
1

Analysis of Uninformed
Search Methods

Brian Williams, Fall 10 1

Brian C.
Williams

Draws from materials in: 16.410-13
6.034 Tomas Lozano Perez,
Russell and Norvig AIMA Sep 15th, 2010
6.046J Charles E. Leiserson

Assignments

•  Assignment:
– Problem Set #1 due today, Wed Sept 15th, 2010.
–  Problem Set #2: Uninformed Search out today,

due Wednesday, September 22nd, 20010.

•  Reading:
– Today: Asymptotic Analysis, Lecture 2 Notes of 6.046J

 Recurrences, Lecture 12 Notes of 6.042J.
–  Monday: Proofs & Induction, Lectures 2 and 3 of 6.042J.

Brian Williams, Fall 10 2

��

Outline

•� Review

•� Analysis

–� Depth-first search

–� Breadth-first search

•� Iterative deepening

Brian Williams, Fall 10 3

Autonomous Systems:

•� Plan complex sequences of actions

•� Schedule tight resources

•� Monitor and diagnose behavior

•� Repair or reconfigure hardware.

formulate as state space search.
Brian Williams, Fall 10 4

2

Formalizing Graph Search

Input: A search problem SP = <g, S, G> where

•�graph g = <V, E>,

•�start vertex S in V, and

•�goal vertex G in V.

Output: A simple path P = <S, v2, … G> in g from S to G.

 (i.e., <vi,vi+1> � E, and vi � vj if i � j).

C

S

B

G
A

D

Brian Williams, Fall 10 5

Brian Williams, Fall 10 6

S

B

G

A

<S>

<B, S><A, S>

<G, B, S>< A, B, S>

Graph Search is a Kind

of State Space Search

S

BA

GB

Graph Search is a Kind

Of Tree Search

3

Solution: Depth First Search (DFS)

S

D

BA

C G

C G

D

C G

Solution: Breadth First Search (BFS)

S

D

BA

C G

C G

D

C G

Brian Williams, Fall 10 7

Brian Williams, Fall 10 8

S

B

G

A

<S>

Generate (Q) Test

<A, S><B, S>

Visited

S

4

Pseudo Code For Simple Search
Let g be a Graph G be the Goal vertex of g.

 S be the Start vertex of g Q be a list of simple partial paths in GR,

1.� Initialize Q with partial path (S) as only entry; set Visited = ();

2.� If Q is empty, fail. Else, pick some partial path N from Q;

3.� If head(N) = G, return N; (goal reached!)

4.� Else

a)� Remove N from Q;

b)� Find all children of head(N) (its neighbors in g) not in Visited
and create a one-step extension of N to each child;

c)� Add to Q all the extended paths;

d)� Add children of head(N) to Visited;

Brian Williams, Fall 10 9

e)� Go to step 2.

Solution: Depth First Search (DFS)

S

D

BA

C G

C G

D

C G

Depth-first:

Add path extensions to front of Q

Pick first element of Q

Solution: Breadth First Search (BFS)

S

D

A

C

C G

D

C

B Breadth-first:

Add path extensions to back of Q
G

Pick first element of Q
G

Brian Williams, Fall 10 10

5

Outline

•� Review

•� Analysis

–� Depth-first search

–� Breadth-first search

•� Iterative deepening

Brian Williams, Fall 10 11

Elements of Algorithm Design
Description: (last Monday)

–� Problem statement.

–� Stylized pseudo code, sufficient to analyze and implement the
algorithm.

–� Implementation (last Wednesday).

Analysis: (today)

•� Performance:
–� Time complexity:

•� how long does it take to find a solution?

–� Space complexity:

•� how much memory does it need to perform search?

•� Correctness: (next Monday)
–� Soundness:

•� when a solution is returned, is it guaranteed to be correct?

–� Completeness:

•� is the algorithm guaranteed to find a solution when there is one?

Brian Williams, Fall 10 12

6

E.g., a search tree with

a Goal to the left is easier than one to the right.

Generally gets harder

with increased size.

Everyone likes a guarantee.

Performance Analysis

Analysis of run-time and resource usage:

•� Helps to understand scalability.

•� Draws line between feasible and impossible.

•� A function of program input.

•� Parameterized by input size.

•� Seeks upper bound.

Brian Williams, Fall 10 13

Types of Analyses

Worst-case:

•� T(n) = maximum time of algorithm on any input
of size n.

Average-case:

•� T(n) = expected time of algorithm over all inputs
of size n.

–� Requires statistical distribution on inputs.

Best-case:

•� T(n) = minimum time of algorithm on any input.

