
1

Activity Planning and Execution I:

Operator-based Planning and Plan Graphs

Brian C. Williams

16.410-13

October 4th, 2010

Slides draw upon

material from:

Prof. Maria Fox,

Univ Strathclyde

��Brian Williams, Fall 10 ��2

Assignments

•� Remember:
Problem Set #5: Constraint Satisfaction and Activity Planning,

out Wed. Sep. 29th , due Wed, Oct. 6th, 2010.

•� Reading:
–� Today: Advanced Planning [AIMA] Ch. 11;

GraphPlan, by Blum & Furst.

–� Wednesday: Dechter, R., I. Meiri, J. Pearl, “Temporal

Constraint Networks,” Artificial Intelligence, 49, pp.

61-95,1991 posted on Stellar.

•� Exam:
–� Mid-Term - October 20th.

2

Simple Spacecraft Problem

Observation-1�
target�
instruments�

Observation-2�

Observation-3�

Observation-4�

…�

calibrated�

pointing�

Propositions: Target Pointed To, Camera Calibrated?, Has Image?

Operators: Calibrate, Turn to Y, and Take Image.

Outline

•� Graph Plan

–�Problem Statement

–�Planning Graph Construction

–�Plan Extraction

Image credit: NASA.

3

Graph Plan

•� Developed in 1995 by Avrim Blum and Merrick Furst, at CMU.

•� The Plan Graph compactly encodes all possible plans.

–� has been a key to scaling up to realistic problems.

•� Plan Graph representation used for:

–� An encoding method for formulating planning as a CSP.

–� Relaxed planning as an admissible heuristic (state space search + A*).

•� Approach has been extended to reason with temporally extended
actions, metric and non-atomic preconditions and effects.

Approach: Graph Plan

1.� Construct compact constraint encoding of state
space from operators and the initial state.
- Planning Graph

2.� Generate plan by searching for a consistent
subgraph that achieves the goals.

Proposition

Init State

Action

Time 1

Proposition

Time 1

Action

Time 2

4

Representing States

7

•� State

•� A consistent conjunction of propositions (positive literals).

•� E.g., (and (cleanhands) (quiet) (dinner) (present) (noGarbage))

•� All unspecified propositions are false.

•� Initial State

•� Problem state at time i = 0.
•� E.g., (and (cleanHands) (quiet)).

•� Goal State

•� A partial state.
•� E.g., (and (noGarbage) (dinner) (present)).

•� A Plan moves a system from its initial state to a final state
that extends the goal state.

Representing Operators

8

(:operator cook :precondition (cleanHands)
 :effect (dinner))

Preconditions: Propositions that must be true to apply
the operator.

•� A conjunction of propositions (no negated propositions).

Effects: Propositions that the operator changes,
given that the preconditions are satisfied.

•� A conjunction of propositions (called adds) and
their negation (called deletes).

}

5

(Parameterized) Operator Schemata

•� Instead of defining many operator instances:

pickup-A and pickup-B and …

•� Define a schema:

(:operator pick-up
 :parameters ((?ob1 - block))

 :precondition (and (clear ?ob1)

 (on-table ?ob1)

 (arm-empty))

:effect (and (not (clear ?ob1))
 (not (on-table ?ob1))

 (not (arm-empty))

 (holding ?ob1)))

Example Problem: Dinner Date
Initial Conditions: (:init (cleanHands) (quiet))

Goal: (:goal (noGarbage) (dinner) (present))

Actions:

(:operator carry :precondition

:effect (and (noGarbage) (not (cleanHands)))

(:operator dolly :precondition

:effect (and (noGarbage) (not (quiet)))

(:operator cook :precondition (cleanHands)

:effect (dinner))

(:operator wrap :precondition (quiet)

:effect (present))

+ noops

Plan: (Cook, Wrap, Carry)

6

Visualizing Actions

11

(:operator cook :precondition (cleanHands)
:effect (dinner))

(:operator carry :precondition

:effect (and (noGarbage) (not (cleanHands)))

carry�
 noGarb�
�

 cleanH�

cook� dinner�cleanHands�

Visualizing Actions

12

•� Persistence actions (No-ops)

•� Every literal has a no-op action,
which maintains it from time i to i+1.

 (:operator noop-P :precondition (P) :effect (P))

Noop-P� P� P�

In Blum & Furst: (& lecture) Only persist positive literals.

AIMA: Persists negative literals as well.

either approach okay for PSet.

7

Operator Execution Semantics

13

If all propositions of :precondition appear in state i,

Then create state i+1 from i, by

•� adding to i, all add propositions in :effects,

•� removing from i, all delete propositions
in :effects.

