Constraint Programming: Modeling, Arc Consistency and Propagation

Brian C. Williams
16.410-13

September 22nd, 2010
Slides draw material from:
6.034 notes, by Tomas Lozano Perez

AIMA, by Stuart Russell \& Peter Norvig
Constraint Processing, by Rina Dechter

Assignments

- Assignment:
- Problem Set \#2 due today, Wed. Sept. 22 ${ }^{\text {nd }}, 2010$.
- Problem Set \#3: Analysis, Path Planning and Constraint Programming, out today, due Wed., Sept. 29 ${ }^{\text {th }}, 2010$.
- Reading:
- Today: [AIMA] Ch. 6.1, 24.3-5; Constraint Modeling.
- Monday: [AIMA] Ch. 6.2-5; Constraint Satisfaction.
- To Learn More: Constraint Processing, by Rina Dechter
- Ch. 2: Constraint Networks
-Ch. 3: Consistency Enforcing and Propagation

Outline

- Interpreting line diagrams
- Constraint satisfaction problems (CSP) [aka constraint programs (CP)].
- Solving CSPs
- Case study: Scheduling (Appendix)

Outline

- Interpreting line diagrams
- Constraint modeling
- Constraint propagation
- Constraint satisfaction problems (CSP) aka constraint programs (CP)
- Solving CSPs
- Case study: Scheduling (Appendix)

Line Labeling as Constraint Programming

18 vertex labelings that are

Huffman Clowes (1971):
Interpretation of opaque, trihedral solids with no surface marks.
Waltz (1972): Compute labeling through local propagation. ,

Outline

- Interpreting line diagrams
- Constraint modeling
- Constraint propagation
- Constraint satisfaction problems (CSP) aka constraint programs (CP).
- Solving CSPs
- Case study: Scheduling (Appendix)

Modeling: Make Simplifying Assumptions

1. Limited line interpretations:

No shadows or cracks.
2. Three-faced vertices:

Intersection of exactly three object faces
(e.g., no pyramid tops).
3. General position:

Small perturbations of selected viewing points can not lead to a change in junction type.

Consider:

Modeling: Systematically derive all realizable junction types

- a three face vertex, which divides space into octants,
- (not guaranteed to be at right angles), and
- all possible fillings of octants, viewed from all empty octants.

Modeling: Systematically derive all realizable junction types

- Case 1: View seven filled octants from the only empty octant.

Modeling: Systematically derive all realizable junction types

- Case 2a: View one filled octant from all empty upper octants....

Brian Williams, Fall 10

Modeling: Systematically derive all realizable junction types

- Case 2b: View one filled octant from all empty lower octants.

Outline

- Interpreting line diagrams
- Constraint modeling
- Constraint propagation
- Constraint satisfaction problems (CSP) aka constraint programs (CP).
- Solving CSPs
- Case study: Scheduling (Appendix)

Without background borders, interpretations become unstable.

Brian Williams, Fall 10

Outline

- Interpreting line diagrams
- Constraint satisfaction problems (CSP) aka constraint programs (CP).
- Solving CSPs
- Case study: Scheduling (appendix)

Constraint Satisfaction Problems

4 Queens Problem:
Place 4 queens on a 4×4 chessboard so that no queen can attack another.

How do we formulate?
Variables Chessboard positions

Domains Queen 1-4 or blank
Constraints Two positions on a line (vertical, horizontal, diagonal) cannot both be Q

Constraint Satisfaction Problems (CSP)

Input: A Constraint Satisfaction Problem is a triple $<\mathrm{V}, \mathrm{D}, \mathrm{C}>$, where:

- V is a set of variables V_{i}
- D is a set of variable domains,
- The domain of variable V_{i} is denoted D_{i}
- $C=$ is a set of constraints on assignments to V
- Each constraint $\mathrm{C}_{\mathrm{i}}=\left\langle\mathrm{S}_{\mathrm{i}}, \mathrm{R}_{\mathrm{i}}\right\rangle$ specifies allowed variable assignments.
- S_{i} the constraint's scope, is a subset of variables V .
- R_{i} the constraint's relation, is a set of assignments to S_{i}.