Brian Williams, Fall 10 14

7

Analysis uses Machine-independent

Time and Space

Performance depends on computer speed:

•� Relative speed (run on same machine)

•� Absolute speed (on different machines)

Big idea:

•� Ignore machine-dependent constraints

•� Look at growth of T(n) as n � �

“Asymptotic Analysis”

Brian Williams, Fall 10 15

Asymptotic notation

O-notation (upper bounds):

•� 2n2 = O(n3)

 means 2n2 � cn3 for sufficiently large c & n

•� f(n) = O(g(n))

if there exists constants c > 0, n0 > 0

such that 0 � f(n) � c g(n) for all n � n . o

Brian Williams, Fall 10 16

8

Worst case time is proportional to number of vertices visited

Worst case space is proportional to maximum length of Q

Set definition of O-notation

O(n3) = { all functions bounded by cn3 }

2n2 � O(n3)

O(g(n)) = {f(n) | there exists constants

c > 0, n0 > 0 such that

0 � f(n) � c g(n) for all n � no}

Brian Williams, Fall 10 17

Performance and Resource Usage

Which is better, depth-first or breadth-first?

S

D

BA

C G

C G

D

C G

C

S

B

G
A

D

Search

Method

Worst

Time

Worst

Space

Shortest

Path?

Guaranteed to

find path?

Depth-first

Breadth-first

Brian Williams, Fall 10 18

9

Analyzing Time and Space Complexity

of Search in Terms of Trees

b = 3

d = 1

Level 1

Level 2

Level 0

m = 2

b = maximum branching factor, number of children

d = depth of the shallowest goal node

m = maximum length of any path in the state space

Brian Williams, Fall 10 19

Worst Case Time for Depth-first

Worst case time T is proportional to number of nodes visited

Level 1

Level 2

Level 0

b*1

b*b

b*bm-1

. . .

Level m

1

Brian Williams, Fall 10

Tdfs

 b * Tdfs

[b – 1] * Tdfs = [bm+1 – 1]*cdfs

Tdfs = [bm+1 – 1] / [b – 1] *cdfs

20

where cdfs is time per node

Solve recurrence

10

= [bm + … b + 1]*cdfs

= [bm+1 + bm + … b + 0]*cdfs

Cost Using Order Notation

Worst case time T is proportional to number of nodes visited

Level 1

Level 2

Level 0

b*1

b*b

b*bm-1

. . .

1

Order Notation

•� T(n) = O(e(n)) if T � c * e for sufficiently large c & n

Tdfs = [bm+1 – 1] / [b – 1] *cdfs

 = O(bm+1)

~ O(bm) as b � � (used in some texts)

Brian Williams, Fall 10 21

Performance and Resource Usage

Which is better, depth-first or breadth-first?

S

D

BA

C G

C G

D

C G

C

S

B

G
A

D

Search

Method

Worst

Time

Worst

Space

Shortest

Path?

Guaranteed to

find path?

Depth-first ~ bm

Breadth-first

Worst case time is proportional to number of nodes visited

Worst case space is proportional to maximal length of Q

Brian Williams, Fall 10 22

11

Worst Case Space for Depth-first

Worst case space Sdfs is proportional to maximum length of Q

•� If a node is queued its parent and siblings have been queued,

and its parent dequeued.

Brian Williams, Fall 10 23

Level 1

Level m

Level 0

Worst Case Space for Depth-first

Worst case space Sdfs is proportional to maximuml length of Q

•� If a node is queued its parent and siblings have been queued,

and its parent dequeued.

Sdfs � [(b-1)*m+1] *cdfswhere cdfs is space per node.

•� At most one sibling of a node has its children queued.

�� Sdfs = [(b-1)*m+1] *cdfs

•� Sdfs = O(b*m) + add visited list

Level 1

Level m

Level 0

b-1

b-1

b

. . .

Brian Williams, Fall 10 24

12

Performance and Resource Usage

Which is better, depth-first or breadth-first?

C

G
A

D

S

D

BA

C G

C G

D

C G

S

B

Search

Method

Worst

Time

Worst

Space

Shortest

Path?

Guaranteed to

find path?

Depth-first ~bm b*m

Breadth-first

Worst case time is proportional to number of nodes visited

Worst case space is proportional to maximal length of Q

Brian Williams, Fall 10 25

Performance and Resource Usage

Which is better, depth-first or breadth-first?

S

D

BA

C G

C G

D

C G

C

S

B

G
A

D

Search

Method

Worst

Time

Worst

Space

Shortest

Path?

Guaranteed to

find path?

