
3/6/00

Model-based Monitoring

Brian C. Williams

16.412J/6.834J

March 6th, 2006
Brian C. Williams, copyright 2000

Due to the unknown mode, there tends to be

an exponential number of diagnoses.

U

Good

Candidates with
UNKNOWN failure

modes

G
Good

Candidates with
KNOWN failure

modes U

Fault Models don’t help.

F1
Fn

G

U

1

Image credit: NASA.

3/6/00

2

Due to the unknown mode, there tends to be
an exponential number of diagnoses.

U
Candidates with

UNKNOWN failure
modes

Good

G

Candidates with
KNOWN failure

modes

Good
F1
Fn

G

U

Fault Models don’t help.

Most of the density space may be approximated by
enumerating the few most likely diagnoses

But “unknown” diagnoses represent a small fraction
of the probability density space.

U

Sequential
Model-based Diagnosis

Input:
•  Set of component mode variables M, with finite domains.
•  Set of observables X, with finite domains.
•  Device model Φ over M and X, in propositional logic.

•  Prior distribution P(Mi) of mode assignments for each component i.
•  Observation sequence X1,n = x1,n provided dynamically.

Output:
•  P(M) Prior Probability of Failure
•  P(M | X1,n = x1,n) Posterior Given Observation

updated after each observation is received.

Assume:
•  Independence of component mode prior distribution.
•  Conditional independence of observations given candidate (Naïve Bayes).
•  Uniform distribution of observables, given candidate.

3/6/00

3

Mode Estimation Example

Inverter(i):
•  G(i): Out(i) = not(In(i))
•  S1(i): Out(i) = 1
•  S0(i): Out(i) = 0
•  U(i):

X Y A B C 0 0

Nominal, Fault and Unknown Modes

•  Isolates surprises
•  Explains

Sherlock
[de Kleer & Williams, IJCAI 89]

Candidate (Prior) Initial Probabilities

P(G(A),G(B),G(C)) = .97

P(S1(A),G(B),G(C)) = .008

P(S1(A),G(B),S0(C)) = .00006

P(S1(A),S1(B),S0(C)) = .0000005

Assume Independence
Of Initial Mode

3/6/00

5

Posterior Probability, after
Observations X1,n = x1,n

Bayes’
Rule Normalization Term

Observations are conditionally independent

For n > 1:

Estimating the Observation
Probability P(xi | M)

Assumption: All consistent observations for Xi are equally likely

P(xi | M) is estimated using model, Φ, according to:

•  If previous observations X1,i-1 = x1,i-1, M and Φ entails Xi = xi
Then P(xi | M) = 1

•  If previous observations X1,i-1 = x1,i-1, M and Φ entails Xi ≠ vi
Then P(xi | c) = 0

•  Otherwise, Assume all consistent assignments to Xi are
equally likely observations:
let Dci ≡ {xc∈ DXi | c, Φ is consistent with Xi = xc }
Then P(xi | M) = 1/|Dci|

3/6/00

6

Observe out = 1:
•  m = <G(A),G(B),G(C)>
•  Prior: P(m) = .97
•  P(out = 1 | m) = ?
•  = 1
•  P(m | out = 0) = ?
•  = 1 x .97 x α

X Y A B C 0 1

in in out

Observe out = 0:
•  m = <G(A),G(B),G(C)>
•  P(m) = .97
•  P(out = 0 | m) = ?
•  = 0
•  P(m | out = 0) = ?
•  = 0 x .97 x α = 0

X Y A B C 0 0

in in out

3/6/00

7

Example: Tracking Single Faults
•  Which are eliminated?
•  Which are predict observations?
•  Which are agnostic?

Priors for Single
Fault Diagnoses:

X Y A B C 0 0

in in out

X Y A B C 0

Leading diagnoses before output observed

in out

3/6/00

8

X Y A B C 0 0

Top 6 of 64 = 98.6% of P

Leading diagnoses before output observed

in out

Due to the unknown mode, there tends to be
an exponential number of diagnoses

U
Candidates with

UNKNOWN failure
modes

Candidates with
KNOWN failure

modes

Good Good
G

F1
Fn

G

U

But these diagnoses represent a small fraction
of the probability density space.