(:operator cook :precondition (cleanHands)

:effect (dinner))

(cleanHands)

(quiet)

(cleanHands)

(quiet)

(dinner)

cook

Operator Execution Semantics

14

If all propositions of :precondition appear in state i,

Then create state i+1 from i, by

•� adding to i, all add propositions in :effects,

•� removing from i, all delete propositions
in :effects.

(:operator dolly :precondition

:effect (and (noGarbage) (not (quiet)))

(cleanHands)

(quiet)

(cleanHands)

(noGarbage)dolly

8

�
�
�
�

�
�
�

�
�
 dinner�
�
�
 present�
�

�
�
�
�
�
�
cook�
�
�
wrap�
�

carry�
�
�
�
�
�
�
�
�

�
�
�
 cleanH�
�
�
 quiet�

 noGarb�
�
�
 cleanH�
�

�
 dinner�
�
�
 present�
�

Prop at 0 Action at 0 Prop at 1 Action at 1 Prop at 2

noop-dinner

noop-present

•� Sets of concurrent actions that are performed at each time [i]

•� Concurrent actions can be interleaved in any order.

��If actions a and b occur at time i, then it must be valid to
perform either a followed by b, OR b followed by a.

Representing Plans: <Actions[i] >

A Complete Consistent Plan
Given an initial state that holds at time 0, and goal propositions,
a plan is a solution iff it is:

 Complete:

•� The goal propositions all hold in the final state.

•�The preconditions of every operator at time i,

 are satisfied by propositions at time i.

 Consistent:

9

�
�
�
�

�
�
�

�
�
 dinner�
�
�
present�
�

�
�
�
�
�
�
cook�
�
�
wrap�
�

carry�
�
�
�
�
�
�
�
�

�
�
�
cleanH�
�
�
quiet�
�
�
�
�
�

�
�

 noGarb�
�
�
 cleanH�
�

�
 dinner�
�
�
 present�
�

Prop at 0 Action at 0 Prop at 1 Action at 1 Prop at 2

(noop dinner)

(noop present)

Example of a Complete Plan

Initial Conditions: (and (cleanHands) (quiet))

Goal: (and (noGarbage) (dinner) (present))

A Complete Consistent Plan
Given an initial state that holds at time 0, and goal propositions,
a plan is a solution iff it is:

 Complete:

•� The goal propositions all hold in the final state.

•�The preconditions of every operator at time i,

 are satisfied by propositions at time i.

 Consistent:

•� The operators at any time i can be executed in any order,
 without one of these operators undoing:

•� the preconditions of another operator at time i.

•� the effects of another operator at time i.

10

�
�
�
�

�
�
�

�
�
 dinner�
�
�
 present�
�

�
�
�
�
�
�
cook�
�
�
wrap�
�

carry�
�
�
�
�
�
�
�
�

�
�
�
cleanH�
�
�
 quiet�
�
�
�
�
�

�
�

 noGarb�
�
�
 cleanH�
�

�
 dinner�
�
�
 present�
�

Prop at 0 Action at 0 Prop at 1 Action at 1 Prop at 2

(noop dinner)

(noop present)

Example of a

Complete Consistent Plan
Initial Conditions: (and (cleanHands) (quiet))

Goal: (and (noGarbage) (dinner) (present))

�
�
�
�
�
�
cook�
�
�
wrap�
�

carry�
�
�
�
�
�
�
�
�

�
�
�
cleanH�
�
�
 quiet�
�
�
�
�
�

�
�

 noGarb�
�
�
 cleanH�
�

�
 dinner�
�
�
 present�
�

Prop at 0 Action at 0 Prop at 1 Action at 1 Prop at 2

(noop dinner)

(noop present)

Example of a

Complete Inconsistent Plan
Initial Conditions: (and (cleanHands) (quiet))

Goal: (and (noGarbage) (dinner) (present))

 noGarb�
�
�
 cleanH�
�

�
 dinner�
�
�
 present�
�

(noop garb)

(noop cleanH)

11

Outline

•� Graph Plan

–�Problem Statement

–�Planning Graph Construction

–�Plan Extraction

Graph Plan Algorithm

•� Phase 1 – Plan Graph Expansion

–� Graph includes all plans that are complete and consistent.

–� Graph prunes many infeasible plans.

•� Phase 2 - Solution Extraction

–� Graph frames a kind of constraint satisfaction problem (CSP).

–� Extraction selects actions to perform at each time point,

by assigning variables and by testing consistency.

