
3/6/00	

1	

Mode Estimation and
Model-based Diagnosis

10/25/10 copyright Brian Williams, 2000-10 1

Brian C. Williams
16.410 / 16.413

October 25th, 2010
Brian C. Williams, copyright 2000-10

Assignment

•  Remember:
•  Problem Set #6 Propositional Logic,

due this Wednesday, October 27th.
•  16:413 Project Part 1: Sat-based Activity Planner,

due Wednesday, November 3rd.

•  Reading
–  Today: Johan de Kleer and Brian C. Williams, "Diagnosing Multiple

Faults," Artificial Intelligence, 32:100-117, 1987.
–  Wednesday: Brian C. Williams, and Robert Ragno, "Conflict-directed A*

and its Role in Model-based Embedded Systems," Special Issue on Theory
and Applications of Satisfiability Testing, Journal of Discrete Applied
Math, January 2003.

10/25/10 copyright Brian Williams, 2000-10 2

Image credit: NASA.

3/6/00	

2	

Outline

•  Self-Repairing Agents
– Model-based Programming
– Diagnosis as Conflict-directed Search

•  Formulating a Diagnosis
•  Diagnosis from Conflicts

10/25/10 copyright Brian Williams, 2000-10 3

10/25/10 copyright Brian Williams, 2000-10 4

sense	

P(s)	

WORLD	

observations	
 actions	

AGENT	

 Self-Repairing Agent:	

•  Monitors & Diagnoses	

•  Repairs & Avoids	

•  Probes and Tests 	

Plant	

act

Symptom-directed	

3/6/00�

3�

Control Sequencer

Deductive Controller

System Model�

Commands�Observations�

Control Program

Plant�

Titan Model-based Executive�RMPL Model-based Program�

State goals�State estimates�

Generates target goal states�
conditioned on state estimates�

Mode�
Estimation�

Mode�
Reconfiguration�

Tracks�
likely �

plant states�

Tracks least �
cost goal states�

�  Executes concurrently�
�  Preempts�

�  Queries (hidden) states�
�  Asserts (hidden) state�

OrbitInsert()::
(do-watching ((EngineA = Firing) OR
 (EngineB = Firing))

(parallel
(EngineA = Standby)
(EngineB = Standby)

(Camera = Off)
 (do-watching (EngineA = Failed)

 (when-donext ((EngineA = Standby) AND
 (Camera = Off))

(EngineA = Firing)))
 (when-donext ((EngineA = Failed) AND

 (EngineB = Standby) AND
 (Camera = Off))

(EngineB = Firing))))

inflow iff outflow 10/25/10 5copyright Brian Williams, 2000-10

Model-based Programming

of a Saturn Orbiter
Turn camera off and �

engine on�

EngineA EngineB

Science Camera

OrbitInsert()::

 do-watching (EngineA = Thrusting OR
 EngineB = Thrusting)

parallel {
EngineA = Standby;
EngineB = Standby;

Camera = Off;
 do-watching (EngineA = Failed)

 {when-donext (EngineA = Standby) AND
 Camera = Off)

EngineA = Thrusting};
 when-donext (EngineA = Failed AND

 EngineB = Standby AND
 Camera = Off)

EngineB = Thrusting}

10/25/10 6copyright Brian Williams, 2000-10

3/6/00�

4�

The program assigns EngineA = Thrusting,

and the model-based executive

Determines that valves�
on the backup engine B�
will achieve thrust, and�
plans needed actions.�

Deduces that a valve �
failed - stuck closed�

Plans actions�
to open�

six valves�

Deduces that�
thrust is off, and�

the engine is healthy�

Prog: EngineB = Thrusting

10/25/10 7copyright Brian Williams, 2000-10

Deductive Controller

Commands�
Observations�

Plant�

State goals�State estimates�

Mode�
Estimation:�

Tracks likely �
States�

Mode�
Reconfiguration:�
Tracks least-cost�

state goals�

Optimal CSP:�

 arg min f(x)�

 s.t. C(x) is satisfiable�

 D(x) is unsatisfiable�

arg min Pt(Y| Obs)�

s.t. Ψ(X,Y) ∧ O(m’) is consistent�

arg max Rt(Y)�

s.t. Ψ(X,Y) entails G(X,Y)�

s.t. Ψ(X,Y) is consistent�

s.t. Y is reachable�

Mode Reconfiguration:�

Select a least cost set of commandable
component modes that entail the current
goal, and are consistent.�

Mode Estimation:�

Select a most likely set of next
component modes that are consistent
with the model and past observations.�

10/25/10 8copyright Brian Williams, 2000-10

3/6/00	

5	

Outline

•  Self-Repairing Agents
– Model-based Programming
– Diagnosis as Conflict-directed Search

•  Formulating a Diagnosis
•  Diagnosis from Conflicts

10/25/10 copyright Brian Williams, 2000-10 9

 When you have eliminated the impossible,
whatever remains, however improbable, must be
the truth.

- Sherlock Holmes. The Sign of the Four.

Model-based Diagnosis as 	

Conflict-directed Best First Search	

1.  Generate most likely candidate.	

2.  Test candidate.	

3.  If Inconsistent, learn reason for inconsistency���

(a conflict).	

4.  Use conflicts to leap over similarly infeasible options ���

to the next best candidate.	
10/25/10 10 copyright Brian Williams, 2000-10

3/6/00	

6	

Compare Most Likely Candidate
to Observations

Helium tank	

Fuel tank	
Oxidizer tank	

Main	

Engines	

Flow1 = zero	

Pressure1 = nominal	

Pressure2= nominal	

Acceleration = zero	

It is most likely that all components are okay.	

10/25/10 11 copyright Brian Williams, 2000-10

Isolate Conflicting Information

Helium tank	

Fuel tank	
Oxidizer tank	

Main	

Engines	

Flow 1= zero	

The red component modes conflict with the model and observations.	

10/25/10 12 copyright Brian Williams, 2000-10

3/6/00	

7	

Helium tank	

Fuel tank	
Oxidizer tank	

Main	

Engines	

Flow 1= zero	

Leap to the Next Most Likely Candidate
that Resolves the Conflict

The next candidate must remove the conflict. 	

