Problem Solving as State Space Search

Brian C. Williams
16.410-13

Sept $13^{\text {th }}, 2010$
Slides adapted from: 6.034 Tomas Lozano Perez,

Assignments

- Remember:

Problem Set \#1: Java warm up
Out last Wednesday,
Due this Wednesday, September $15^{\text {th }}$

- Reading:
- Today: Solving problems through search [AIMA] Ch. 3.1-4
- Wednesday: Asymptotic Analysis Lecture 2 Notes of 6.046J; Recurrences, Lecture 12 Notes of 6.042J.

Recap - Course Objectives

1. Understand the major types of agents and architectures:

- goal-directed vs utility-based
- deliberative vs reactive
- model-based vs model-free

2. Learn the modeling and algorithmic building blocks for creating agents:

- Model problem in an appropriate formal representation.
- Specify, analyze, apply and implement reasoning algorithms to solve the problem formulations.

Recap - Agent Architectures

Maneuver and Track
Functions: Robust, coordinated operation + mobility
It Begins with State Space Search!

Problem Solving as State Space Search

- Problem Formulation (Modeling)
- Problem solving as state space search
- Formal Representation
- Graphs and search trees
- Reasoning Algorithms
- Depth and breadth-first search

Most Agent Building Block Implementations Use Search

Robust Operations: Mobility:

- Activity Planning
- Diagnosis
- Repair
- Scheduling
- Resource Allocation
- Path Planning
- Localization
- Map Building
- Control Trajectory

Design

Can the astronaut get its supplies safely across a Lunar crevasse?

Astronaut
Goose
Grain
Fox
Rover

- Astronaut + 1 item allowed in the rover.
- Goose alone eats Grain
- Fox alone eats Goose

Early AI: What are the universal problem solving methods?
Simple \Longrightarrow Trivial

Problem Solving as State Space Search

- Formulate Goal
- State
- Astronaut, Fox, Goose \& Grain below crevasse.
- Formulate Problem
- States
- Astronaut, Fox, Goose \& Grain above or below the crevasse.
- Operators
- Move: Astronaut drives rover and 1 or 0 items to other side of crevasse.
- Initial State
- Astronaut, Fox, Goose \& Grain above crevasse.
- Generate Solution
- Sequence of Operators (or States)
- Move(goose, astronaut), Move(astronaut), . . .

Formulation Example: 8-Puzzle

5	4	
6	1	8
7	3	2

Start

Goal

- States: integer location for each tile AND ...??
- Operators: move empty square up, down, left, right
- Initial and as shown above

Goal States:

Languages for Expressing States and Operators for Complex Tasks

- Swaggert \& Lovell assemble emergency rig for Apollo 13 lithium hydroxide unit.

Example: STRIPS Planning Language

Initial state:

(and (hose a)
(clamp b)
(hydroxide-unit c)
(on-table a)
(on-table b)
(on-table c)
(clear a)
(clear b)
(clear c)
(empty arm))
goal (partial state):
(and (connected ab)
(connected b c)))

Operators

precondition: (and (clear hose)
(on-table hose)
(empty arm))
pickup hose
effect: (and (not (clear hose))
(not (on-table hose))
(not (empty arm))
(holding arm hose)))

Problem:

Find a Route from home to MIT

States? Operators?, Initial and Goal State?
© MapQuest, Navigation Technologies. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse.

Problem: Compensating for Error Online

- Policy, $\pi(\mathrm{v}) \rightarrow \mathrm{e}$, dictates how to act in all states.
- Policy π corresponds to a shortest path tree from all vertices to the destination.

How do we Map Path Planning to State Space Search?

Start position

Vehicle translates, but no rotation

Goal position ${ }^{18}$

3. Find Shortest Path (e.g., A*)

Start
position

Goal
position ${ }^{2}$

Resulting Solution

Roadmaps: Approximate Variable Cell

How do we handle large state spaces?