12

Example: Planning Graph and Solution
 noGarb�
�
�
 cleanH�
�
�
 quiet�
�
�
 dinner�
�
�
 present�
�

carry�
�
�
dolly�
�
�
cook�
�
�
wrap�
�

carry�
�
�
dolly�
�
�
cook�
�
�
wrap�
�

�
�
�
 cleanH�
�
�
 quiet�
�
�
�
�
�

�
�

 noGarb�
�
�
 cleanH�
�
�
 quiet�
�
�
 dinner�
�
�
 present�
�

0 Prop 0 Action 1 Prop 1 Action 2 Prop

Example: Planning Graph and Solution
 noGarb�
�
�
 cleanH�
�
�
 quiet�
�
�
 dinner�
�
�
 present�
�

carry�
�
�
dolly�
�
�
cook�
�
�
wrap�
�

carry�
�
�
dolly�
�
�
cook�
�
�
wrap�
�

�
�
�
 cleanH�
�
�
 quiet�
�
�
�
�
�

�
�

 noGarb�
�
�
 cleanH�
�
�
 quiet�
�
�
 dinner�
�
�
 present�
�

0 Prop 0 Action 1 Prop 1 Action 2 Prop

13

Graph Plan Algorithm

•� Phase 1 – Plan Graph Expansion

–� Graph includes all plans that are complete and consistent.

–� Graph prunes many infeasible plans.

•� Phase 2 - Solution Extraction

–� Graph frames a kind of constraint satisfaction problem (CSP).

–� Extraction selects actions to perform at each time point,
by assigning variables and by testing consistency.

•� Repeat Phases 1 and 2 for planning graphs with an
increasing numbers of action layers.

Planning Graphs Prune

Initial state reachability:
Prunes partial states and actions at each time
i that are not reachable from the initial state,

Consistency:
Prunes pairs of propositions and actions
that are mutually inconsistent at time I, and

Goal state reachability:
plans that cannot reach the goals.

14

Graph Properties

•� Plan graphs are constructed in polynomial

time and are of polynomial in size.

•� Plan graphs do not eliminate all infeasible

plans.

��Plan generation requires focused search.

Constructing the Planning Graph…

(Reachability)

•� Initial proposition layer

–�Contains propositions that hold in the initial state.

15

Example: Initial State, Layer 1

�
�
�
 cleanH�
�
�
 quiet�
�
�
�
�
�

�
�
0 Prop 0 Action 1 Prop 1 Action 2 Prop

Constructing the Planning Graph…

(Reachability)
•� Initial proposition layer

–� Contains propositions that hold in the initial state.

•� Action layer i

–� If all of an action s preconditions appear in

proposition layer i,

–� Then add action to layer i.

•� Proposition layer i+1

–� For each action at layer i,

–� Add all its effects at layer i+1.

16

Example: Add Actions and Effects

 noGarb�
�
�
 cleanH�
�
�
 quiet�
�
�
 dinner�
�
�
 present�
�

carry�
�
�
dolly�
�
�
cook�
�
�
wrap�
�

�
�
�
 cleanH�
�
�
 quiet�
�
�
�
�
�

�
�
0 Prop 0 Action 1 Prop 1 Action 2 Prop

Constructing the Planning Graph…

(Reachability)
•� Initial proposition layer

–� Contains propositions that hold in the initial state.

•� Action layer i
–� If all of an action s preconditions appear in

proposition layer i,

–� Then add action to layer i.

•� Proposition layer i+1
–� For each action at layer i,

–� Add all its effects at layer i+1.

•� Repeat adding layers until all goal propositions appear.

17

Round 1: Stop at Proposition Layer 1?

 noGarb�
�
�
 cleanH�
�
�
 quiet�
�
�
 dinner�
�
�
 present�
�

carry�
�
�
dolly�
�
�
cook�
�
�
wrap�
�

�
�
�
 cleanH�
�
�
 quiet�
�
�
�
�
�

�
�
0 Prop 0 Action 1 Prop 1 Action 2 Prop

Do all goal

propositions

appear?

Goal: (and (noGarbage)

 (dinner)

 (present))

Constructing the Planning Graph…

(Consistency)

•� Initial proposition layer

–� Contains propositions that hold in the initial state.

•� Action layer i

–� If action s preconditions appear consistent in i [non-mutex],

–� Then add action to layer i.

•� Proposition layer i+1

–� For each action at layer i,

–� Add all its effects at layer i+1.

•� Identify mutual exclusions

–� Between actions in layer i, and

–� Between propositions in layer i + 1.

•� Repeat until all goal propositions appear non-mutex.