10/25/10 13 copyright Brian Williams, 2000-10

New Candidate Exposes Additional Conflicts

Pressure1 = nominal	
 Pressure2= nominal	

Acceleration = zero	

Helium tank	

Fuel tank	
Oxidizer tank	

Main	

Engines	

Another conflict, try removing both.	
10/25/10 14 copyright Brian Williams, 2000-10

3/6/00	

8	

Final Candidate Resolves all Conflicts

Helium tank	

Fuel tank	
Oxidizer tank	

Main	

Engines	

Pressure1 = nominal	

Flow1 = zero	

Pressure2= nominal	

Flow2 = positive	

Acceleration = zero	

Implementation: Conflict-directed A* search.	
10/25/10 15 copyright Brian Williams, 2000-10

Outline

•  Self-Repairing Agents
•  Formulating a Diagnosis
•  Diagnosis from Conflicts

10/25/10 copyright Brian Williams, 2000-10 16

3/6/00�

9�

Hidden Failures Require Reasoning from

a Model:

STS-93

10/25/10 copyright Brian Williams, 2000-10 17

STS-93 Symptoms:�
•  Engine temp sensor high�
•  LOX level low�
•  GN&C detects low thrust�
•  H2 level possibly low�

Problem: Liquid hydrogen leak�

Effect: �
•  LH2 used to cool engine�
•  Engine runs hot�
•  Consumes more LOX�

Issue 1: Diagnosing hidden

failures requires reasoning

from a model.

Model-based Diagnosis

Input: Observations of a system with symptomatic behavior,

and a model Φ of the system.

Output: Diagnoses that account for the symptoms.

10/25/10 copyright Brian Williams, 2000-10 18

1� Symptom�1�

0�

A�

B�

C�

D�

E�

F�

G�

X�

Y�

Z�

1�

1�

1�

0�

1�

0�

1�
1�

1�

A1

A2

A3

X1

X2

A1

X1

Image credit: NASA.

3/6/00	

10	

Solution: Diagnosis as
Hypothesis Testing

1.  Generate candidates, given symptoms.
2.  Test if candidates account for all symptoms.

•  Set of diagnoses should be complete.
•  Set of diagnoses should exploit all

available information.

10/25/10 copyright Brian Williams, 2000-10 19

Outline

•  Self-Repairing Agents
•  Formulating Diagnosis

– Explaining failures
– Handling unknown failures
– Multiple faults
– Partial explanation
– Execution monitoring

•  Diagnosis from Conflicts
10/25/10 copyright Brian Williams, 2000-10 20

3/6/00	

11	

How Should Diagnoses
Account for Symptoms?

Abductive Diagnosis: Given symptoms,
find diagnoses that predict observations.

10/25/10 copyright Brian Williams, 2000-10 21

1	

0	

1	
 Symptom	
A	

B	

C	

D	

E	

1	

1	

1	

0	

1	

F	

G	

X	

Y	

Z	

0	

1	

•  Fault Model: A1’s output is stuck at 0.
•  Abductive diagnosis needs exhaustive fault models.

0	
 0	

1	

1	

A1

A2

A3

X1

X2

A1

Input: Abductive,
Model-based Diagnosis

•  Model Φ
–  Structure.
–  Model of normal behavior for each component.
–  Model for every component failure mode.

•  Observations Obs
–  Inputs and Response.

10/25/10 copyright Brian Williams, 2000-10 22

1	

1	

1	

0	

1	

Xor(i):
  G(i):

 Out(i) = In1(i) xor In2(i)
  Stuck_0(i):

 Out(i) = 0

0	

1	

A	

B	

C	

D	

E	

F	

G	

X	

Y	

Z	

A1

A3

X1

X2

A2

3/6/00	

12	

Model: Abductive,
Model-based Diagnosis

•  X mode variables, one for each component c.
•  Dc modes of component c = domain of mc ∈ M.
•  Y state variables, with domains DY.
•  Φ(X, Y) model constraints.
•  O observed variables O ⊆ M u Y.

»  Partitioned into Input I and Response R variables.
10/25/10 copyright Brian Williams, 2000-10 23

1	

1	

1	

0	

1	

0	

1	

Xor(i):
  G(i):

 Out(i) = In1(i) xor In2(i)
  Stuck_0(i):

 Out(i) = 0

A	

B	

C	

D	

E	

F	

G	

X	

Y	

Z	

A1

A3

X1

X2

A2

Output: Abductive,
Model-based Diagnosis

•  Obs = <Inp; Rsp> Assignment to I and R, respectively.
•  Candidate Ci: Assignment of modes to X.
•  Diagnosis Di: A candidate such that

 Di ∧ Inp ∧ Φ entails Rsp.

10/25/10 copyright Brian Williams, 2000-10 24

Diagnosis = {X1=G, X2=G, A1=S0, A2=G, A3=G}	

1	

1	

1	

0	

1	

0	

1	

Candidate = {X1=G, X2=G, A1=G, A2=G, A3=G}	

Xor(i):
  G(i):

 Out(i) = In1(i) xor In2(i)
  Stuck_0(i):

 Out(i) = 0

A	

B	

C	

D	

E	

F	

G	

X	

Y	

Z	

A1

A3

X1

X2

A2

3/6/00	

13	

Abductive Diagnosis
by Generate and Test

Given: exhaustive fault models, structure and observations.

Generate: candidate mode assignment Ci.
Test: Ci as an abductive diagnosis:

1. Find Rsp entailed by Ci, given Inp.
2. Compare observed and predicted Rsp:

•  Disagree: Discard
•  Agree: Keep
•  No prediction: Discard

Exonerate: component if none of its fault models agree.

10/25/10 copyright Brian Williams, 2000-10 25

Problem:
•  Fault models are typically incomplete.
•  May incorrectly exonerate faulty components.