Output: A full assignment to V , from elements of V 's domain, such that all constraints in C are satisfied.

Example: "Provide one A and two B's."

- $V=\{A, B\}$, each with domain $D_{i}=\{1,2\}$
- $C=\{<\{A, B\},\{<1,2>,<1,1>\}>$
$<\{A, B\},\{<1,2>,<2,2>\}>\}$
- Output: <1,2>

Brian Williams, Fall 10
"one A"
"two Bs"
(for example)

Conventions

- List scope in subscript.
- Specify one constraint per scope.

Example: "Provide one A and two B's."

- $C=\left\{C_{A B}\right\}$

$$
C_{A B}=\{<1,2>\}
$$

- $C=\left\{C_{A}, C_{B}\right\}$

$$
C_{A}=\{<1>\}
$$

$$
C_{B}=\{<2>\}
$$

Good Encodings Are Essential: 4 Queens

4 Queens Problem:
Place 4 queens on a 4×4
chessboard so that no queen can attack another.

How big is the encoding?
Variables Chessboard positions

Domains Queen 1-4 or blank
Constraints Two positions on a line (vertical, horizontal, diagonal) cannot both be Q

Good Encodings Are Essential: 4 Queens

Place queens so that no queen can attack another.

What is a better encoding?

			Q	
				Q
	Q			
				Q

- Assume one queen per column.
- Determine what row each queen should be in.

Variables $\quad Q_{1}, Q_{2}, Q_{3}, Q_{4}$,
Domains $\quad\{1,2,3,4\}$
Constraints $Q_{i}<>Q_{j} \quad$ "On different rows" $\left|Q_{i}-Q_{j}\right|<>|i-j| \quad$ "Stay off the diagonals"

Example

$$
C_{1,2}=\{(1,3)(1,4)(2,4)(3,1)(4,1)(4,2)\}
$$

Good Encodings Are Essential: 4 Queens

Place queens so that no queen can attack another.

Variables $\quad Q_{1}, Q_{2}, Q_{3}, Q_{4}$,

1	\uparrow	Q		
				Q
	Q			
			Q	

Domains $\quad\{1,2,3,4\}$
Constraints $Q_{i}<>Q_{j} \quad$ "On different rows"

$$
\left|Q_{i}-Q_{j}\right|<>|i-j| \quad \text { "Stay off the diagonals" }
$$

Example: $\quad \mathrm{C}_{1,2}=\{(1,3)(1,4)(2,4)(3,1)(4,1)(4,2)\}$
What is C_{13} ?

A general class of CSPs

Finite Domain, Binary CSPs

- each constraint relates at most two variables.
- each variable domain is finite.

Property: all n-ary CSPs are reducible to binary CSPs.

Depict as a Constraint Graph

- Nodes (vertices) are variables.
- Arcs (edges) are binary constraints.

Example: Graph Coloring

Pick colors for map regions, without coloring adjacent regions with the same color

Variables regions

Domains
allowed colors

Constraints adjacent regions must have different colors

Outline

- Interpreting line problems
- Constraint satisfaction problems (CSP) aka constraint programs (CP).
- Solving CSPs
- Arc-consistency and propagation
- Analysis of constraint propagation (next lecture)
- Search (next lecture)
- Case study: Scheduling (appendix)

Good News / Bad News

Good News

- very general \& interesting family of problems.
- Problem formulation used extensively in autonomy and decision making applications.

Bad News includes NP-Hard (intractable ?) problems

Algorithmic Design Paradigm

Solving CSPs involves a combination of:

1. Inference

- Solve partially by eliminating values that can't be part of any solution (constraint propagation).
- Make implicit constraints explicit.

2. Search

- Try alternative assignments against constraints.

Inference: Waltz constraint propagation for visual interpretation generalizes to arc-consistency and the AC-3 algorithm.

