
1

Solving Constraint Programs using

Conflicts and Backjumping

6/30/11 1

Brian C. Williams

16.410-13

September 29th, 2010

Slides draw upon material from:

Prof. Patrick Prosser, Glasow University

 2

Search Performance on N Queens

•� Standard Search

•� Backtracking

•� BT with Forward Checking

•� Dynamic Variable Ordering

•� Iterative Repair

•� Conflict-directed Back
Jumping

•� A handful of queens

•� About 15 queens

•� About 30 queens

•� About 1,000 queens

•� About 10,000,000 queens

(except truly hard problems)

1

2

3

4

Q

Q

Q

Q

2

 3

Back Jumping

Backtracking At dead end, backup to the most recent variable.

Backjumping At dead end, backup to the most recent variable that

eliminated some value in the domain of the dead end variable.

Example of a CSP

C
E

D

B

F

A

G

H

Va

Vb

Vc

Vd

Ve

Vf

Vg

Vh

1 = red

2 = blue

3 = green

Variables and Instantiation Order

Checking back

Slide progression due to Prosser [4C presentation, 2003]

3

C
E

D

B

F

A

G

H

Va

Vb

Vc

Vd

Ve

Vf

Vg

Vh

1 = red

2 = blue

3 = green

Variables and Instantiation Order

Checking back

Find solution using

Backtracking

Example of a CSP

C
E

D

B

F

A

G

H

Va

Vb

Vc

Vd

Ve

Vf

Vg

Vh

1 = red

2 = blue

3 = green

Variables and Instantiation Order

Checking back

Example of a CSP

4

C
E

D

B

F

A

G

H

Va

Vb

Vc

Vd

Ve

Vf

Vg

Vh

1 = red

2 = blue

3 = green

Variables and Instantiation Order

Checking back

Example of a CSP

C
E

D

B

F

A

G

H

Va

Vb

Vc

Vd

Ve

Vf

Vg

Vh

1 = red

2 = blue

3 = green

Variables and Instantiation Order

Checking back

Example of a CSP

5

C
E

D

B

F

A

G

H

Va

Vb

Vc

Vd

Ve

Vf

Vg

Vh

1 = red

2 = blue

3 = green

Variables and Instantiation Order

Checking back

Example of a CSP

C
E

D

B

F

A

G

H

Va

Vb

Vc

Vd

Ve

Vf

Vg

Vh

1 = red

2 = blue

3 = green

Variables and Instantiation Order

Checking back

Fast forward �..

Example of a CSP

6

C
E

D

B

F

A

G

H

Va

Vb

Vc

Vd

Ve

Vf

Vg

Vh

1 = red

2 = blue

3 = green

Variables and Instantiation Order

Checking back

Example of a CSP

C
E

D

B

F

A

G

H

Va

Vb

Vc

Vd

Ve

Vf

Vg

Vh

1 = red

2 = blue

3 = green

Variables and Instantiation Order

Checking back

Example of a CSP

7

C
E

D

B

F

A

G

H

Va

Vb

Vc

Vd

Ve

Vf

Vg

Vh

1 = red

2 = blue

3 = green

Variables and Instantiation Order

Checking back

Example of a CSP

C
E

D

B

F

A

G

H

Va

Vb

Vc

Vd

Ve

Vf

Vg

Vh

1 = red

2 = blue

3 = green

Variables and Instantiation Order

Checking back

Example of a CSP

8

C
E

D

B

F

A

G

H

Va

Vb

Vc

Vd

Ve

Vf

Vg

Vh

1 = red

2 = blue

3 = green

Variables and Instantiation Order

Checking back

Example of a CSP

C
E

D

B

F

A

G

H

Va

Vb

Vc

Vd

Ve

Vf

Vg

Vh

1 = red

2 = blue

3 = green

Variables and Instantiation Order

Checking back

Why did it backtrack to E?

That was dumb!