Outline

•  Self-Repairing Agents
•  Formulating Diagnosis

– Explaining failures
– Handling unknown failures
– Multiple faults
– Partial explanation
– Execution monitoring

•  Diagnosis from Conflicts
10/25/10 copyright Brian Williams, 2000-10 26

3/6/00	

14	

Issue 2: Failures are Often Novel

10/25/10 copyright Brian Williams, 2000-10 27

•  Mars Observer
•  Mars Climate Orbiter
•  Mars Polar Lander
•  Deep Space 2

Image credit: NASA/JPL.

10/25/10 copyright Brian Williams, 2000-10 28

Failure models are never completely known.

© Source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/fairuse.

http://ocw.mit.edu/fairuse

3/6/00	

15	

How Should Diagnoses
Account for Novel Symptoms?

Consistency-based Diagnosis: Given symptoms,
find diagnoses that are consistent with symptoms.

Suspending Constraints: For novel faults, make
no presumption about faulty component behavior.

10/25/10 copyright Brian Williams, 2000-10 29

1	

0	

1	
 Symptom	
A	

B	

C	

D	

E	

1	

1	

1	

0	

1	

F	

G	

X	

Y	

Z	

0	

1	

A1

A2

A3

X1

X2

[Davis, 84]

[Geneserth, 84]

[deKleer & Brown, 83]

Outline

•  Self-Repairing Agents
•  Formulating Diagnosis

– Explaining failures
– Handling unknown failures
– Multiple faults
– Partial explanation
– Execution monitoring

•  Diagnosis from Conflicts
10/25/10 copyright Brian Williams, 2000-10 30

3/6/00	

16	

Issue 3: Multiple Faults Occur

•  Three shorts, tank-line and
pressure jacket burst, and
panel flies off.

  Diagnosis = mode assignment.
 Solve by divide & conquer:

1.  Diagnose each symptom.
2.  Summarize conflicts.
3.  Combine diagnoses.

	

APOLLO 13	

10/25/10
 31

copyright Brian Williams, 2000-10

Solution: Identify all Combinations
of Consistent “Unknown” Modes

•  Candidate: Assignment of G or U to each component.

And(i):
  G(i):

 Out(i) = In1(i) AND In2(i)
  U(i):

Candidate = {A1=G, A2=G, A3=G, X1=G, X2=G}	

A	

B	

C	

D	

E	

1	

1	

1	

0	

1	

F	

G	

X	

Y	

Z	

0	

1	

A1

A2

A3

X1

X2

10/25/10 32 copyright Brian Williams, 2000-10

Image source: NASA.

3/6/00	

17	

Solution: Identify all Combinations
of Consistent Unknown Modes

•  Candidate: Assignment of G or U to each component.
•  Diagnosis: Candidate consistent with model and observations.

And(i):
  G(i):

 Out(i) = In1(i) AND In2(i)
  U(i):

Diagnosis = {A1=G, A2=U, A3=G, X1=G, X2=U}	

A	

B	

C	

D	

E	

1	

1	

1	

0	

1	

F	

G	

X	

Y	

Z	

0	

1	

A1

A3

X1

1	

0	

1	

10/25/10 33 copyright Brian Williams, 2000-10

Outline

•  Self-Repairing Agents
•  Formulating Diagnosis

– Explaining failures
– Handling unknown failures
– Multiple faults
– Partial explanation
– Execution monitoring

•  Diagnosis from Conflicts
10/25/10 copyright Brian Williams, 2000-10 34

3/6/00�

18�

Issue 4: The cause of failure is often needed to plan a

recovery strategy (Partial Explanation).

Issue 5: Component mode estimates are needed to

confirm correct behavior (Execution Monitoring).

courtesy of NASA�

10/25/10 35 copyright Brian Williams, 2000-10

Incorporating Failure Modes:

Mode Estimation

Inverter(i):

•  G(i): Out(i) = not(In(i))

•  S1(i): Out(i) = 1

•  S0(i): Out(i) = 0

•  U(i):

X� Y�A� B� C�0� 0�

Nominal, Fault and Unknown Modes�

•  Isolates unknown.�
•  Explains.�

Sherlock
[de Kleer & Williams, IJCAI 89]

10/25/10 36 copyright Brian Williams, 2000-10

3/6/00	

19	

Example Diagnoses

X	
 Y	
A	
 B	
 C	
0	
 0	
1	

Diagnosis: [S1(A),G(B),U(C)]

Sherlock
[de Kleer & Williams, IJCAI 89]

10/25/10 37 copyright Brian Williams, 2000-10

Diagnoses: (42 of 64 candidates)

Fully Explained Failures
•  [G(A),G(B),S0(C)]
•  [G(A),S1(B),S0(C)]
•  [S0(A),G(B),G(C)]

. . .

Fault Isolated, But Unexplained
•  [G(A),G(B),U(C)]
•  [G(A),U(B),G(C)]
•  [U(A),G(B),G(C)]

Partial Explained
•  [G(A),U(B),S0(C)]
•  [U(A),S1(B),G(C)]
•  [S0(A),U(B),G(C)]

. . .

X	
 Y	
A	
 B	
 C	
0	
 0	

in in out

10/25/10 38 copyright Brian Williams, 2000-10

3/6/00	

20	

Mode Estimation

•  Candidate Ci: Assignment of modes to X.
•  Obs: Assignment to O.
•  Diagnosis Di: Candidate consistent with Model and Obs:

 Di ∧ Obs ∧ Φ(X,Y) is satisfiable.

And(i):
 G(i):

 Out(i) = In1(i) AND In2(i)
 U(i):

Diagnosis = {A1=G, A2=U A3=G, X1=G. X2=U}	

ALL components have “unknown Mode” U,
whose assignment is never mentioned in any
constraint.

  Mode, State, Observation Variables: X, Y, O
  Model: Φ(X,Y) = components + structure

A	

B	

C	

D	

E	

1	

1	

1	

0	

1	

F	

G	

X	

Y	

Z	

0	

1	

A1

A3

X1

1	

0	

1	

10/25/10 39 copyright Brian Williams, 2000-10

Mode Estimation

And(i):
 G(i):

 Out(i) = In1(i) AND In2(i)
 U(i):

•  All behaviors associated with modes.
•  ALL components have “unknown Mode” U,
whose assignment is never mentioned in any
constraint.

