
1

Solving Constraint Programs using
Backtrack Search and Forward Checking

9/29/10 1

Slides draw upon material from: Brian C. Williams
6.034 notes, by Tomas Lozano Perez
AIMA, by Stuart Russell & Peter Norvig 16.410-13
Constraint Processing, by Rina Dechter September 27th, 2010

Assignments
•  Remember:

•  Problem Set #3: Analysis and Constraint Programming,
due this Wed., Sept. 29th, 2010.

•  Reading:
•  Today: [AIMA] Ch. 6.2-5; Constraint Satisfaction.
•  Wednesday: Operator-based Planning [AIMA] Ch. 10

 “Graph Plan,” by Blum & Furst, posted on Stellar.

•  To Learn More: Constraint Processing, by Rina Dechter
– Ch. 5: General Search Strategies: Look-Ahead
– Ch. 6: General Search Strategies: Look-Back
– Ch. 7: Stochastic Greedy Local Search 2

Brian Williams, Fall 10

Constraint Problems are Everywhere

© Source unknown. All rights reserved. This content is excluded from our Creative Commons

license. For more information, see http://ocw.mit.edu/fairuse.

3

Constraint Satisfaction Problems (CSP)
Input: A Constraint Satisfaction Problem is a triple <V,D,C>, where:

•� V is a set of variables Vi

•� D is a set of variable domains,

•� The domain of variable Vi is denoted Di

•� C = is a set of constraints on assignments to V

•� Each constraint Ci = <Si,Ri> specifies allowed variable assignments.

•� Si the constraint’s scope, is a subset of variables V.

•� Ri the constraint’s relation, is a set of assignments to Si.

Output: A full assignment to V, from elements of V’s domain,
such that all constraints in C are satisfied.

Brian Williams, Fall 10
4

2

http://ocw.mit.edu/fairuse

Constraint Modeling (Programming) Languages

Features Declarative specification of the problem that

separates the formulation and the search strategy.

Example: Constraint Model of the Sudoku Puzzle in

Number Jack (http://4c110.ucc.ie/numberjack/home)

matrix = Matrix(N*N,N*N,1,N*N)

sudoku = Model([AllDiff(row) for row in matrix.row],

[AllDiff(col) for col in matrix.col],

 [AllDiff(matrix[x:x+N, y:y+N].flat)

for x in range(0,N*N,N)

for y in range(0,N*N,N)])

5

Constraint Problems are Everywhere

6

3

© Source unknown. All rights reserved. This content is excluded from our Creative Commons
license. For more information, see http://ocw.mit.edu/fairuse.

http://ocw.mit.edu/fairuse
http://4c110.ucc.ie/numberjack/home

Outline

•� Analysis of constraint propagation

•� Solving CSPs using Search

Brian Williams, Fall 10

 7

What is the Complexity of AC-1?

AC-1(CSP)

Input: A network of constraints CSP = <X, D, C>.

Output: CSP’, the largest arc-consistent subset of CSP.

1.� repeat

2.� for every cij � C,

3.� Revise(xi, xj)

4.� Revise(xj, xi)

5.� endfor

6.� until no domain is changed.

Assume:

•� There are n variables.

•� Domains are of size at most k.

•� There are e binary constraints.
Brian Williams, Fall 10 8

4

What is the Complexity of AC-1?

Assume:

•� There are n variables.

•� Domains are of size at most k.

•� There are e binary constraints.

Which is the correct complexity?

1.� O(k2)

2.� O(enk2)

3.� O(enk3)

4.� O(nek)

Brian Williams, Fall 10

 9

Revise: A directed arc consistency procedure

Revise (xi, xj)

Input: Variables xi and xj with domains Di and Dj and constraint relation Rij.

Output: pruned Di, such that xi is directed arc-consistent relative to xj.

O(k)

1.� for each ai � Di

2.� if there is no aj � Dj such that <ai, aj> � Rij
* O(k)

3.� then delete ai from Di.

4.� endif

5.� endfor

Complexity of Revise?

= O(k2)

where k = max |D |
i i

Brian Williams, Fall 10

10

5

•�

Full Arc-Consistency via AC-1

AC-1(CSP)

Input: A network of constraints CSP = <X, D, C>.

Output: CSP’, the largest arc-consistent subset of CSP.

1.� repeat

2.� for every cij � C, O(2e*revise)

3.� Revise(xi, xj)

4.� Revise(xj, xi)

5.� endfor

* O(nk)

6.� until no domain is changed.

Complexity of AC-1?

