

Image credit: NASA.

Image credit: NASA.

- 1. Generate candidates, given symptoms.
- 2. Test if candidates account for all symptoms.
- Set of diagnoses should be complete.
- Set of diagnoses should exploit all available information.

10/25/10

copyright Brian Williams, 2000-10

19

Given: exhaustive fault models, structure and observations.

Generate: candidate mode assignment C_i.

Test: C_i as an abductive diagnosis: 1. Find Rsp entailed by C_i, given Inp.

- 2. Compare observed and predicted Rsp:
 - Disagree: Discard
 - Agree: Keep
 - No prediction: Discard

Exonerate: component if none of its fault models agree.

25

Problem:

- Fault models are typically incomplete.
- May incorrectly exonerate faulty components. 10/25/10 copyright Brian Williams, 2000-10

<section-header><section-header><section-header><image><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><table-row></table-row></table-row>

© Source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse.

Issue 3: Multiple Faults Occur

copyright Brian Williams, 2000-10

43

- Set of diagnoses should be complete.
- Set of diagnoses should exploit all available information.

10/25/10

Procedure Single_Fault_Test_Candidates(C,M, Obs)

Input: Candidates C, Model Md, Observation Obs **Output:** The set of consistent single-fault diagnoses. Diagnoses \leftarrow {}, Conflicts \leftarrow {} For each C_i in C If C_i is a superset of some Conflict_i in Conflicts **Then** inconsistent candidate C_i, ignore. **Else** Conflict_i = $Test_Candidate(C_i, M, Obs)$ $If Conflict_i = Consistent$ Then add C_i to Diagnoses Else add Conflict_i to Conflicts return Diagnoses 10/25/10 copyright Brian Williams, 2000-10 83

MIT OpenCourseWare http://ocw.mit.edu

16.410 / 16.413 Principles of Autonomy and Decision Making $\mathsf{Fall}\ \mathsf{2010}$

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.