Rapid exploring Random Trees

Problem Solving as State Space Search

- Problem Formulation (Modeling)
- Problem solving as state space search
- Formal Representation
- Graphs and search trees
- Reasoning Algorithms
- Depth and breadth-first search

Problem Formulation: A Graph

Directed
Graph (one-way streets)

Undirected
Graph
(two-way streets)

Problem Formulation: A Graph

Undirected
Graph
(two-way streets)

Problem Formulation: A Graph

Strongly connected graph Directed path between all vertices.

Sub graph

Connected graph Path between all vertices.

Complete graph All vertices are adjacent.

Subset of vertices
edges between vertices in Subset
Directed
Graph
(one-way streets)
Clique
A complete subgraph
(All vertices are adjacent).

Undirected Graph (two-way streets)

Specifying a Graph: G = <V, E>

Notation:

<a, b, $\ldots \mathrm{n}>$ an ordered list of elements $\mathrm{a}, \mathrm{b} \ldots$
$\{\mathrm{a}, \mathrm{b}, \ldots \mathrm{n}\} \quad$ an unordered set of distinguished elements.

$$
\begin{aligned}
\text { Vertices } \mathrm{V}= & \{\mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~d}, \mathrm{e}\} \\
\text { Edges } \mathrm{E}=\{ & \{\mathrm{a}, \mathrm{~b}>,<\mathrm{a}, \mathrm{c}> \\
& <\mathrm{b}, \mathrm{e}> \\
& <\mathrm{c}, \mathrm{~b}>,<\mathrm{c}, \mathrm{~d}> \\
& <\mathrm{e}, \mathrm{~d}>\}
\end{aligned}
$$

35

Examples of Graphs

Roadmap

Formalizing State Space Search

Input: A search problem $S=\langle\mathbf{g}, \mathbf{S}, \mathbf{G}>$ where

- graph $\mathrm{g}=\langle\mathbf{V}, \mathbf{E}\rangle$,
- start vertex S in V, and
- goal vertex G in V.

Output: A simple path $P=\langle S, \mathbf{v} 2, \ldots G\rangle$ in g from S to G.

Simple Paths of Graph $\mathrm{g}=<\mathrm{V}, \mathrm{E}\rangle$

A (directed) path P of graph g is
a sequence of vertices $\left\langle\mathrm{v}_{1}, \ldots \mathrm{v}_{\mathrm{n}}>\right.$ in V
such that each successive pair $\left\langle\mathrm{v}_{\mathrm{i}}, \mathrm{v}_{\mathrm{i}+1}\right\rangle$ is a (directed) edge in E

A simple path is a path that has no cycles.
A cycle is a subpath where start $=$ end (i.e., repeated vertices).

A Problem Solver Searches through all Simple Paths

A Search Tree Denotes All Simple Paths

Enumeration is:

- Complete
- Systematic
- Sound

Search Trees

think of a tree as a "family" tree

A tree \mathbf{T} is a directed graph, such that

- there exists exactly one undirected path between any pair of vertices.
-In degree of each vertex is 1

Search Trees

think of a tree as a "family" tree

Search Trees

think of a tree as a "family" tree

Problem Solving as State Space Search

- Problem Formulation (Modeling)
- Problem solving as state space search
- Formal Representation
- Graphs and search trees
- Reasoning Algorithms
- Depth and breadth-first search

Classes of Search

| Blind Depth-First Systematic exploration of whole tree
 (uninformed) Breadth-First
 Iterative-Deepening |
| :--- | :--- | :--- |

Optimal (informed)	A*	Use path "length" measure. Find

Heuristic (informed)	Hill-Climbing	Use heuristic measure of goodness
	Best-First	of a node.

Depth First Search (DFS)

Local Rule: After visiting node...

- Visit its children before its siblings
- Visit its children left to right

Breadth First Search (BFS)

Local Rule: After visiting node...

- Visit its siblings, before its children
- Visit its children left to right

Elements of Algorithm Design

Algorithm Description: (Today)

- stylized pseudo code, sufficient to analyze and implement the algorithm (implementation next Wednesday).