18

Mutual Exclusion: Actions

•� Actions A,B are mutually exclusive at level i

if no valid plan could consistently contain both at i:

–�They have inconsistent effects.

•� A deletes B s effects.

–�Effects interfere with preconditions.
•� A deletes B s preconditions, or

•� vice-versa.

–�Their preconditions compete for needs.

•� A and B have inconsistent preconditions..

35

Mutual Exclusion: Actions

 noGarb�
�
�
 cleanH�
�
�
 quiet�
�
�
 dinner�
�
�
 present�
�

carry�
�
�
dolly�
�
�
cook�
�
�
wrap�
�

�
�
�
 cleanH�
�
�
 quiet�
�
�
�
�
�

�
�
0 Prop 0 Action 1 Prop 1 Action 2 Prop

1.� Inconsistent effects.

2.� Effect interferes
 with precondition.

3.� Competing needs.

19

 noGarb�
�
�
 cleanH�
�
�
 quiet�
�
�
 dinner�
�
�
 present�
�

carry�
�
�
dolly�
�
�
cook�
�
�
wrap�
�

�
�
�
 cleanH�
�
�
 quiet�
�
�
�
�
�

�
�

Mutual Exclusion: Actions

0 Prop 0 Action 1 Prop 1 Action 2 Prop

1.� Inconsistent effects.

2.� Effect interferes
 with precondition.

3.� Competing needs.

 noGarb�
�
�
 cleanH�
�
�
 quiet�
�
�
 dinner�
�
�
 present�
�

carry�
�
�
dolly�
�
�
cook�
�
�
wrap�
�

�
�
�
 cleanH�
�
�
 quiet�
�
�
�
�
�

�
�

Mutual Exclusion: Actions

0 Prop 0 Action 1 Prop 1 Action 2 Prop

1.� Inconsistent effects.

2.� Effect interferes
 with precondition.

3.� Competing needs.

20

 noGarb�
�
�
 cleanH�
�
�
 quiet�
�
�
 dinner�
�
�
 present�
�

carry�
�
�
dolly�
�
�
cook�
�
�
wrap�
�

�
�
�
 cleanH�
�
�
 quiet�
�
�
�
�
�

�
�

Mutual Exclusion: Actions

0 Prop 0 Action 1 Prop 1 Action 2 Prop

1.� Inconsistent effects.

2.� Effect interferes
 with precondition.

3.� Competing needs.

Layer 1: Complete Action Mutexs
 noGarb�
�
�
 cleanH�
�
�
 quiet�
�
�
 dinner�
�
�
 present�
�

carry�
�
�
dolly�
�
�
cook�
�
�
wrap�
�

�
�
�
 cleanH�
�
�
 quiet�
�
�
�
�
�

�
�
0 Prop 0 Action 1 Prop 1 Action 2 Prop

1.� Inconsistent effects.

2.� Effect interferes
 with precondition.

3.� Competing needs.

21

Mutual Exclusion: Proposition Layer

Propositions P,Q are inconsistent at i

•� if no valid plan could possibly contain both at i,

��if at i, all ways to achieve P exclude

each way to achieve Q.

41

 P�
�
�
 Q�

A1�
�
�
A2�

M�
�
�
N�

Layer 1: Add Proposition Mutexs

 noGarb�
�
�
 cleanH�
�
�
 quiet�
�
�
 dinner�
�
�
 present�
�

carry�
�
�
dolly�
�
�
cook�
�
�
wrap�
�

�
�
�
 cleanH�
�
�
 quiet�
�
�
�
�
�

�
�
0 Prop 0 Action 1 Prop 1 Action 2 Prop

Do all goal

propositions

appear non-mutex?

No proposition mutexs.

22

Round 2: Extending The Planning Graph
 noGarb�
�
�
 cleanH�
�
�
 quiet�
�
�
 dinner�
�
�
 present�
�

carry�
�
�
dolly�
�
�
cook�
�
�
wrap�
�

carry�
�
�
dolly�
�
�
cook�
�
�
wrap�
�

�
�
�
 cleanH�
�
�
 quiet�
�
�
�
�
�

�
�

 noGarb�
�
�
 cleanH�
�
�
 quiet�
�
�
 dinner�
�
�
 present�
�

0 Prop 0 Action 1 Prop 1 Action 2 Prop

Outline

•� Graph Plan

–�Problem Statement

–�Planning Graph Construction

–�Plan Extraction

MIT OpenCourseWare
http://ocw.mit.edu

16.410 / 16.413 Principles of Autonomy and Decision Making
Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