Example of a CSP

9

C
E

D

B

F

A

G

H

1 = red

2 = blue

3 = green

E1

E2

E3

E4

What would have happened if we had

the E* intermediate variables?

i.e. it falls back on E4, then E3, towards E?

Example of a CSP

C
E

D

B

F

A

G

H

Va

Vb

Vc

Vd

Ve

Vf

Vg

Vh

1 = red

2 = blue

3 = green

Variables and Instantiation Order

Checking back

Why did it backtrack to E?

That was dumb!

Whats better and why?

Example of a CSP

10

C
E

D

B

F

A

G

H

Va

Vb

Vc

Vd

Ve

Vf

Vg

Vh

Why backtrack to D?

D � not F

Variables and Instantiation Order

Checking back

Example of a CSP

C
E

D

B

F

A

G

H

Va

Vb

Vc

Vd

Ve

Vf

Vg

Vh

Variables and Instantiation Order

Checking back

Why backtrack to D?

D � not F

B � not F

Example of a CSP

11

C
E

D

B

F

A

G

H

Va

Vb

Vc

Vd

Ve

Vf

Vg

Vh

Variables and Instantiation Order

Checking back

Why backtrack to D?

D � not F

B � not F

C � not F

F or F or F

not D � F

not B � F

not C � F

not D or not B or not C Its safe to remove the
deepest assignment.

Example of a CSP

p

a

s

t

f

u

t

u

r

e

current variable
v[i]

conflict with v[h]

past variable

 v[h]

Move down like Backtrack Search:

•� Instantiate v[i] := x, for next x in D[i]

•� Check constraint (v[i],v[h]), if fails

•� say “v[i] is in conflict with v[h]”

•� add h to the set confSet[i]

confSet[i] denotes past

variables that conflict with

values in the domain of v[i]

{v[1] … v[h] }

Moving Forward:

12

C
E

D

B

F

A

G

H

Va

Vb

Vc

Vd

Ve

Vf

Vg

Vh

D � not F

Variables and Instantiation Order

Checking back

Moving Forward

ConfSet[F] = { } D,

C
E

D

B

F

A

G

H

Va

Vb

Vc

Vd

Ve

Vf

Vg

Vh

Variables and Instantiation Order

Checking back

D � not F

B � not F

Moving Forward

ConfSet[F] = { } D, B,

13

C
E

D

B

F

A

G

H

Va

Vb

Vc

Vd

Ve

Vf

Vg

Vh

Variables and Instantiation Order

Checking back

D � not F

B � not F

C � not F

Moving Forward

ConfSet[F] = { } D, B, C

1

2

3

4

5

6 {4,1,0}

{2,0}

conflict sets

Backing Up: Conflict-directed Back Jumping

Backtrack when v[i] domain exhausted:

•� Jump to deepest var h in ConfSet[i].

{0}

STOP

Image by MIT OpenCourseWare.

14

1

2

3

4

5

6

{2,1, ?}

{4,1,0}

Backing Up: Conflict-directed Back Jumping

Backtrack when v[i] domain exhausted:

•� Jump to deepest var h in ConfSet[i].

•� Update ConfSet[h].

{0}

1

2

3

4

5

6

{2,1, ?}

{4,1,0}

Add {1, 0} to confset[4]

Backing Up: Conflict-directed Back Jumping

Backtrack when v[i] domain exhausted:

•� Jump to deepest var h in ConfSet[i].

•� Update ConfSet[h] with ConfSet[i] / h.

{0}

STOP

Image by MIT OpenCourseWare.

STOP

Image by MIT OpenCourseWare.

15

1

2

3

4

5

6

{2,1, 0}

{4,1,0}

Backing Up: Conflict-directed Back Jumping

Backtrack when v[i] domain exhausted:

•� Jump to deepest var h in ConfSet[i].

•� Update ConfSet[h] with ConfSet[i] / h.

•� Reset Domains, ConfSets below h.

•� Move forward: try next h assignments.