= O(nk*e*revise)

= O(enk3)

where k = maxi |Di|

Brian Williams, Fall 10 n = |X|, e = |C|
11

What is the Complexity of

Constraint Propagation using AC-3?

Assume:

•� There are n variables.

Domains are of size at most k.

•� There are e binary constraints.

Which is the correct complexity?

1.� O(k2)

2.� O(ek2)

3.� O(ek3)

4.� O(ek)

Brian Williams, Fall 10

12

6

•�

Full Arc-Consistency via AC-3

AC-3(CSP)

Input: A network of constraints CSP = <X, D, C>.

Output: CSP’, the largest arc-consistent subset of CSP.

1.� for every cij �C, O(e) +

2.� queue � queue � {<xi,xj>, <xi,xj>}

3.� endfor

4.� while queue � {}

5.� select and delete arc <xi, xj> from queue

6.� Revise(xi, xj) O(k2)

7.� if Revise(xI, xJ) caused a change in Di. * O(ek)

8.� then queue � queue � {<xk,xI> | k � i, k � j}

9.� endif

10. � endwhile

Complexity of AC-3?

= O(e+ek*k2) = O(ek3) where k = max |D |, n = |X|, e = |C|
i i

Brian Williams, Fall 10 13

Is arc consistency sound and complete?

An arc consistent solution selects a value for every variable

from its arc consistent domain.

Soundness: All solutions to the CSP are arc consistent

solutions?

Yes

•� No

Completeness: All arc-consistent solutions are solutions to the

CSP?

•� Yes

•� No

R, G

R, GR, G

Brian Williams, Fall 10
14

7

 15

Incomplete: Arc consistency doesn’t

rule out all infeasible solutions

R, G

R, GR, G

R, G R, G

B, G

Graph

Coloring
arc consistent, but

no solutions.

arc consistent, but

2 solutions, not 8.

B,R,G

B,G,R

Brian Williams, Fall 10

To Solve CSPs We Combine

1.� Arc consistency (via constraint propagation)

•� Eliminates values that are shown locally to not be a

part of any solution.

2.� Search

•� Explores consequences of committing to particular

assignments.

Methods That Incorporate Search:

•� Standard Search

•� Back Track Search (BT)

•� BT with Forward Checking (FC)

•� Dynamic Variable Ordering (DV)

•� Iterative Repair (IR)

•� Conflict-directed Back Jumping (CBJ)
16

8

Solving CSPs using Generic Search
•� State •� Partial assignment to variables,

made thus far.

•� Initial State •� No assignment.

•� Operator •� Creates new assignment � (Xi = vij)

•� Select any unassigned variable Xi

•� Select any one of its domain values vij

•� Child extends parent assignments with new.

•� Goal Test
•� All variables are assigned.

•� All constraints are satisfied.

•� Branching factor?

�� Sum of domain size of all variables O(|v|*|d|).

•� Performance?

�� Exponential in the branching factor O([|v|*|d|]|v|). 17

R, G R, G

R, G, B
V1

V3

V2

 18

Search Performance on N Queens

•� Standard Search

•� Backtracking

•� A handful of queens

1

2

3

4

Q

Q

Q

Q

9

Solving CSPs with Standard Search

Standard Search:

•� Children select any value for any variable [O(|v|*|d|)].

•� Test complete assignments for consistency against CSP.

Observations:

1.� The order in which variables are assigned does not change the solution.

•� Many paths denote the same solution,

•� (|v|!),

�� expand only one path (i.e., use one variable ordering).

2.� We can identify a dead end before we assign all variables.

•� Extensions to inconsistent partial assignments are always

inconsistent.

�� Check consistency after each assignment.

19

R, G R, G

R, G, B
V1

V3

V2

Back Track Search (BT)
1.� Expand assignments of one variable at each step.

2.� Pursue depth first.

3.� Check consistency after each expansion, and backup.

V3 assignments

Preselect order Assign

of variables to designated

assign variable

V1 assignments

V2 assignments

R
G

B

R, G R, G

R, G, B
V1

V3

V2

20

10

Back Track Search (BT)
1.� Expand assignments of one variable at each step.

2.� Pursue depth first.

3.� Check consistency after each expansion, and backup.