Given:
  Mode, State, Observation Variables: X, Y, O
  Model: Φ(X,Y) = components + structure

A	

B	

C	

D	

E	

1	

1	

1	

0	

1	

F	

G	

X	

Y	

Z	

0	

1	

A1

A3

X1

1	

0	

1	

€

DΦ,obs ≡ {X ∈ DX |∃Y ∈ DXst Obs∧Φ(X,Y)}

10/25/10 40 copyright Brian Williams, 2000-10

Return:

3/6/00	

21	

Constraint Modeling and
Consistency Testing

10/25/10 copyright Brian Williams, 2000-10 41

→  Propositional Logic:
•  Complete: DPLL. (Titan)
•  Incomplete: Unit propagation. (Livingstone/DS1)

•  Finite Domain Constraints:
•  Complete: Backtracking with forward checking.
•  Incomplete: AC-3 / Waltz constraint propagation.

•  Algebraic Constraints: (GDE/Sherlock/GDE+/XDE)
•  Complete: Gaussian Elimination.
•  Incomplete: Sussman/Steele Constraint Propagation.

•  Propagate newly assigned values through equations
 that mention the newly assigned variables.
• To propagate, use assigned values of constraint to
 deduce unknown value(s) of constraint.

X ∈{1,0} X=1 ∨ X=0	

	
 ¬[X=1 ∧ X=0]	

Models in
Propositional State Logic

And(i):
  G(i):

 Out(i) = In1(i) AND In2(i)
  U(i):

Or(i):
  G(i):

 Out(i) = In1(i) OR In2(i)
  U(i):

i=G {[In1(i)=1 ∨ In2(i)=1] iff Out(i)=1}

¬(i=G) ∨ ¬(In1(i)=1) ∨ Out(i)=1
¬(i=G) ∨ ¬(In2(i)=1) ∨ Out(i)=1
¬(i=G) ∨ ¬(In1(i)=0) ∨ ¬(In2(i)=0) ∨ Out(i)=0

i=G {[In1(i)=1 ∧ In2(i)=1] iff Out(i)=1}

10/25/10 42 copyright Brian Williams, 2000-10

3/6/00	

22	

Solution: Diagnosis as
Hypothesis Testing

1.  Generate candidates Ci, given symptoms.
–  Use Backtrack Search over mode variables X.

2.  Test if candidates account for all symptoms.
–  Use DPLL to find assignment to Y such that

Ci ∧ Obs ∧ Φ(X,Y) is satisfiable.

•  Set of diagnoses should be complete.
•  Set of diagnoses should exploit all

available information.

10/25/10 copyright Brian Williams, 2000-10 43

Outline

•  Self-Repairing Agents
•  Formulating Diagnosis
•  Diagnosis from Conflicts

– Kernels
– Conflicts
– Candidate Generation
– Conflict Recognition

10/25/10 copyright Brian Williams, 2000-10 44

3/6/00	

23	

Mode Estimation

And(i):
 G(i):

 Out(i) = In1(i) AND In2(i)
 U(i):

ALL components have “unknown Mode” U,
whose assignment is never mentioned in any
constraint.

  Mode, State, Observation Variables: X, Y, O
  Model: Φ(X,Y) = components + structure

A	

B	

C	

D	

E	

1	

1	

1	

0	

1	

F	

G	

X	

Y	

Z	

0	

1	

A1

A3

X1

1	

0	

1	

€

DΦ,obs ≡ {X ∈ DX |∃Y ∈ DXst Obs∧Φ(X,Y)}
As more constraints are relaxed, candidates are more easily satisfied.
 Typically an exponential number of diagnoses (mode estimates).

How do we encode solutions compactly?
10/25/10 45 copyright Brian Williams, 2000-10

Partial Diagnosis	

 {A1=U, A2=U, X2=U}	

Partial Diagnoses

Partial Diagnosis: 	

A partial mode assignment M, ���
all of whose full extensions are diagnoses.	

•  M “removes all symptoms.”	

?	

?	

A	

B	

C	

D	

E	

1	

1	

1	

0	

1	

F	

G	

X	

Y	

Z	

0	

1	

A3

X1

1	

0	

1	

Extensions (Diagnoses):	

 {A1=U, A2=U, A3=G, X1=G, X2=U}	

 {A1=U, A2=U, A3=G, X1=U, X2=U}	

 {A1=U, A2=U, A3=U, X1=G, X2=U}	

 {A1=U, A2=U, A3=U, X1=U, X2=U}	

10/25/10 46 copyright Brian Williams, 2000-10

3/6/00	

24	

Partial Diagnosis	

 {A1=U, A2=U, X2=U}	

Partial Diagnoses

Partial Diagnosis: 	

A partial mode assignment M, ���
all of whose full extensions are diagnoses.	

•  M “removes all symptoms.”	

•  M ∧	 Φ ∧ Obs is consistent.	

•  M entails Φ ∧ Obs. 	
(implicant)	

?	

?	

A	

B	

C	

D	

E	

1	

1	

1	

0	

1	

F	

G	

X	

Y	

Z	

0	

1	

A3

X1

1	

0	

1	

Extensions (Diagnoses):	

 {A1=U, A2=U, A3=G, X1=G, X2=U}	

 {A1=U, A2=U, A3=G, X1=U, X2=U}	

 {A1=U, A2=U, A3=U, X1=G, X2=U}	

 {A1=U, A2=U, A3=U, X1=U, X2=U}	

10/25/10 47 copyright Brian Williams, 2000-10

Kernel Diagnosis	

 {A2=U, X2=U}	

Kernel Diagnoses

Partial Diagnosis: 	

A partial mode assignment M, all of whose full extensions are diagnoses.	

•  M entails Φ ∧ Obs 	
(implicant)	

Kernel Diagnosis: 	

A partial diagnosis K, no subset of which is a partial diagnosis.	

•  K is a prime implicant of Φ ∧ Obs	

?	

?	

?	