{0}

 When jumping back from v[i] to v[h],

1.� Update conflict sets:

confSet[h] := confSet[h] � confSet[i] \ {h}

confSet[i] := {0}

•� This means:

 if we later jump back from v[h],

 jump back to a variable that is

 in conflict with v[h] or with v[i].

2.� Throw away everything CBJ knows about v[i].

3.� Reset all variables from v[h+1] to v[i] (i.e. domain and confSet)

Backing Up: Conflict-directed Back Jumping

STOP

Image by MIT OpenCourseWare.

16

C
E

D

B

F

A

G

H

Va

Vb

Vc

Vd

Ve

Vf

Vg

Vh

Variables and Instantiation Order

Checking back

D � not F

B � not F

C � not F

Backing Up

ConfSet[F] = { } D, B, C

{� B, C}

1

2

3

4

5

6

{2,1, 0}

Backing Up: Conflict-directed Back Jumping

{0}

What do we do if variable 4 s
domain is exhausted as well?

STOP

Image by MIT OpenCourseWare.

17

1

2

3

4

5

6

{2,1, 0}

Backing Up: Conflict-directed Back Jumping

Backtrack when v[h] domain exhausted:

•� Jump to deepest var g in ConfSet[h].

•� Update ConfSet[g] with ConfSet[h] / g.

•� Reset Domains, ConfSets below g.

•� Move forward: try next g assignments.

{0}

1

2

3

4

5

6

Backing Up: Conflict-directed Back Jumping

Backtrack when v[h] domain exhausted:

•� Jump to deepest var g in ConfSet[h].

•� Update ConfSet[g] with ConfSet[h] / g.

•� Reset Domains, ConfSets below g.

•� Move forward: try next g assignments.

{1, 0}

OP
ST

Image by MIT OpenCourseWare.

STOP

Image by MIT OpenCourseWare.

18

If there are no values remaining for v[i]

Jump back to v[h], the deepest variable in conflict with v[i].

The hope: re-instantiating v[h] will allow us to find a good value for v[i]

If there are no values remaining for v[h]

Jump back to v[g], the deepest variable in conflict with v[i] or v[h].

The hope: re-instantiating v[g] will allow us to find a good value for v[i] or a

 good value for v[h] that will be good for v[i]

If there are no values remaining for v[g]

Jump back to v[f], the deepest variable in conflict with v[i] or v[h] or v[g]

The hope: re-instantiating v[f] will allow us to find a good value for v[i] or a

 good value for v[h] that will be good for v[i] or a

 good value for v[g] that will be good for v[h] and v[i]

CBJ Supports Successive Jumps

consistent := false

confSet[i] := {0}

for x in domain[i] while not(consistent) // find a consistent value

begin

 consistent := true

 v[i] := x

for h in (1 .. i-1) while consistent // check backwards

 begin

 consistent := (check(v[i],v[h])

if not(consistent) then confSet[i] := confSet[i] � {h}

 end

 if not(consistent)

 then delete(x,domain[i])

 end

CBJ: Prosser s Original Formulation

19

CBJ: Dechter Formulation

Conflict-directed Back Jumping:

Supporting definitions

Pseudocode for conflict-directed backjumping
removed due to copyright restrictions.

Supporting definitions (earlier constraint, earlier minimal
conflict set, jumpback set) removed due to copyright restrictions.

20

 39

To Solve CSP <X,D,C> We Combine:

1.� Reasoning - Arc consistency via constraint propagation

•� Eliminates values that are shown locally to not be a part

of any solution.

2.� Search

•� Explores consequences of committing to particular

assignments.

Methods That Incorporate Search:

•� Standard Search

•� Back Track Search (BT)

•� BT with Forward Checking (FC)

•� Dynamic Variable Ordering (DV)

•� Iterative Repair (IR)

•� Conflict-directed Back Jumping (CBJ)

MIT OpenCourseWare
http://ocw.mit.edu

16.410 / 16.413 Principles of Autonomy and Decision Making
Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