R
G

R G

R G

R G

R
G

B

R
G

R G R G

V1 assignments

V2 assignments

V3 assignments

Preselect order Assign Backup at

of variables to designated inconsistent

assign variable assignment

R, G R, G

R, G, B
V1

V3

V2

21

Procedure Backtracking(<X,D,C>)
Input: A constraint network R = <X, D, C>

Output: A solution, or notification that the network is inconsistent.

 i � 1; ai = {} Initialize variable counter, assignments,

D’i � Di; Copy domain of first variable.

while 1 � i � n

instantiate xi � Select-Value(); Add to assignments ai.

if xi is null No value was returned,

i � i - 1; then backtrack

else

 i � i + 1; else step forward and

 D’i � Di; copy domain of next variable

end while

if i = 0

return “inconsistent”

else

return ai , the instantiated values of {xi, …, xn}

end procedure
22

11

Procedure Select-Value()

Output: A value in D’i consistent with ai-1, or null, if none.

while D’i is not empty

select an arbitrary element a � D’i and remove a from D’i;

if consistent(ai-1, xi = a)

return a;

 end while

return null no consistent value

end procedure

Constraint Processing,

by R. Dechter

pgs 123-127

23

24

Search Performance on N Queens

•� Standard Search

•� Backtracking

•� BT with Forward Checking

•� A handful of queens

•� About 15 queens

1

2

3

4

Q

Q

Q

Q

12

Combining Backtracking and

Limited Constraint Propagation

Initially: Prune domains using constraint propagation (optional)

Loop:

•� If complete consistent assignment, then return it, Else…

•� Choose unassigned variable.

•� Choose assignment from variable’s pruned domain.

•� Prune (some) domains using Revise (i.e., arc-consistency).

•� If a domain has no remaining elements, then backtrack.

Question:	 Full propagation is O(ek3),

How much propagation should we do?

Very little (except for big problems)

Forward Checking (FC)

•� Check arc consistency ONLY for arcs that terminate
 25

on the new assignment [O(e k) total].

Backtracking with Forward Checking (BT-FC)

2. After selecting each assignment, remove any values of

neighboring domains that are inconsistent with the new assignment.

R
V1 assignments

V2 assignments

V3 assignments

R, G R, G

R, G, B
V1

V3

V2

1. Perform initial pruning.

26

13

Backtracking with Forward Checking (BT-FC)

2. After selecting each assignment, remove any values of

neighboring domains that are inconsistent with the new assignment.

R
V1 assignments

V2 assignments

V3 assignments

R, G R, G

R
V1

V3

V2

1. Perform initial pruning.

27

Backtracking with Forward Checking (BT-FC)

2. After selecting each assignment, remove any values of

neighboring domains that are inconsistent with the new assignment.

R
V1 assignments

V2 assignments

V3 assignments

G G

R
V1

V3

V2

1. Perform initial pruning.

28

14

Backtracking with Forward Checking (BT-FC)

2. After selecting each assignment, remove any values of

neighboring domains that are inconsistent with the new assignment.

R
V1 assignments

V2 assignments
G

V3 assignments

Note: No need to

check new

assignment against

1. Perform initial pruning. previous assignments

29

G G

R
V1

V3

V2

Backtracking with Forward Checking (BT-FC)

2. After selecting each assignment, remove any values of

neighboring domains that are inconsistent with the new assignment.

R
V1 assignments

V2 assignments
G

x
V3 assignments

3. We have a conflict whenever a domain becomes empty.

•� Backtrack

G

R
V1

V3

V2

1. Perform initial pruning.

30

15

Backtracking with Forward Checking (BT-FC)

2. After selecting each assignment, remove any values of

neighboring domains that are inconsistent with the new assignment.

R
V1 assignments

V2 assignments
G

x
x

V3 assignments

3. We have a conflict whenever a domain becomes empty.

•� Backtrack

1. Perform initial pruning.

31

R
V1

V3

V2

Backtracking with Forward Checking (BT-FC)

2. After selecting each assignment, remove any values of

neighboring domains that are inconsistent with the new assignment.

V1 assignments G

V2 assignments

V3 assignments

3. We have a conflict whenever a domain becomes empty.

•� Backtrack

•� Restore domains
R, G R, G

G, B
V1

V3

V2

1. Perform initial pruning.

32

16

Backtracking with Forward Checking (BT-FC)

2. After selecting each assignment, remove any values of

neighboring domains that are inconsistent with the new assignment.

V1 assignments G

V2 assignments

V3 assignments

3. We have a conflict whenever a domain becomes empty.

•� Backtrack

•� Restore domains

1. Perform initial pruning.

33

R, G R, G

 G
V1

V3

V2

Backtracking with Forward Checking (BT-FC)

2. After selecting each assignment, remove any values of

neighboring domains that are inconsistent with the new assignment.