A	

B	

C	

D	

E	

1	

1	

1	

0	

1	

F	

G	

X	

Y	

Z	

0	

1	

A1

A3

X1

1	

0	

1	

48

3/6/00	

25	

Example Diagnoses

X	
 Y	
A	
 B	
 C	
0	
 0	
1	

Diagnoses: [S1(A),G(B),U(C)] (42 total)

Kernel Diagnoses: [U(C)]

X	
 Y	

A	
 B	
 C	
0	
 0	
?	
?	

Sherlock
[de Kleer & Williams, IJCAI 89]

10/25/10 49 copyright Brian Williams, 2000-10

[S0(C)]

[U(B),G(C]

[S1(B),G(C)]

[U(A),G(B),G(C)]

[S0(A),G(B),G(C)]

Outline

•  Self-Repairing Agents
•  Formulating Diagnosis
•  Diagnosis from Conflicts

– Kernels
– Conflicts
– Candidate Generation
– Conflict Recognition

10/25/10 copyright Brian Williams, 2000-10 50

3/6/00	

26	

Diagnosis by
Divide and Conquer

Given model Φ and observations Obs
1.  Find all symptoms.
2.  Diagnose each symptom separately

 (each generates a conflict).
3.  Merge diagnoses

 (set covering → kernel diagnoses).

General Diagnostic Engine
[de Kleer & Williams, AIJ 87]

[Reiter AIJ 87]

10/25/10 51 copyright Brian Williams, 2000-10

Conflicts Explain How to
Remove Symptoms

10/25/10 copyright Brian Williams, 2000-10 52

A	

B	

C	

D	

E	

1	

1	

1	

0	

F	

G	

X	

Y	

Z	

Symptom: ���
 F is observed 0, but predicted to be 1 if A1, A2 and X1 are okay.	

Conflict 1: 	
{A1=G, A2=G, X1=G} is inconsistent.	

Conflict: 	
An inconsistent partial assignment to mode variables X.	

F	
 0	

1	

1	

0	

→ One of A1, A2 or X1 must be broken.

1	

A1

A2

A3

X1

X2

Symptom	

3/6/00	

27	

Second Conflict

10/25/10 copyright Brian Williams, 2000-10 53

Symptom: 	
G is observed 1, but predicted 0.	

Conflict 2: 	
{A1=G, A3=G, X1=G, X2=G} is inconsistent.	

Symptom	

1	

1	

A	

B	

C	

D	

E	

F	

G	

X	

Y	

Z	

1	

1	

1	

0	

1	

0	

1	

1	

0	

A1

A2

A3

X1

X2

Conflicting modes aren’t always
upstream from symptom.	

→ One of A1, A3, X1 or X2 must be broken.

Summary: Conflicts

 Conflict: A partial mode assignment M that is ���
 inconsistent with the model and observations.	

Properties:	

•  Every superset of a conflict is a conflict.	

•  Only need conflicts that are minimal under subset.	

•  	

1	
 Symptom	
1	

0	

A	

B	

C	

D	

E	

F	

G	

X	

Y	

Z	

1	

1	

1	

0	

1	

0	

1	

1	

1	

A1

A2

A3

X1

X2

€

Φ∧Obs ¬M
10/25/10 54 copyright Brian Williams, 2000-10

3/6/00	

28	

Outline

•  Self-Repairing Agents
•  Formulating Diagnosis
•  Diagnosis from Conflicts

– Kernels
– Conflicts
– Candidate Generation
– Conflict Recognition

10/25/10 copyright Brian Williams, 2000-10 55

From Conflicts to Kernels

Constituent Kernel: An assignment a that “resolves” one conflict Ci.	

	
{A2=U} resolves {A1=G, A3=G, X1=G, X2=G}. 	

	
a entails ¬ Ci.	

11

0

A

B

C

D

E

F

G

X

Y

Z

1

1

1

0

1

0

1
1

1

A1

A2

A3

X1

X2

A	

B	

C	

D	

E

1

1

1

0

1

F

G	

X	

Y	

Z

0

1

A1

A3

X1

?

?

?

10/25/10 56 copyright Brian Williams, 2000-10

3/6/00	

29	

Conflict: {A1=G, A2=G, X1=G}

A1=U ∨ A2=U ∨ X1=U

Constituent Kernels: {A1=U, A2=U, X1=U}

Mapping Conflicts to
Constituent Kernels

¬(A1=G ∧ A2=G ∧ X1=G)

€

Constituent _Kernels(c) ≡ {¬li | c ≡¬(∧li)}
10/25/10 57 copyright Brian Williams, 2000-10

From Conflicts to Kernels

Constituent Kernel: An assignment a that “resolves” one conflict Ci.	

	
{A2=U} resolves {A1=G, A3=G, X1=G, X2=G}.	

Kernel: A minimal set of assignments A that “resolve” all conflicts C.	

	
{A2=U, X2=U} resolves {A1=G, A3=G, X1=G, X2=G}, and	

	
{A2=U, X2=U} resolves {A1=G, A2=G, X1=G}.

11

0

A

B

C

D

E

F

G

X

Y

Z

1

1

1

0

1

0

1
1

1

A1

A2

A3

X1

X2

A	

B	

C	

D	

E

1

1

1

0

1

F

G	

X	

Y	

Z

0

1

A1

A3

X1

?

?

?

10/25/10 58 copyright Brian Williams, 2000-10

3/6/00	

30	

From Conflicts to Kernels

Constituent Kernel: An assignment a that “resolves” a conflict Ci.���
	
a entails ¬ Ci.	

Kernel: A minimal set of assignments A that “resolves” all conflicts C.
 A entails ¬ Ci for all Ci in C.

  Map constituent kernels to kernels by minimal set covering.

11

0

A

B

C

D

E

F

G

X

Y

Z

1

1

1

0

1

0

1
1

1

A1

A2

A3

X1

X2

A	

B	

C	

D	

E

1

1

1

0

1

F

G	

X	

Y	

Z

0

1

A1

A3

X1

?

?

?

10/25/10 59 copyright Brian Williams, 2000-10

Kernel Diagnoses =	

Generate Kernels From Conflicts

{A1=U, A2=U, X1=U} 	
 	
constituents of Conflict 1.	