Directed Arc Consistency

Idea: Eliminate values of a variable domain that can never satisfy a specified constraint (an arc).

Definition: $\operatorname{arc}\left\langle\mathrm{x}_{\mathrm{i}}, \mathrm{x}_{\mathrm{j}}\right\rangle$ is arc consistent if $\left\langle\mathrm{x}_{\mathrm{i}}, \mathrm{x}_{\mathrm{j}}\right\rangle$ and $\left\langle\mathrm{x}_{\mathrm{j}}, \mathrm{x}_{\mathrm{i}}\right\rangle$ are directed arc consistent.

Directed Arc Consistency

Definition: arc $<x_{i}, x_{j}>$ is directed arc consistent if

- for every a_{i} in D_{i},
- there exists some a_{j} in D_{j} such that
- assignment $<\mathrm{a}_{\mathrm{i}}, \mathrm{a}_{\mathrm{j}}>$ satisfies constraint C_{ij},
$\cdot \forall a_{i} \in D_{i}, \exists a_{j} \in D_{j}$ such that $\left.<a_{i}, a_{j}\right\rangle \in C_{i j}$
- \forall denotes "for all," \exists denotes "there exists" and \in denotes "in." Brian Williams, Fall 10

Revise: A directed arc consistency procedure

Definition: arc $\left\langle x_{i}, x_{j}\right\rangle$ is directed arc consistent if $\forall \mathrm{a}_{\mathrm{i}} \in \mathrm{D}_{\mathrm{i}}, \exists \mathrm{a}_{\mathrm{j}} \in \mathrm{D}_{\mathrm{j}}$ such that $\left\langle\mathrm{a}_{\mathrm{i}}, \mathrm{a}_{\mathrm{j}}\right\rangle \in \mathrm{C}_{\mathrm{ij}}$

Revise ($\mathrm{x}_{\mathrm{i}}, \mathrm{x}_{\mathrm{j}}$)
Input: Variables x_{i} and x_{j} with domains D_{i} and D_{j} and constraint relation $R_{i j}$. Output: pruned D_{i}, such that x_{i} is directed arc-consistent relative to x_{j}.

1. for each $a_{i} \in D_{i}$
2. if there is no $a_{j} \in D_{j}$ such that $\left\langle a_{i}, a_{j}\right\rangle \in R_{i j}$
3. then delete a_{i} from D_{i}.
4. endif
5. endfor

Constraint Processing, by R. Dechter pgs 54-6

Full Arc Consistency over All Constraints via Constraint Propagation

Definition: arc $\left.<x_{i}, x_{j}\right\rangle$ is directed arc consistent if $\forall a_{i} \in D_{i}, \exists a_{j} \in D_{j}$ such that $\left\langle a_{i}, a_{j}\right\rangle \in C_{i j}$

Constraint Propagation:
To achieve (directed) arc consistency over CSP:

1. For every arc $C_{i j}$ in CSP, with tail domain D_{i}, call Revise.
2. Repeat until quiescence:

If an element was deleted from D_{i}, then repeat Step 1
(AC-1)

Full Arc-Consistency via AC-1

AC-1(CSP)

Input: A constraint satisfaction problem CSP = <X, D, C>. Output: CSP', the largest arc-consistent subset of CSP.

1. repeat
2. for every $\mathrm{c}_{\mathrm{ij}} \in \mathrm{C}$,
3. Revise $\left(\mathrm{x}_{\mathrm{i}}, \mathrm{x}_{\mathrm{i}}\right)$
4. Revise $\left(\mathrm{x}_{\mathrm{j}}, \mathrm{x}_{\mathrm{i}}\right)$
5. endfor

For every arc, prune head and tail domains.