Depth-first ~bm b*m No

Breadth-first

Worst case time is proportional to number of nodes visited

Worst case space is proportional to maximal length of Q

Brian Williams, Fall 10 26

13

Performance and Resource Usage

Which is better, depth-first or breadth-first?

C

G
A

D

S

D

BA

C G

C G

D

C G

S

B

Search

Method

Worst

Time

Worst

Space

Shortest

Path?

Guaranteed to

find path?

Depth-first ~bm b*m No Yes for finite graph

Breadth-first

Worst case time is proportional to number of nodes visited

Worst case space is proportional to maximal length of Q

Brian Williams, Fall 10 27

Performance and Resource Usage

Which is better, depth-first or breadth-first?

S

D

BA

C G

C G

D

C G

C

S

B

G
A

D

Search

Method

Worst

Time

Worst

Space

Shortest

Path?

Guaranteed to

find path?

Depth-first ~bm b*m No Yes for finite graph

Breadth-first

Worst case time is proportional to number of nodes visited

Worst case space is proportional to maximal length of Q

Brian Williams, Fall 10 28

14

Worst Case Time for Breadth-first

Worst case time T is proportional to number of nodes visited

Level 1

Level d

Level 0

Level d+1

Level m . . .

Consider case where solution is at level d (absolute worst is m):

Brian Williams, Fall 10 29

Worst Case Time for Breadth-first

Worst case time T is proportional to number of nodes visited

Level 1

Level d

Level 0

Level d+1 bd+1- b

b
 . . .

1

bd

Level m . . .

Consider case where solution is at level d (absolute worst is m):

Tbfs = [bd+1 + bd + … b + 1 - b] * cbfs

 = [bd+2 – b2 + b - 1] / [b - 1] * cbfs

= O[bd+2]

 ~ O(bd+1) for large b

Brian Williams, Fall 10 30

15

Performance and Resource Usage

Which is better, depth-first or breadth-first?

S C

A B
G

A

D C D G
D

C G C G

S

B

Search

Method

Worst

Time

Worst

Space

Shortest

Path?

Guaranteed to

find path?

Depth-first ~bm b*m No Yes for finite graph

Breadth-first ~bd+1

Worst case time is proportional to number of nodes visited

Worst case space is proportional to maximal length of Q

Brian Williams, Fall 10 31

Worst Case Space for Breadth-first

Worst case space Sdfs is proportional to maximum length of Q

Level 1

Level d

Level 0

Level d+1

Brian Williams, Fall 10 32

16

Worst Case Space for Breadth-first

Worst case space Sdfs is proportional to maximum length of Q

Level 1

Level d

Level 0

Level d+1

b

bd+1- b

. . .

1

bd

Sbfs = [bd+1- b + 1]*cbfs

 = O(bd+1)

Brian Williams, Fall 10 33

Performance and Resource Usage

Which is better, depth-first or breadth-first?

S

D

BA

C G

C G

D

C G

C

S

B

G
A

D

Search

Method

Worst

Time

Worst

Space

Shortest

Path?

Guaranteed to

find path?

Depth-first ~bm b*m No Yes for finite graph

Breadth-first ~bd+1 bd+1

Worst case time is proportional to number of nodes visited

Worst case space is proportional to maximal length of Q

Brian Williams, Fall 10 34

17

Breadth-first Finds Shortest Path

Nodes visited earlier

Level 0

Level 1 reached

Level d

Level d+1

G
G

First

can’t include G

Assuming each edge is length 1,

other paths to G must be at least as long as first found

Brian Williams, Fall 10 35

Performance and Resource Usage

Which is better, depth-first or breadth-first?

S

D

BA

C G

C G

D

C G

C

S

B

G
A

D

Search

Method

Worst

Time

Worst

Space

Shortest

Path?

Guaranteed to

find path?

Depth-first ~bm b*m No Yes for finite graph

Breadth-first ~bd+1 bd+1 Yes unit lngth

Worst case time is proportional to number of nodes visited

Worst case space is proportional to maximal length of Q

Brian Williams, Fall 10 36

18

Performance and Resource Usage

Which is better, depth-first or breadth-first?

S C

A B
G

A

D C D G
D

C G C G

S

B

Search

Method

Worst

Time

Worst

Space

Shortest

Path?

Guaranteed to

find path?

Depth-first ~bm b*m No Yes for finite graph

Breadth-first ~bd+1 bd+1 Yes unit lngth Yes

Worst case time is proportional to number of nodes visited

Worst case space is proportional to maximal length of Q

Brian Williams, Fall 10 37

The Worst of The Worst

Which is better, depth-first or breadth-first?

C

G
A

D
S

B

•�Assume d = m in the worst case, and call both m.

•� Best-first can’t expand to level m+1, just m.