Algorithm Analysis: (Wednesday \& Monday)

- Time complexity:
- how long does it take to find a solution?
- Space complexity:
- how much memory does it need to perform search?
- Soundness:
- when a solution is returned, is it guaranteed to be correct?
- Completeness:
- is the algorithm guaranteed to find a solution when there is one?

Problem Solving as State Space Search

- Problem Formulation (Modeling)
- Formal Representation
- Reasoning Algorithms
- A generic search algorithm description
- Depth-first search example
- Handling cycles
- Breadth-first search example

Solve $<\mathrm{g}=<\mathrm{V}, \mathrm{E}>, \mathrm{S}, \mathrm{G}>$ using State Space Search

Search States:

- All simple paths <S, ...v> in g starting at S Initial State:
- <S>

Operator:

- Extend a path $<\mathrm{S}, \ldots \mathrm{v}>$ to $<\mathrm{S}, \ldots \mathrm{v}$, $\mathrm{u}>$ for each $<\mathrm{v}, \mathrm{u}>$ in E
- call u a child of v

Goal:

- A simple path <S, ..., G> in g

$$
\begin{aligned}
& \text { Solve }<\mathrm{g}=<\mathrm{V}, \mathrm{E}>, \mathrm{S}, \mathrm{G}> \\
& \text { using State Space Search }
\end{aligned}
$$

How do we maintain the search state?

- An ordering on partial paths yet to be expanded (called a queue Q).

How do we perform search?

- Repeatedly:

1. Select next partial path from Q.
2. Expand it.
3. Add expansions to Q .

- Terminate when goal G is found.

Simple Search Algorithm: Preliminaries

- A partial path from S to D is listed in reverse order, - e.g., <D, A, S>
- The head of a partial path is its most recent visited node,
- e.g., D.
- The Q is a list of partial paths,
- e.g. (<D, A, S>, <C, A, S> ...>.

Simple Search Algorithm

Let Q be a list of partial paths,
S be the Start node and G be the Goal node.

1. Initialize Q with partial path <S>
2. If Q is empty, fail. Else, pick a partial path N from Q
3. If head $(\mathrm{N})=\mathrm{G}$, return N
(goal reached!)
4. Else:
a) Remove N from Q
b) Find all children of head(N) and create a one-step extension of N to each child
c) Add all extended paths to Q
d) Go to step 2

Problem Solving as State Space Search

- Problem Formulation (Modeling)
- Formal Representation
- Reasoning Algorithms
- A generic search algorithm description
- Depth-first search example
- Handling cycles
- Breadth-first search example

Depth First Search (DFS)

Idea: After visiting node

- Visit its children left to right (or top to bottom)
- Visit its children before its siblings

Assume we remove the first element of Q,
Where to Q do we add the path extensions?

Simple Search Algorithm

Let Q be a list of partial paths,
S be the start node and
G be the Goal node.

1. Initialize Q with partial path <S>
2. If Q is empty, fail. Else, pick a partial path N from Q
3. If head $(N)=G$, return N
4. Else:
a) Remove N from Q
b) Find all children of head(N) and create a one-step extension of N to each child
c) Add all extended paths to Q
d) Go to step 2

Depth-First

Pick first element of Q ; Add path extensions to front of Q

	Q
1	(S)
2	
3	
4	
5	

Simple Search Algorithm

Let Q be a list of partial paths,
S be the Start node and
G be the Goal node.

1. Initialize Q with partial path < $\mathrm{S}>$
2. If Q is empty, fail. Else, pick a partial path N from Q
3. If head $(\mathrm{N})=\mathrm{G}$, return N (goal reached!)
4. Else:
a) Remove N from Q
b) Find all children of head(N) and create a one-step extension of N to each child
c) Add all extended paths to Q
d) Go to step 2

Depth-First

Pick first element of Q ; Add path extensions to front of Q

	Q
1	(S)
2	
3	
4	
5	

61

Depth-First

Pick first element of Q ; Add path extensions to front of Q

	Q
1	(S)
2	(A S)
3	
4	
5	

Added paths in blue

Depth-First

Pick first element of Q; Add path extensions to front of Q

	Q
1	(S)
2	(A S) (B S)
3	
4	
5	

Added paths in blue

Simple Search Algorithm

Let Q be a list of partial paths,
Let S be the start node and Let G be the Goal node.