Constraint Processing,
6. until no domain is changed.
by R. Dechter
pgs 57

Full Arc Consistency via Constraint Propagation

Definition: arc $<x_{i}, x_{j}>$ is directed arc consistent if

$$
\forall a_{i} \in D_{i}, \exists a_{j} \in D_{j} \text { such that }<a_{i}, a_{j}>\in C_{i j}
$$

Constraint Propagation:
To achieve (directed) arc consistency over CSP:

1. For every arc C_{ij} in CSP, with tail domain D_{i}, call Revise.
2. Repeat until quiescence:

If an element was deleted from D_{i}, then

$$
\text { repeat Step } 1
$$

OR call Revise on each arc with head D_{i}
(use FIFO Q, remove duplicates)

Full Arc-Consistency via AC-3 (Waltz CP)

AC-3(CSP)

Input: A constraint satisfaction problem CSP = <X, D, C>. Output: CSP', the largest arc-consistent subset of CSP.

1. for every $\mathrm{c}_{\mathrm{ij}} \in \mathrm{C}$,

Constraint Processing,
2. queue \leftarrow queue $\cup\left\{\left\langle\mathrm{x}_{\mathrm{i}}, \mathrm{x}_{\mathrm{j}}\right\rangle,\left\langle\mathrm{x}_{\mathrm{j}}, \mathrm{x}_{\mathrm{i}}\right\rangle\right\}$
3. endfor pgs 58-9
4. while queue $\neq\{ \}$
5. select and delete arc $\left\langle x_{i}, x_{j}\right\rangle$ from queue
6. $\operatorname{Revise}\left(\mathrm{x}_{\mathrm{i}}, \mathrm{x}_{\mathrm{j}}\right)$
7. if Revise $\left(x_{i}, x_{j}\right)$ caused a change in D_{i}
8. then queue \leftarrow queue $\cup\left\{\left\langle x_{k}, x_{i}\right\rangle \mid k \neq i, k \neq j\right\}$
9. endif
10. endwhile

Constraint Propagation Example AC-3

Graph Coloring

Initial Domains

Each undirected arc denotes two directed arcs.

Constraint Propagation Example AC-3

Graph Coloring
Initial Domains

Arc examined	Value deleted

Arcs to examine
$\mathrm{V}_{1}-\mathrm{V}_{2}, \mathrm{~V}_{1}-\mathrm{V}_{3}, \mathrm{~V}_{2}-\mathrm{V}_{3}$

- Introduce queue of arcs to be examined.
- Start by adding all arcs to the queue.

Constraint Propagation Example AC-3

Arc examined	Value deleted

Arcs to examine

$$
V_{1}-V_{2}, V_{1}-V_{3}, V_{2}-V_{3}
$$

- $\mathrm{V}_{\mathrm{i}}-\mathrm{V}_{\mathrm{j}}$ denotes two arcs, between V_{i} and V_{j}.
- $\mathrm{V}_{\mathrm{i}}>\mathrm{V}_{\mathrm{j}}$ denotes an arc from V_{i} to V_{j}. 42

Constraint Propagation Example AC-3

Graph Coloring
Initial Domains

Arc examined	Value deleted
$\mathrm{V}_{1}>\mathrm{V}_{2}$	

Arcs to examine

$$
V_{2}>V_{1}, V_{1}-V_{3}, V_{2}-V_{3}
$$

- Delete unmentioned tail values $\cdot \mathrm{V}_{\mathrm{i}}-\mathrm{V}_{\mathrm{j}}$ denotes two arcs, between V_{i} and V_{j}.
- $\mathrm{V}_{\mathrm{i}}>\mathrm{V}_{\mathrm{j}}$ denotes an arc from V_{i} to V_{j}. 43

Constraint Propagation Example AC-3

Graph Coloring

Initial Domains

Arc examined	Value deleted
$\mathrm{V}_{1}>\mathrm{V}_{2}$	none

Arcs to examine

$$
\mathrm{V}_{2}>\mathrm{V}_{1}, \mathrm{~V}_{1}-\mathrm{V}_{3}, \mathrm{~V}_{2}-\mathrm{V}_{3}
$$