Most of the density space may be represented
by enumerating the few most likely diagnoses

U

3/6/00

9

Optimal CSP

OCSP= <Y, g, CSP>
– Decision variables Y with domain DY

– Utility function g(Y): DY → ℜ
– CSP is over variables <X,Y>

Find Leading arg max g(Y)
 Y ∈ Dy

 s.t. ∃ X ∈ DX s.t. C(X,Y) is True

  Encode C in propositional state logic

  g() is a multi-attribute utility function that is preferentially
independent.

Outline

•  Self-Repairing Agents
•  Formulating Diagnosis
• Diagnosis from Conflicts
•  Single Fault Diagnosis
•  Extracting Conflicts

11/02/09 copyright Brian Williams, 2000-10 18

3/6/00

10

Extracting Conflicts
using Unit Propagation

11/02/09 copyright Brian Williams, 2000-10 19

A

B

C

D

E

1

1

1

0

F

G

X

Y

Z

Symptom:
 F is observed 0, but should be 1 if A1, A2 and X1 are okay.

Conflict: {A1=G, A2=G, X1=G} is inconsistent.

F 0

1
1

0

→ At least A1=U, A2=U or X1=U

1

A1

A2

A3

X1

X2

Find Symptom Using Unit Propagation
while Maintaining Support for Propagation

procedure propagate(C)
 Input: C is a clause	

 if all literals in C are false except l, and l is unassigned
 then assign true to l and
 record C as a support for l and
 for each clause C’ mentioning “not l”,
 propagate(C’)
end propagate 11/02/09 copyright Brian Williams, 2000-10 20

r q

p

C2: ¬ p ∨ ¬ t

true false

true

t
false

C1 : ¬r ∨ q ∨ p

3/6/00

11

Find Symptom Using Unit Propagation
while Maintaining Support for Propagation

11/02/09 copyright Brian Williams, 2000-10 21

¬(A1=G) ∨ ¬(A=1) ∨ ¬(C=1) ∨ X=1

¬(X1=G) ∨ ¬(X=1) ∨ ¬(Y=0) ∨ F=1

¬(A2=G) ∨ ¬(D=0) ∨ Y=0

¬(F=1) ∨ ¬(F=0) A1=G

D=0 A2=G

A=1

X=1

Y=0

X1=G

F=1 F=0

C=1

A=1

true
C=1

true

D=0

true

A2=G

true

A1=G

true

X1=G

true

true

true

true

F=0

true

Extract Conflict by Tracing Support

11/02/09 copyright Brian Williams, 2000-10 22

¬(A1=G) ∨ ¬(A=1) ∨ ¬(C=1) ∨ X=1

¬(X1=G) ∨ ¬(X=1) ∨ ¬(Y=0) ∨ F=1

¬(A2=G) ∨ ¬(D=0) ∨ Y=0

¬(F=1) ∨ ¬(F=0) A1=G

D=0 A2=G

A=1

X=1

Y=0

X1=G

F=1 F=0

C=1

A=1

true
C=1

true

D=0

true

A2=G

true

A1=G

true

X1=G

true

true

true

true

F=0

true

Symptom: F observed 0 but predicted 1.

Conflict: {A1=G, A2=G, X1=G}.

3/6/00

12

Extract Conflict by Tracing Support
procedure Conflict(C)
 Input: an inconsistent clause C.
 Output: A conflict of C.

 for each literal I in C
 union Support-Conflict(l, support(l))
 end Conflict

procedure Support-Conflict(l, S)
 Input: l is a literal and S is the support clause of l.
 Output: A set of mode assignments supporting l.

 If unit-clause?(C)
 If mode-assignment?(literal(C))
 Then {literal(C)}
 Else {}
 Else for each literal I1 in C, other than l
 Union Support-Conflict(l1, support(l1))
 end Support-Conflict

11/02/09 copyright Brian Williams, 2000-10 23

procedure Test_Candidate(c, M, obs)

11/02/09 copyright Brian Williams, 2000-10 24

Input: Candidate c, Model M, Observation Obs.
Output: Consistent or a conflict.

 Assert candidate assignment c;
 Propagate obs through model M using unit propagation;
 If propagate results in an inconsistent clause
 Return Conflict(c);
 Else
 Search for satisfying solution using DPLL;
 If inconsistent
 Return c as a conflict;
 Else
 Return consistent;
End Test_Candidate

MIT OpenCourseWare
http://ocw.mit.edu

16.410 / 16.413 Principles of Autonomy and Decision Making
Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