1. Initialize Q with partial path < $\mathrm{S}>$
2. If Q is empty, fail. Else, pick a partial path N from Q
3. If head $(\mathrm{N})=\mathrm{G}$, return N (goal reached!)
4. Else:
a) Remove N from Q
b) Find all children of head(N) and create a one-step extension of N to each child
c) Add all extended paths to Q
d) Go to step 2

Depth-First

Pick first element of Q ; Add path extensions to front of Q

	Q
1	(S)
2	$(A-S)(B S)$
3	
4	
5	

Added paths in blue

Depth-First

Pick first element of Q ; Add path extensions to front of Q

	Q
1	(C)
2	(A S) (B S)
3	(C A S) (D A S) (B S)
4	
5	

Added paths in blue

Depth-First

Pick first element of Q ; Add path extensions to front of Q

Added paths in blue

67

Depth-First

Pick first element of Q ; Add path extensions to front of Q

	Q
1	(S)
2	$(A$ S) (B S)
3	(CA S) (D A S) (B S)
4	(D A S) (B S)
5	

Added paths in blue

Depth-First

Pick first element of Q ; Add path extensions to front of Q

	Q
1	(S)
2	$($ A S) (B S)
3	(CA S) (D A S) (B S)
4	(DA S) (B S)
5	

Added paths in blue

Depth-First

Pick first element of Q ; Add path extensions to front of Q

	Q
1	(S)
2	$(A S)$ (B S)
3	(CA S) (D A S) (B S)
4	(DA S) (B S)
5	(C D A S)(G D A S) (B S)

Depth-First

Pick first element of Q ; Add path extensions to front of Q

	Q
1	(C)
2	$(A-S)(B S)$
3	$(C A S)$ (D A S) (B S)
4	(DA S) (B S)
5	(CDA S)(G D A S) (B S)

Depth-First

Pick first element of Q ; Add path extensions to front of Q

	Q
1	(S)
2	(AS) (B S)
3	(CAS) (D A S) (B S)
4	(DAS) (B S)
5	(CSAS)(G D A S) (BS)
6	(G D A S)(B S)

Depth-First

Pick first element of Q ; Add path extensions to front of Q

	Q
1	(S)
2	(A S) (B S)
3	(CA S) (D A S) (B S)
4	(DA S) (B S)
5	(CDA S)(G D A S) (B S)
6	$(G$ D A S)(B S)

Simple Search Algorithm

Let Q be a list of partial paths,
Let S be the start node and Let G be the Goal node.

1. Initialize Q with partial path < $\mathrm{S}>$
2. If Q is empty, fail. Else, pick a partial path N from Q
3. If head $(\mathrm{N})=\mathrm{G}$, return N
4. Else:
a) Remove N from Q
b) Find all children of head(N) and create a one-step extension of N to each child
c) Add all extended paths to Q
d) Go to step 2

Problem Solving as State Space Search

- Problem Formulation (Modeling)
- Formal Representation
- Reasoning Algorithms
- A generic search algorithm description
- Depth-first search example
- Handling cycles
- Breadth-first search example

Issue: Starting at S and moving top to bottom, will depth-first search ever reach G?

Depth-First

Effort can be wasted in more mild cases

	Q
1	(S)
2	(A S) (B S)
3	(C A S) (i) A S) (B S)
4	(D A S) (B S)
5	(C D A S)(C D A S)
6	(B S)

How much wasted effort can be incurred in the worst case?

How Do We Avoid Repeat Visits?

Idea:

- Keep track of nodes already visited.
- Do not place expanded path on Q if head is a visited node.

Does this maintain correctness?

- Any goal reachable from a node that was visited a second time would be reachable from that node the first time.

Does this always improve efficiency?

- Visits only a subset of the original paths, such that each node appears at most once at the head of a visited path.