- Delete unmentioned tail values $\cdot \mathrm{V}_{\mathrm{i}}-\mathrm{V}_{\mathrm{j}}$ denotes two arcs, between V_{i} and V_{j}.
- $\mathrm{V}_{\mathrm{i}}>\mathrm{V}_{\mathrm{j}}$ denotes an arc from V_{i} to V_{j}. ${ }_{44}$

Constraint Propagation Example AC-3

Graph Coloring
Initial Domains

Arc examined	Value deleted
$\mathrm{V}_{1}>\mathrm{V}_{2}$	none
$\mathrm{V}_{2}>\mathrm{V}_{1}$	

Arcs to examine
$V_{1}-V_{3}, V_{2}-V_{3}$

- Delete unmentioned tail values $\cdot \mathrm{V}_{\mathrm{i}}-\mathrm{V}_{\mathrm{j}}$ denotes two arcs, between V_{i} and V_{j}.
- $\mathrm{V}_{\mathrm{i}}>\mathrm{V}_{\mathrm{j}}$ denotes an arc from V_{i} to V_{j}. ${ }^{45}$

Constraint Propagation Example AC-3

Graph Coloring

Initial Domains

Arc examined	Value deleted
$\mathrm{V}_{1}>\mathrm{V}_{2}$	none
$\mathrm{V}_{2}>\mathrm{V}_{1}$	none

Arcs to examine

$$
V_{1}-V_{3}, V_{2}-V_{3}
$$

- Delete unmentioned tail values $\cdot \mathrm{V}_{\mathrm{i}}-\mathrm{V}_{\mathrm{j}}$ denotes two arcs, between V_{i} and V_{j}.
- $\mathrm{V}_{\mathrm{i}}>\mathrm{V}_{\mathrm{j}}$ denotes an arc from V_{i} to V_{j}. ${ }_{\text {46 }}$

Constraint Propagation Example AC-3

Graph Coloring
Initial Domains

Arc examined	Value deleted
$\mathrm{V}_{1}-\mathrm{V}_{2}$	none

Arcs to examine
$\mathrm{V}_{1}-\mathrm{V}_{3}, \mathrm{~V}_{2}-\mathrm{V}_{3}$

- Delete unmentioned tail values $\cdot \mathrm{V}_{\mathrm{i}}-\mathrm{V}_{\mathrm{j}}$ denotes two arcs, between V_{i} and V_{j}.
- $\mathrm{V}_{\mathrm{i}}>\mathrm{V}_{\mathrm{j}}$ denotes an arc from V_{i} to V_{j}. ${ }_{47}$

Constraint Propagation Example AC-3

Graph Coloring

Initial Domains

Arc examined	Value deleted
$\mathrm{V}_{1}-\mathrm{V}_{2}$	none
$\mathrm{V}_{1}>\mathrm{V}_{3}$	

Arcs to examine

$$
V_{3}>V_{1}, V_{2}-V_{3}
$$

- Delete unmentioned tail values $\cdot \mathrm{V}_{\mathrm{i}}-\mathrm{V}_{\mathrm{j}}$ denotes two arcs, between V_{i} and V_{j}.
- $\mathrm{V}_{\mathrm{i}}>\mathrm{V}_{\mathrm{j}}$ denotes an arc from V_{i} to V_{j}. ${ }^{48}$

Constraint Propagation Example AC-3

Graph Coloring
Initial Domains

Arc examined	Value deleted
$V_{1}-V_{2}$	none
$V_{1}>V_{3}$	$V_{1}(G)$

Arcs to examine

$$
V_{3}>V_{1}, V_{2}-V_{3}
$$

IF An element of a variable's domain is removed,

Constraint Propagation Example AC-3

Graph Coloring

Initial Domains

Arc examined	Value deleted
$V_{1}-V_{2}$	none
$V_{1}>V_{3}$	$V_{1}(\mathbf{G})$

IF An element of a variable's domain is removed, THEN add all arcs to that variable to the examination queue.