V1 assignments G

V2 assignments

V3 assignments

3. We have a conflict whenever a domain becomes empty.

•� Backtrack

•� Restore domains
R R

G
V1

V3

V2

1. Perform initial pruning.

34

17

Backtracking with Forward Checking (BT-FC)

2. After selecting each assignment, remove any values of

neighboring domains that are inconsistent with the new assignment.

V1 assignments G

V2 assignments R

V3 assignments

3. We have a conflict whenever a domain becomes empty.

•� Backtrack

•� Restore domains

1. Perform initial pruning.

35

R R

G
V1

V3

V2

Backtracking with Forward Checking (BT-FC)

2. After selecting each assignment, remove any values of

neighboring domains that are inconsistent with the new assignment.

V1 assignments G

V2 assignments R

x
x

V3 assignments

3. We have a conflict whenever a domain becomes empty.

•� Backtrack

•� Restore domains
R

G
V1

V3

V2

1. Perform initial pruning.

36

18

Backtracking with Forward Checking (BT-FC)

2. After selecting each assignment, remove any values of

neighboring domains that are inconsistent with the new assignment.

B
V1 assignments

V2 assignments

V3 assignments

3. We have a conflict whenever a domain becomes empty.

•� Backtrack

•� Restore domains

1. Perform initial pruning.

37

R, G R, G

B
V1

V3

V2

Backtracking with Forward Checking (BT-FC)

2. After selecting each assignment, remove any values of

neighboring domains that are inconsistent with the new assignment.

B
V1 assignments

V2 assignments

V3 assignments

3. We have a conflict whenever a domain becomes empty.

•� Backtrack

•� Restore domains
R, G R, G

 B
V1

V3

V2

1. Perform initial pruning.

38

19

Backtracking with Forward Checking (BT-FC)

2. After selecting each assignment, remove any values of

neighboring domains that are inconsistent with the new assignment.

B

R

V1 assignments

V2 assignments

V3 assignments

3. We have a conflict whenever a domain becomes empty.

•� Backtrack

•� Restore domains

1. Perform initial pruning.

39

R R, G

B
V1

V3

V2

Backtracking with Forward Checking (BT-FC)

2. After selecting each assignment, remove any values of

neighboring domains that are inconsistent with the new assignment.

B
V1 assignments

V2 assignments R

V3 assignments

3. We have a conflict whenever a domain becomes empty.

•� Backtrack

•� Restore domains
R G

B
V1

V3

V2

1. Perform initial pruning.

40

20

Backtracking with Forward Checking (BT-FC)

2. After selecting each assignment, remove any values of

neighboring domains that are inconsistent with the new assignment.

B

R

V1 assignments

V2 assignments

V3 assignments G

3. We have a conflict whenever a domain becomes empty.

•� Backtrack

R G

B
V1

•� Restore domains V2 V3

Solution!

1. Perform initial pruning.

41

Backtracking with Forward Checking (BT-FC)

2. After selecting each assignment, remove any values of

neighboring domains that are inconsistent with the new assignment.

B

G

V1 assignments

V2 assignments

V3 assignments R

3. We have a conflict whenever a domain becomes empty.

•� Backtrack BT-FC is generally

faster than pure BT•� Restore domains
because it avoidsG R

B
V1

V3

V2

rediscovering

inconsistencies.
1. Perform initial pruning.

42

21

Procedure Backtrack-Forward-Checking(<x,D,C>)

Input: A constraint network R = <X, D, C>

Output: A solution, or notification the network is inconsistent.

Note: Maintains n domain copies D’ for resetting, one for each search level i.

D’i � Di for 1 � i � n; (copy all domains)

 i � 1; ai = {} (init variable counter, assignments)

while 1 � i � n

instantiate xi � Select-Value-FC(); (add to assignments, making ai)

if xi is null (no value was returned)

reset each D’k for k > i, to its value before xi was last instantiated;

i � i - 1; (backtrack)

else

 i � i + 1; (step forward)

end while

if i = 0

return “inconsistent” Constraint Processing,

by R. Dechterelse

return ai , the instantiated values of {xi, …, xn}
pgs 131-4, 141

end procedure 43

Procedure Select-Value-FC()

Output: A value in D’i consistent with ai-1, or null, if none. O(ek2)

while D’i is not empty

select an arbitrary element a � D’i and remove a from D’i;

for all k, i < k � n

for all values b in D’k

 if not consistent(ai-1, xi = a, xk = b)

 remove b from D’k;

end for

if D’k is empty (xi = a leads to a dead-end, don’t select a)

reset each D’k, i < k � n to its value before a was selected;

 else

return a;

 end while

Constraint Processing,

return null by R. Dechter

end procedure pgs 131-4, 141

44

22

 45

Search Performance on N Queens

•� Standard Search

•� Backtracking

•� BT with Forward Checking

•� Dynamic Variable Ordering

•� A handful of queens

•� About 15 queens

•� About 30 queens

1

2

3

4

Q

Q

Q

Q

BT-FC with dynamic ordering

Traditional backtracking uses a fixed ordering over variables & values.

