Constraint Programming: Modeling, Arc Consistency and Propagation

Brian C. Williams 16.410-13 September 22nd, 2010

1

2

Slides draw material from: 6.034 notes, by Tomas Lozano Perez AIMA, by Stuart Russell & Peter Norvig Constraint Processing, by Rina Dechter

Brian Williams, Fall 10

Assignments Assignment: Problem Set #2 due today, Wed. Sept. 22nd, 2010. Problem Set #3: Analysis, Path Planning and Constraint Programming, out today, due Wed., Sept. 29th, 2010. Reading: Today: [AIMA] Ch. 6.1, 24.3-5; Constraint Modeling. Monday: [AIMA] Ch. 6.2-5; Constraint Satisfaction. To Learn More: Constraint Processing, by Rina Dechter Ch. 2: Constraint Networks Ch. 3: Consistency Enforcing and Propagation

Brian Williams, Fall 10

Full Arc Consistency over All Constraints via Constraint Propagation

Definition: arc $<x_i$, $x_j>$ is directed arc consistent if $\forall a_i \in D_i$, $\exists a_i \in D_j$ such that $<a_i$, $a_i> \in C_{ij}$

Constraint Propagation:

To achieve (directed) arc consistency over CSP:

- 1. For every arc C_{ii} in CSP, with tail domain D_i , call Revise.
- 2. Repeat until quiescence:

If an element was deleted from D_i, then

repeat Step 1

(AC-1)

36

Brian Williams, Fall 10

MIT OpenCourseWare http://ocw.mit.edu

16.410 / 16.413 Principles of Autonomy and Decision Making $\ensuremath{\mathsf{Fall}}\xspace_{2010}$

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.