Constraint Propagation Example AC-3

Graph Coloring
Initial Domains

Arc examined	Value deleted
$V_{1}-V_{2}$	none
$V_{1}>V_{3}$	$V_{1}(G)$
$V_{3}>V_{1}$	

- Delete unmentioned tail values

IF An element of a variable's domain is removed,
THEN add all arcs to that variable to the examination queue. 51

Constraint Propagation Example AC-3

Graph Coloring

Initial Domains

Arc examined	Value deleted
$V_{1}-V_{2}$	none
$V_{1}>V_{3}$	$V_{1}(G)$
$V_{3}>V_{1}$	none

- Delete unmentioned tail values

IF An element of a variable's domain is removed, THEN add all arcs to that variable to the examination queue. 52

Constraint Propagation Example AC-3

Graph Coloring
Initial Domains

Arc examined	Value deleted
$\mathrm{V}_{1}-\mathrm{V}_{2}$	none
$\mathrm{V}_{1}-\mathrm{V}_{3}$	$\mathrm{~V}_{1}(\mathrm{G})$

- Delete unmentioned tail values

IF An element of a variable's domain is removed,
THEN add all arcs to that variable to the examination queue.

Constraint Propagation Example AC-3

Graph Coloring

Initial Domains

Arc examined	Value deleted
$\mathrm{V}_{1}-\mathrm{V}_{2}$	none
$\mathrm{V}_{1}-\mathrm{V}_{3}$	$\mathrm{~V}_{1}(\mathrm{G})$
$\mathrm{V}_{2}>\mathrm{V}_{3}$	

- Delete unmentioned tail values

IF An element of a variable's domain is removed, THEN add all arcs to that variable to the examination queue. 54

Constraint Propagation Example AC-3

Graph Coloring

Initial Domains

Arc examined	Value deleted
$\mathrm{V}_{1}-\mathrm{V}_{2}$	none
$\mathrm{V}_{1}-\mathrm{V}_{3}$	$\mathrm{~V}_{1}(\mathrm{G})$
$\mathrm{V}_{2}>\mathrm{V}_{3}$	$\mathrm{~V}_{2}(G)$

Arcs to examine

- Delete unmentioned tail values

IF An element of a variable's domain is removed,
THEN add all arcs to that variable to the examination queue.

Constraint Propagation Example AC-3

Graph Coloring

Initial Domains

Arc examined	Value deleted
$\mathrm{V}_{1}-\mathrm{V}_{2}$	none
$\mathrm{V}_{1}-\mathrm{V}_{3}$	$\mathrm{~V}_{1}(\mathrm{G})$
$\mathrm{V}_{2}>\mathrm{V}_{3}$	$\mathrm{~V}_{2}(\mathrm{G})$

- Delete unmentioned tail values

IF An element of a variable's domain is removed, THEN add all arcs to that variable to the examination queue. ${ }_{56}^{56}$

Constraint Propagation Example AC-3

Graph Coloring
Initial Domains

Arc examined	Value deleted
$V_{1}-V_{2}$	none
$V_{1}-V_{3}$	$V_{1}(G)$
$V_{2}>V_{3}$	$V_{2}(G)$

- Delete unmentioned tail values

IF An element of a variable's domain is removed,
THEN add all arcs to that variable to the examination queue. 57

Constraint Propagation Example AC-3

Graph Coloring

Initial Domains

Arc examined	Value deleted
$V_{1}-V_{2}$	none
$V_{1}-V_{3}$	$V_{1}(G)$
$V_{2}>V_{3}$	$V_{2}(G)$
$V_{3}>V_{2}$	

- Delete unmentioned tail values

IF An element of a variable's domain is removed, THEN add all arcs to that variable to the examination queue. 58

Constraint Propagation Example AC-3

Graph Coloring
Initial Domains

Arc examined	Value deleted
$V_{1}-V_{2}$	none
$V_{1}-V_{3}$	$V_{1}(G)$
$V_{2}>V_{3}$	$V_{2}(G)$
$V_{3}>V_{2}$	none

- Delete unmentioned tail values

IF An element of a variable's domain is removed,
THEN add all arcs to that variable to the examination queue.