{A1=U, A3=U, X1=U, X2=U} 	
constituents of Conflict 2.	

“Smallest” sets of modes that remove all conflicts.	

{A1=G, A2=G, X1=G} 	
 	
 	
 	
Conflict 1.	

{A1=G, A3=G, X1=G, X2=G} 	
 	
 	
Conflict 2.	

60

3/6/00	

31	

Kernel Diagnoses = 	
{A1=U}	

“Smallest” sets of modes that remove all conflicts.	

{A1=U, A2=U, X1=U} 	
 	
constituents of Conflict 1.	

{A1=U, A3=U, X1=U, X2=U} 	
constituents of Conflict 2.	

Generate Kernels From Conflicts
{A1=G, A2=G, X1=G} 	
 	
 	
 	
Conflict 1.	

{A1=G, A3=G, X1=G, X2=G} 	
 	
 	
Conflict 2.	

61

1.  Compute cross product.
2.  Remove supersets.

•  New superset Old.
•  Old superset New.

Kernel Diagnoses = 	
{A1=U, A3=U}���
	
 	
 	
{A1=U}	

“Smallest” sets of modes that remove all conflicts.	

Generate Kernels From Conflicts

{A1=U, A2=U, X1=U} 	
 	
constituents of Conflict 1.	

{A1=U, A3=U, X1=U, X2=U} 	
constituents of Conflict 2.	

{A1=G, A2=G, X1=G} 	
 	
 	
 	
Conflict 1.	

{A1=G, A3=G, X1=G, X2=G} 	
 	
 	
Conflict 2.	

62

1.  Compute cross product.
2.  Remove supersets.

•  New superset Old.
•  Old superset New.

3/6/00	

32	

Kernel Diagnoses = 	
{A1=U, X1=U}���
	
 	
 	
{A1=U}	

“Smallest” sets of modes that remove all conflicts.	

Generate Kernels From Conflicts

{A1=U, A2=U, X1=U} 	
 	
constituents of Conflict 1.	

{A1=U, A3=U, X1=U, X2=U} 	
constituents of Conflict 2.	

{A1=G, A2=G, X1=G} 	
 	
 	
 	
Conflict 1.	

{A1=G, A3=G, X1=G, X2=G} 	
 	
 	
Conflict 2.	

63

1.  Compute cross product.
2.  Remove supersets.

•  New superset Old.
•  Old superset New.

Kernel Diagnoses = 	
{A1=U, X2=U}���
	
 	
 	
{A1=U}	

“Smallest” sets of modes that remove all conflicts.	

Generate Kernels From Conflicts

{A1=U, A2=U, X1=U} 	
 	
constituents of Conflict 1.	

{A1=U, A3=U, X1=U, X2=U} 	
constituents of Conflict 2.	

{A1=G, A2=G, X1=G} 	
 	
 	
 	
Conflict 1.	

{A1=G, A3=G, X1=G, X2=G} 	
 	
 	
Conflict 2.	

64

1.  Compute cross product.
2.  Remove supersets.

•  New superset Old.
•  Old superset New.

3/6/00	

33	

Kernel Diagnoses = 	
{A2=U, X2=U} ���
	
 	
 	
{A2=U, X1=U} ���
	
 	
 	
{A2=U, A3=U}���
	
 	
 	
{A2=U, A1=U}���
	
 	
 	
{A1=U}	

“Smallest” sets of modes that remove all conflicts.	

Generate Kernels From Conflicts

{A1=U, A2=U, X1=U} 	
 	
constituents of Conflict 1.	

{A1=U, A3=U, X1=U, X2=U} 	
constituents of Conflict 2.	

{A1=G, A2=G, X1=G} 	
 	
 	
 	
Conflict 1.	

{A1=G, A3=G, X1=G, X2=G} 	
 	
 	
Conflict 2.	

65

1.  Compute cross product.
2.  Remove supersets.

•  New superset Old.
•  Old superset New.

Kernel Diagnoses = 	
{X1=U}���
	
 	
 	
{X1=U, A3=U}���
	
 	
 	
{X1=U, A1=U}���
	
 	
 	
{A2=U, X2=U} ���
	
 	
 	
{A2=U, X1=U} ���
	
 	
 	
{A2=U, A3=U}���
	
 	
 	
{A1=U}	

Generate Kernels From Conflicts

{A1=U, A2=U, X1=U} 	
 	
constituents of Conflict 1.	

{A1=U, A3=U, X1=U, X2=U} 	
constituents of Conflict 2.	

{A1=G, A2=G, X1=G} 	
 	
 	
 	
Conflict 1.	

{A1=G, A3=G, X1=G, X2=G} 	
 	
 	
Conflict 2.	

10/25/10 66

1.  Compute cross product.
2.  Remove supersets.

•  New superset Old.
•  Old superset New.

3/6/00	

34	

Kernel Diagnoses = 	
{X1=U}���
	
 	
 	
{A2=U, X2=U}���
	
 	
 	
{A2=U, A3=U}���
	
 	
 	
{A1=U}	

“Smallest” sets of modes that remove all conflicts.	

Generate Kernels From Conflicts

{A1=U, A2=U, X1=U} 	
 	
constituents of Conflict 1.	

{A1=U, A3=U, X1=U, X2=U} 	
constituents of Conflict 2.	

{A1=G, A2=G, X1=G} 	
 	
 	
 	
Conflict 1.	

{A1=G, A3=G, X1=G, X2=G} 	
 	
 	
Conflict 2.	

10/25/10 67 copyright Brian Williams, 2000-10

1.  Compute cross product.
2.  Remove supersets.

•  New superset Old.
•  Old superset New.

