 11/02/09 copyright Brian Williams, 2000-10 20 

r q 

p 

C2: ¬ p ∨ ¬ t 

true false 

true 

t 
false 

C1 : ¬r ∨ q ∨ p 
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Find Symptom Using Unit Propagation 
while Maintaining Support for Propagation 

11/02/09 copyright Brian Williams, 2000-10 21 

¬(A1=G) ∨ ¬(A=1) ∨ ¬(C=1) ∨ X=1 

¬(X1=G) ∨ ¬(X=1) ∨ ¬(Y=0) ∨ F=1 

¬(A2=G) ∨ ¬(D=0) ∨ Y=0 

¬(F=1) ∨ ¬(F=0) A1=G 

D=0 A2=G 

A=1 

X=1 

Y=0 

X1=G 

F=1 F=0 

C=1 

A=1 

true 
C=1 

true 

D=0 

true 

A2=G 

true 

A1=G 

true 

X1=G 

true 

true 

true 

true 

F=0 

true 

Extract Conflict by Tracing Support 

11/02/09 copyright Brian Williams, 2000-10 22 

¬(A1=G) ∨ ¬(A=1) ∨ ¬(C=1) ∨ X=1 

¬(X1=G) ∨ ¬(X=1) ∨ ¬(Y=0) ∨ F=1 

¬(A2=G) ∨ ¬(D=0) ∨ Y=0 

¬(F=1) ∨ ¬(F=0) A1=G 

D=0 A2=G 

A=1 

X=1 

Y=0 

X1=G 

F=1 F=0 

C=1 

A=1 

true 
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true 
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true 
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true 
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true 
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true 
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true 

F=0 

true 

Symptom:  F observed 0 but predicted 1. 

Conflict: {A1=G, A2=G, X1=G}. 
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Extract Conflict by Tracing Support 
procedure Conflict(C) 
   Input:  an inconsistent clause C. 
   Output: A conflict of C. 

 for each literal I in C  
   union Support-Conflict(l, support(l))  
 end Conflict 

procedure Support-Conflict(l, S) 
   Input:  l is a literal and S is the support clause of l. 
   Output: A set of mode assignments supporting l. 

 If unit-clause?(C)  
  If mode-assignment?(literal(C)) 
   Then {literal(C)} 
   Else {} 
 Else for each literal I1 in C, other than l 
   Union Support-Conflict(l1, support(l1))  
 end Support-Conflict 

11/02/09 copyright Brian Williams, 2000-10 23 

procedure Test_Candidate(c, M, obs)  

11/02/09 copyright Brian Williams, 2000-10 24 

Input:  Candidate c, Model M, Observation Obs. 
Output: Consistent or a conflict. 

   Assert candidate assignment c; 
   Propagate obs through model M using unit propagation; 
   If propagate results in an inconsistent clause  
      Return Conflict(c); 
   Else  
      Search for satisfying solution using DPLL; 
      If inconsistent  
         Return c as a conflict; 
      Else  
         Return consistent; 
End Test_Candidate 
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