Constraint Propagation Example AC-3

Graph Coloring

Initial Domains

Arc examined	Value deleted
$\mathrm{V}_{1}-\mathrm{V}_{2}$	none
$\mathrm{V}_{1}-\mathrm{V}_{3}$	$\mathrm{~V}_{1}(\mathrm{G})$
$\mathrm{V}_{2}-\mathrm{V}_{3}$	$\mathrm{~V}_{2}(\mathrm{G})$

- Delete unmentioned tail values

IF An element of a variable's domain is removed, THEN add all arcs to that variable to the examination queue. 60

Constraint Propagation Example AC-3

Graph Coloring
Initial Domains

Arc examined	Value deleted
$V_{1}-V_{2}$	none
$V_{1}-V_{3}$	$V_{1}(G)$
$V_{2}-V_{3}$	$V_{2}(G)$
$V_{2}>V_{1}$	

- Delete unmentioned tail values

IF An element of a variable's domain is removed,
THEN add all arcs to that variable to the examination queue.
61

Constraint Propagation Example AC-3

Graph Coloring

Initial Domains

Arc examined	Value deleted
$\mathrm{V}_{1}-\mathrm{V}_{2}$	none
$\mathrm{V}_{1}-\mathrm{V}_{3}$	$\mathrm{~V}_{1}(\mathrm{G})$
$\mathrm{V}_{2}-\mathrm{V}_{3}$	$\mathrm{~V}_{2}(\mathrm{G})$
$\mathrm{V}_{2}>\mathrm{V}_{1}$	none

- Delete unmentioned tail values

IF An element of a variable's domain is removed, THEN add all arcs to that variable to the examination queue. 62

Constraint Propagation Example AC-3

Graph Coloring
Initial Domains

Arc examined	Value deleted
$V_{1}-V_{2}$	none
$V_{1}-V_{3}$	$V_{1}(G)$
$V_{2}-V_{3}$	$V_{2}(G)$
$V_{2}>V_{1}$	none
$V_{1}>V_{2}$	

- Delete unmentioned tail values

IF An element of a variable's domain is removed,
THEN add all arcs to that variable to the examination queue.

Constraint Propagation Example AC-3

Arc examined	Value deleted
$V_{1}-V_{2}$	none
$V_{1}-V_{3}$	$V_{1}(G)$
$V_{2}-V_{3}$	$V_{2}(G)$
$V_{2}>V_{1}$	none
$V_{1}>V_{2}$	$V_{1}(R)$

- Delete unmentioned tail values

IF An element of a variable's domain is removed, THEN add all arcs to that variable to the examination queue. ${ }_{64}$

Constraint Propagation Example AC-3

Graph Coloring
Initial Domains

Arc examined	Value deleted
$V_{1}-V_{2}$	none
$V_{1}-V_{3}$	$V_{1}(G)$
$V_{2}-V_{3}$	$V_{2}(G)$
$V_{2}>V_{1}$	none
$V_{1}>V_{2}$	$V_{1}(R)$

- Delete unmentioned tail values

IF An element of a variable's domain is removed,
THEN add all arcs to that variable to the examination queue.
65

Constraint Propagation Example AC-3

Graph Coloring

Initial Domains

Arc examined	Value deleted
$V_{1}-V_{2}$	none
$V_{1}-V_{3}$	$V_{1}(G)$
$V_{2}-V_{3}$	$V_{2}(G)$
$V_{2}-V_{1}$	$V_{1}(R)$

- Delete unmentioned tail values

IF An element of a variable's domain is removed, THEN add all arcs to that variable to the examination queue. ${ }_{66}$

Constraint Propagation Example AC-3

Graph Coloring
Initial Domains

Arc examined	Value deleted
$V_{1}-V_{2}$	none
$V_{1}-V_{3}$	$V_{1}(G)$
$V_{2}-V_{3}$	$V_{2}(G)$
$V_{2}-V_{1}$	$V_{1}(R)$
$V_{2}>V_{1}$	