Candidate-Generation(Conflicts){
 // Compute all minimal coverings of Conflicts
 Next_Kernels = {};
 For each c in Conflicts{
 Kernels = Next_Kernels;
 Next_Kernels = {};
 For each c’ in Constituent_Kernels(c) {
 For each k in Kernels {
 Next_Kernels
 = Add_Kernel(c’ k, Next_Kernels)
 return Next_Kernels}}}
} 10/25/10 copyright Brian Williams, 2000-10 68

€

∪

3/6/00	

35	

Add-Kernel(Kernel, Kernels){
 // Add Kernel to Kernels while preserving minimality.
 If
 Then return Kernels
 Else {
 New_Kernels = {};
 For each k in Kernels{
 Unless
 Add_To_End(k, New_Kernels)};
 return
}}

10/25/10 copyright Brian Williams, 2000-10 69

€

∃k ∈ Kernels. k ⊆ Kernel

€

Kernel ⊆ k

€

{Kernel}∪New _Kernels

Diagnoses: (42 of 64 candidates)

Fully Explained Failures
•  [G(A),G(B),S0(C)]
•  [G(A),S1(B),S0(C)]
•  [S0(A),G(B),G(C)]

. . .

Fault Isolated, But Unexplained
•  [G(A),G(B),U(C)]
•  [G(A),U(B),G(C)]
•  [U(A),G(B),G(C)]

Partial Explained
•  [G(A),U(B),S0(C)]
•  [U(A),S1(B),G(C)]
•  [S0(A),U(B),G(C)]

. . .

X	
 Y	
A	
 B	
 C	
0	
 0	

in in out

10/25/10 70 copyright Brian Williams, 2000-10

3/6/00	

36	

  [U(C)]
  [S0(C)]
  [U(B),G(C]

  [S1(B),G(C)]

  [U(A),G(B),G(C)]

  [S0(A),G(B),G(C)]

•  [G(C), S0(C), U(C)]

•  [G(B), S1(B), U(B), S1(C), S0(C), U(C)]

•  [G(A), S0(A), U(A), S1(B), S0(B), U(B), S1(C), S0(C), U(C)]

•  [S1(A), S0(A), U(A), S1(B), S0(B), U(B), S1(C), S0(C), U(C)]

Generate Kernels from Conflicts

10/25/10 71 copyright Brian Williams, 2000-10

Summary: Mapping Conflicts to Kernels

Conflict Ci: A partial mode assignment, to X, that is inconsistent with ���
model Φ and obs.	

	
Ci ^ Φ ^ obs is inconsistent 	
Φ ^ obs entails ¬Ci 	
	

Constituent Kernel: An assignment a that resolves one conflict Ci.���
	
a entails ¬ Ci	

Kernel: A minimal partial assignment that resolves all conflicts C.
 A entails ¬ Ci for all Ci in C

11

0

A

B

C

D

E

F

G

X

Y

Z

1

1

1

0

1

0

1
1

1

A1

A2

A3

X1

X2

A	

B	

C	

D	

E

1

1

1

0

1

F

G	

X	

Y	

Z

0

1

A1

A3

X1

?

?

72

3/6/00	

37	

Outline

•  Self-Repairing Agents
•  Formulating Diagnosis
•  Diagnosis from Conflicts

– Kernels
– Conflicts
– Candidate Generation
– Conflict Recognition

10/25/10 copyright Brian Williams, 2000-10 73

Recognizing Conflicts within GDE

10/25/10 copyright Brian Williams, 2000-10 74

1 {}	

A	

A1

A2

A3

X1

X2

1 {}	

B	

1 {}	

C	

0 {}	
D	

1 {}	

A	

0 {}	
F	

1 {A1=G,A2=G,X1=G}	

1 {}	

G	

X	

1 {A1=G}	

Z	

1 {A3=G}	

0 {A2=G}	
Y	

1 {A1=G,X1=G}	

0 {A1=G,A3=G,X1=G,X2=G}	

Conflict 1

Conflict 2 General Diagnostic Engine
[de Kleer & Williams, 87]

3/6/00	

38	

Recognizing Conflicts within GDE

10/25/10 copyright Brian Williams, 2000-10 75

1 {}	

A	

A1

A2

A3

X1

X2

1 {}	

B	

1 {}	

C	

0 {}	
D	

0	

0	

0	

1	

1 {}	

A	
 0	

0 {}	
F	

1 {A1=G,A2=G,X1=G}	

1 {}	

G	
 0	

0 {A2=G,X1=G}{A3=G,X1=G,X2=G}	
X	

1 {A1=G}	

0 {A1=G,X1=G,X2=G}	
Z	

1 {A3=G}{A2=G,X2=G}	

0 {A2=G}{A3=G,X2=G}	
Y	

1 {A1=G,X1=G}	

General Diagnostic Engine
[de Kleer & Williams, 87]

Summary:
Mode Estimation

•  A failure is a discrepancy between the model and
observations of an artifact.

•  Mode estimation supports diagnosis of
unknown failures, multiple faults, partial explanation and
execution monitoring.

•  Mode estimates are encoded compactly using kernels.
•  Symptoms are used to recognize conflicts, which are

merged to produce kernels.
•  Conflict-directed search is at the foundation of

fast satisfiability and optimization.

10/25/10 copyright Brian Williams, 2000-10 76

3/6/00	

39	

Outline

•  Self-Repairing Agents
•  Formulating Diagnosis
•  Diagnosis from Conflicts
•  Appendix: Single Fault Diagnosis

10/25/10 copyright Brian Williams, 2000-10 77

Single Fault Diagnoses = {A1=U} {X1=U}	

Single Fault Diagnosis

{A1=U, A2=U, X1=U} 	
 	
constituents of Conflict 1.	

{A1=U, A3=U, X1=U, X2=U} 	
constituents of Conflict 2.	

{A1=G, A2=G, X1=G} 	
 	
 	
 	
Conflict 1.	

{A1=G, A3=G, X1=G, X2=G} 	
 	
 	
Conflict 2.	

The single fault diagnoses are the
intersections of the conflict constituent kernels.

10/25/10 78 copyright Brian Williams, 2000-10

3/6/00	

40	

Finding Single Fault Diagnosis

10/25/10 copyright Brian Williams, 2000-10 79

A	

B	

C	

D	

E	

1	

1	

1	

0	

F	

G	

X	

Y	

Z	

1.  Generate initial candidates:	

•  Assume all components okay and test consistency.	

•  If inconsistent, conflict kernels denote single fault candidates.	