S

D

BA

C G

C G

D

C G

Search

Method

Worst

Time

Worst

Space

Shortest

Path?

Guaranteed to

find path?

Depth-first ~bm b*m No Yes for finite graph

Breadth-first ~bm bm Yes unit lngth Yes

Worst case time is proportional to number of nodes visited

Worst case space is proportional to maximal length of Q
Brian Williams, Fall 10 38

19

For best first search, which runs out first – time or memory?

Growth for Best First Search

b = 10; 10,000 nodes/sec; 1000 bytes/node

Depth Nodes Time Memory

2 1,100 .11 seconds 1 megabyte

4 111,100 11 seconds 106 megabytes

6 107 19 minutes 10 gigabytes

8 109 31 hours 1 terabyte

10 1011 129 days 101 terabytes

12 1013 35 years 10 petabytes

14 1015 3,523 years 1 exabyte

Brian Williams, Fall 10 39

How Do We Get The

Best of Both Worlds?

S

D

BA

C G

C G

D

C G

C

S

B

G
A

D

Search

Method

Worst

Time

Worst

Space

Shortest

Path?

Guaranteed to

find path?

Depth-first ~bm b*m No Yes for finite graph

Breadth-first ~bd+1 bd+1 Yes unit lngth Yes

Worst case time is proportional to number of nodes visited

Worst case space is proportional to maximal length of Q

Brian Williams, Fall 10 40

20

Outline

•� Analysis

•� Iterative deepening

Brian Williams, Fall 10 41

Iterative Deepening (IDS)

Idea:

•�Explore tree in breadth-first order, using depth-first search.

��Search tree to depth 1, ….

called depth-limited search

Level 0

Level 1

Level 2

Level 3 C G

S

D

BA

C G

C G

D

Brian Williams, Fall 10 42

21

Iterative Deepening (IDS)

Idea:

•�Explore tree in breadth-first order, using depth-first search.

��Search tree to depth 1, then 2, ….

called depth-limited search

S

D

BA

C G

C G

D

C G

Level 1

Level 2

Level 0

Level 3

Brian Williams, Fall 10 43

Iterative Deepening (IDS)

Idea:

•�Explore tree in breadth-first order, using depth-first search.

��Search tree to depth 1, then 2, then 3….

called depth-limited search

S

D

BA

C G

C G

D

C G

Level 1

Level 2

Level 0

Level 3

Brian Williams, Fall 10 44

22

Speed of Iterative Deepening

S

D

BA

C G

C G

D

C G

d*b

1*bd

. . .

d+1

 2*bd-1

Level 1

Level d-1

Level 0

Level d

Compare speed of BFS vs IDS:

•� Tbfs = 1 + b + b2 + . . . bd + (bd+1 – b) ~ O(bd+1)

•� Tids = (d + 1)1 + (d)b + (d - 1)b2 +. . . 2bd-1+ bd

 = [bd+2 + d(b-1) + 1)] / [b - 1]2

 ~ O(bd) for lrg b

��Iterative deepening performs better than breadth-first!
Brian Williams, Fall 10 45

Speed of Iterative Deepening

Tids = (d + 1)1 + (d)b + (d - 1)b2 + . . . 2bd-1+ bd

bTids = (d + 1)b + (d)b2 + (d - 1)b3 +. . . 2bd+ bd+1

(b-1)Tids = (d + 1) + b +b2 + b3 +. . . bd+ bd+1

(b-1)Tids = d + {[bd+2 + 1)] / [b – 1]}

 = [bd+2 + d(b-1) + 1)] / [b - 1]2

 ~ O(bd) for lrg b

��Iterative deepening performs better than breadth-first!

Brian Williams, Fall 10 46

23

Soundness and Completeness

(next Monday)

Soundness:

•� All returned solutions are correct.

•� Returns only simple paths from S to G.

Completeness:

•� Always returns a solution if one exists.

•� Returns a simple path from S to G whenever S is

connected to G.

Brian Williams, Fall 10 47

Summary

•� Most problem solving tasks may be encoded as state space
search.

•� Basic data structures for search are graphs and search trees.

•� Depth-first and breadth-first search may be framed,
as instances of a generic search strategy.

•� Cycle detection is required to achieve efficiency and
completeness.

•� Complexity analysis shows that breadth-first is preferred in
terms of optimality and time, while depth-first is preferred
in terms of space.

•� Iterative deepening draws the best from depth-first and
breadth-first search.

Brian Williams, Fall 10 48

24

MIT OpenCourseWare
http://ocw.mit.edu

16.410 / 16.413 Principles of Autonomy and Decision Making
Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