- Delete unmentioned tail values

IF An element of a variable's domain is removed,
THEN add all arcs to that variable to the examination queue. ${ }_{67}^{67}$

Constraint Propagation Example AC-3

Arc examined	Value deleted
$V_{1}-V_{2}$	none
$V_{1}-V_{3}$	$V_{1}(G)$
$V_{2}-V_{3}$	$V_{2}(G)$
$V_{2}-V_{1}$	$V_{1}(R)$
$V_{2}>V_{1}$	none

- Delete unmentioned tail values

IF An element of a variable's domain is removed, THEN add all arcs to that variable to the examination queue. 68

Constraint Propagation Example AC-3

Graph Coloring
Initial Domains

Arc examined	Value deleted
$V_{1}-V_{2}$	none
$V_{1}-V_{3}$	$V_{1}(G)$
$V_{2}-V_{3}$	$V_{2}(G)$
$V_{2}-V_{1}$	$V_{1}(R)$
$V_{2}>V_{1}$	none
$V_{3}>V_{1}$	

- Delete unmentioned tail values

IF An element of a variable's domain is removed,
THEN add all arcs to that variable to the examination queue.
69

Constraint Propagation Example AC-3

Arc examined	Value deleted
$V_{1}-V_{2}$	none
$V_{1}-V_{3}$	$V_{1}(G)$
$V_{2}-V_{3}$	$V_{2}(G)$
$V_{2}-V_{1}$	$V_{1}(R)$
$V_{2}>V_{1}$	none
$V_{3}>V_{1}$	none

Arcs to examine
\square

IF examination queue is empty
THEN arc (pairwise) consistent.

Next: To Solve CSPs we combine arc consistency and search

1. Arc consistency (Constraint propagation),

- Eliminates values that are shown locally to not be a part of any solution.

2. Search

- Explores consequences of committing to particular assignments.

Methods Incorporating Search:

- Standard Search
- BackTrack Search (BT)
- BT with Forward Checking (FC)
- Dynamic Variable Ordering (DVO)
- Iterative Repair
- Backjumping (BJ)

Outline

- Interpreting line diagrams
- Constraint satisfaction problem (CSPS) aka constraint programs (CP).
- Solving CSPs
- Case study: Scheduling (appendix)

Real World Example: Scheduling as a CSP

Choose time of activities:

- Observations by the Hubble telescope.
- Jobs performed on machine tools.
- Classes taken for degree.

Variables are activities

Domains Are possible start times (or "chunks" of time)
Constraints 1. Activities that use the same resource cannot overlap in time, and
2. Prerequisites are satisfied.

Case Study: Course Scheduling

Given:

- 32 required courses ($8.01,8.02, \ldots$. 16.410), and
- 8 terms (Fall 1, Spring 1, Spring 4).

Find: a legal schedule.
Constraints •Pre-requisites satisfied,

- Courses offered only during certain terms,
- A limited number of courses can be taken per term (say 4), and
- Avoid time conflicts between courses.

Note, traditional CSPs are not for expressing (soft) preferences e.g. minimize difficulty, balance subject areas, etc.

But see recent research on valued CSPs!

Alternative formulations for variables and values
 DOMAINS

VARIABLES

A. 1 var per Term
(Fall 1) (Spring 1)
(Fall 2) (Spring 2) . . .

All legal combinations of 4 courses, all offered during that term.
B. 1 var per Term-Slot
subdivide each term into 4 course slots:
(Fall 1,1) (Fall 1, 2)
(Fall1, 3) (Fall 1, 4)
C. 1 var per Course

Terms or term-slots.
Term-slots make it easier to express the constraint limiting the number of courses per term.

MIT OpenCourseWare
http://ocw.mit.edu

16.410 / 16.413 Principles of Autonomy and Decision Making

Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