2.  Check consistency of each candidate: 	

•  Prune candidate if superset of a conflict.	

•  Else check consistency and record conflict if inconsistent.	

F	
 0	

1	

HT [Davis & Shrobe]
Dart [Genesereth]

Sophie [de Kleer & Brown]
Early 80’s

A1

A2

A3

X1

X2

Procedure Single_Fault_w_Conflicts(Md, M, Obs)

Input: A model Md, Mode variables M, and observations Obs.
Output: A set of consistent, single fault diagnoses.

 All_Good ← { Mi=G | Mi ∈ M}; Assume all components are okay,
 Conflict ← Test_Candidate(All_Good, Md, Obs)
 If Conflict = Consistent
 Return All_Good
 Else
 Cands Generate single fault candidates
 ← {{Mi=U} ∪ Z=G | Mi=G ∈ Conflict, Z = M - {Mi } };
 Diagnoses ← Test_Candidates(Cands, Md, Obs)
 Return Diagnoses

10/25/10 copyright Brian Williams, 2000-10 80

3/6/00	

41	

Generate Candidates From Symptom

10/25/10 copyright Brian Williams, 2000-10 81

Symptom: 	
G is observed 1, but predicted 0	

Conflict: 	
{A1=G, A3=G, X1=G, X2=G} is inconsistent	

Candidates: 	
{{A1=U…}, {A3=U…}, {X1=U...}, {X2=U…}}	

Symptom	

1	

1	

A	

B	

C	

D	

E	

F	

G	

X	

Y	

Z	

1	

1	

1	

0	

1	

0	

1	

1	

0	

A1

A2

A3

X1

X2

Generate Candidates From Symptom

10/25/10 copyright Brian Williams, 2000-10 82

Symptom: 	
G is observed 1, but predicted 0	

Conflict: 	
{A1=G, A3=G, X1=G, X2=G} is inconsistent	

Candidates: 	
{{A1=U…}, {A3=U…}, {X1=U...}, {X2=U…}}	

Symptom	

1	

1	

A	

B	

C	

D	

E	

F	

G	

X	

Y	

Z	

1	

1	

1	

0	

1	

0	

1	

1	

0	

A1

A2

A3

X1

X2

3/6/00	

42	

Procedure Single_Fault_Test_Candidates(C,M, Obs)

Input: Candidates C, Model Md, Observation Obs
Output: The set of consistent single-fault diagnoses.

 Diagnoses ← {}, Conflicts ← {}
 For each Ci in C
 If Ci is a superset of some Conflictj in Conflicts
 Then inconsistent candidate Ci, ignore.
 Else Conflicti = Test_Candidate(Ci, M, Obs)

 If Conflicti = Consistent
 Then add Ci to Diagnoses
 Else add Conflicti to Conflicts
return Diagnoses

10/25/10 copyright Brian Williams, 2000-10 83

Test Candidates, Collect Conflicts

10/25/10 copyright Brian Williams, 2000-10 84

1	

1	

1	

0	

1	

A	

B	

C	

D	

E	

F	

G	

X	

Y	

Z	

0	

1	

1	
1	

0	

•  First candidate {A1=U, …}
•  Suspend A1’s constraints
•  Test consistency

Candidates: {{A1=U…}, {A3=U…}, {X1=U…}, {X2=U…}}

Diagnoses:

→ consistent

{{A1=U…}}

A1

A2

A3

X1

X2

0	

•  Add to diagnoses

3/6/00	

43	

Test Candidates, Collect Conflicts

10/25/10 copyright Brian Williams, 2000-10 85

1	

1	

1	

0	

1	

A	

B	

C	

D	

E	

F	

G	

X	

Y	

Z	

0	

1	

•  Second candidate {A3=U, …}
•  Suspend A3’s constraints
•  Test consistency

Candidates: {{A3=U…}, {X1=U…}, {X2=U…}}

Diagnoses: {{A1=U…}}

Conflicts: {{A1=G, A2=G, X1=G}}

1	

1	

1	
0	

→ inconsistent

•  Extract conflict
 {A1=G, A2=G, X1=G}
•  Intersect candidates

A1

A2

A3

X1

X2

Test Candidates, Collect Conflicts

10/25/10 copyright Brian Williams, 2000-10
86

1	

1	

1	

0	

1	

A	

B	

C	

D	

E	

F	

G	

X	

Y	

Z	

0	

1	

1	

1	

•  Third candidate {X1=U, …}
•  Superset of conflict? →
•  Suspend X1’s constraints
•  Test consistency →

1	

0	

consistent

Candidates: 	
{{X1=U…}, {X2=U…}}	

Diagnoses: 	
{{A1=U…}}	

Conflicts: 	
{{A1=G, A2=G, X1=G}}	

No, since X1 = U, not X1=G

A1

A2

A3

X1

X2

3/6/00	

44	

Test Candidates, Collect Conflicts

10/25/10 copyright Brian Williams, 2000-10 87

1	

1	

1	

0	

1	

A	

B	

C	

D	

E	

F	

G	

X	

Y	

Z	

0	

1	

•  Fourth candidate {X2=U, …}
•  Superset of conflict? →
•  Eliminate candidate

Candidates: 	
{{X2=U…}}	

Diagnoses: 	
{{A1=U…}, {X1=U…}}	

Conflicts: 	
{{A1=G, A2=G, X1=G}}	

Yes, since A1=G, A2=G and X1=G

A1

A2

A3

X1

X2

Test Candidates, Collect Conflicts

10/25/10 copyright Brian Williams, 2000-10 88

1	

1	

1	

0	

1	

A	

B	

C	

D	

E	

F	

G	

X	

Y	

Z	

0	

1	

•  Return diagnoses→ A1 or X1 broken

Candidates: 	
{}	

Diagnoses: 	
{{A1=U…}, {X1=U…}}	

Conflicts: 	
{{A1=G, A2=G, X1=G}}	

A1

A2

A3

X1

X2

MIT OpenCourseWare
http://ocw.mit.edu

16.410 / 16.413 Principles of Autonomy and Decision Making
Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