Typically better to choose ordering dynamically as search proceeds.

•� Most Constrained Variable

When doing forward-checking, pick variable with fewest legal

values in domain to assign next.

�� minimizes branching factor.

•� Least Constraining Value

Choose value that rules out the smallest number of values in

variables connected to the chosen variable by constraints.

�� Leaves most options to finding a satisfying assignment.

46

23

Colors: R, G, B, Y

A

B

DE C

R, Y
G, B, Y

F R, B, Y

Which country should we color next?

What color should we pick for it?

E most-constrained variable

(smallest domain).

RED least-constraining value

(eliminates fewest values from

neighboring domains).

47

for 1 � i � n;

ai = {}

Procedure Dynamic-Var-Forward-Checking(<x,D,C>)

Input: A constraint network R = <X, D, C>

Output: A solution, or notification the network is inconsistent.

D’i � Di Copy all domains

i � 1;
 Init variable counter and assignments

s = mini < j � n |D’j| Find unassigned variable w smallest domain
xi+1�xs Rearrange variables so that xs follows xi

while 1 � i � n

instantiate xi � Select-Value-FC(); Select value (dynamic) and add to assignments, ai

if xi is null No value to assign was returned.

reset each D’k for k > i, to its value before xi was last instantiated;

i � i - 1; Backtrack

else

if I < n

i � i + 1; Step forward to xs

 s = mini < j � n |D’j| Find unassignedvariable w smallest domain
xi+1�xs Rearrange variables so that xs follows xi

else

 i � i + 1; Step forward to xs

end while

if i = 0
return “inconsistent” Constraint Processing,

else
by R. Dechterreturn ai , the instantiated values of {xi, …, xn}

end procedure pgs 137-140

48

24

Search Performance on N Queens

1

2

3

4

Q

Q

Q

Q

•�	 Standard Search •� A handful of queens

•�	 Backtracking •� About 15 queens

•�	 BT with Forward Checking •� About 30 queens

•�	 Dynamic Variable Ordering •� About 1,000 queens

•�	 Iterative Repair

•� Conflict-directed Back
Jumping

49

Incremental Repair (Min-Conflict Heuristic)

1.	 Initialize a candidate solution using a “greedy” heuristic.

– gets the candidate “near” a solution.

2.	 Select a variable in a conflict and assign it a value that minimizes

the number of conflicts (break ties randomly).

The heuristic is used in a local hill-climber (without or with backup).

R R R: 3 BRR GRR RGR RRG

R, G R, G

R, G, B
V1

V3

V2

50

25

Min-Conflict Heuristic

Pure hill climber (w/o backtracking) gets stuck in local minima:

•�Add random moves to attempt to get out of minima.

•�Add weights on violated constraints and

increase weight every cycle the constraint remains violated.

Sec

(Sparc 1)
 100

101 102 103 104 105 106

Performance on n-queens.
10

(with good initial guesses)
1

10-1

10-2

Size (n)

GSAT: Randomized hill climber used to solve propositional logic

SATisfiability problems.

51

To Solve CSP <X,D,C> We Combine:

1.� Reasoning - Arc consistency via constraint propagation

•� Eliminates values that are shown locally to not be a part

of any solution.

2.� Search

•� Explores consequences of committing to particular

assignments.

Methods That Incorporate Search:

•� Standard Search

•� Back Track Search (BT)

•� BT with Forward Checking (FC)

•� Dynamic Variable Ordering (DV)

•� Iterative Repair (IR)

•� Conflict-directed Back Jumping (CBJ)
52

26

Next Lecture: Back Jumping

Backtracking At dead end, backup to the most recent variable.

Backjumping At dead end, backup to the most recent variable that

eliminated some value in the domain of the dead end variable.

53

27

MIT OpenCourseWare
http://ocw.mit.edu

16.410 / 16.413 Principles of Autonomy and Decision Making
Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