How Do We Modify The Simple Search Algorithm?

Let Q be a list of partial paths,
Let S be the Start node and
Let G be the Goal node.

1. Initialize Q with partial path <S> as only entry;
2. If Q is empty, fail. Else, pick some partial path N from Q
3. If head $(\mathbf{N})=\mathrm{G}$, return N (goal reached!)
4. Else
a) Remove N from Q
b) Find all children of head(N) and create a one-step extension of N to each child
c) Add to Q all the extended paths
d) Go to step 2

Simple Search Algorithm

Let Q be a list of partial paths,
Let S be the start node and
Let G be the Goal node.

1. Initialize Q with partial path <S> as only entry; set Visited $=\{ \}$
2. If Q is empty, fail. Else, pick some partial path N from Q
3. If head $(\mathrm{N})=\mathrm{G}$, return N (goal reached!)
4. Else
a) Remove N from Q
b) Find all children of head(N) not in Visited and create a one-step extension of N to each child
c) Add to Q all the extended paths
d) Add children of head(N) to Visited
e) Go to step 2

Testing for the Goal

- This algorithm stops (in step 3) when head(N) = G.
- We could have performed this test in step 6 as each extended path is added to Q. This would catch termination earlier and be perfectly correct for all the searches we have covered so far.
- However, performing the test in step 6 will be incorrect for the optimal search algorithms that we look at later. We have chosen to leave the test in step 3 to maintain uniformity with these future searches.

Problem Solving as State Space Search

- Problem Formulation (modeling)
- Formal Representation
- Reasoning Algorithms
- A generic search algorithm description
- Depth-first search example
- Handling cycles
- Breadth-first search example

Breadth First Search (BFS)

Idea: After visiting node

- Visit its children left to right
- Visit its siblings, before its children

Assume we remove the first element of Q ,
Where to Q do we add the path extensions?

Breadth-First with Visited List

Pick first element of Q; Add path extensions to end of Q

	Q	Visited
1	(S)	S
2		
3		
4		
5		
6		

Breadth-First with Visited List

Pick first element of Q; Add path extensions to end of Q

	Q	Visited
1	(S)	S
2		
3		
4		
5		
6		

Breadth-First with Visited List

Pick first element of Q; Add path extensions to end of Q

	Q	Visited
1	(S)	S
2	(A S) (B S)	A, B, S
3		
4		
5		
6		

Breadth-First with Visited List

Pick first element of Q ; Add path extensions to end of Q

	\mathbf{Q}	Visited
1	(S)	S
2	(AS) (B S)	A, B, S
3		
4		
5		
6		

Breadth-First with Visited List

Pick first element of Q; Add path extensions to end of Q

	\mathbf{Q}	Visited
1	(S)	S
2	(AS) (B S)	A, B, S
3	(B S) (C A S) (D A S)	C, D, B, A, S
4		
5		
6		

Breadth-First with Visited List

Pick first element of Q; Add path extensions to end of Q

	Q	Visited
1	(S)	S
2	(A S) (B S)	A, B, S
3	(B S) (C A S) (D A S)	C, D, B, A, S
4		
5		
6		

Breadth-First with Visited List

Pick first element of Q; Add path extensions to end of Q

	\mathbf{Q}	Visited
1	(S)	S
2	(A S) (B S)	A, B, S
3	(B S) (C A S) (D A S)	C, D, B, A, S
4	(C A S) (D A S) (G B S)*	G,C,D,B,A,S
5		
6		

* We could stop here, when the first path to the goal is generated.

Breadth-First with Visited List

Pick first element of Q; Add path extensions to end of Q

	\mathbf{Q}	Visited
1	(S)	S
2	(A S) (B S)	A, B, S
3	(B S) (C A S) (D A S)	C,D,B,A,S
4	(CA S) (D A S) (G B S)*	G, C, D, B, A, S
5		
6		

* We could stop here, when the first path to the goal is generated.

Breadth-First with Visited List

Pick first element of Q; Add path extensions to end of Q

	\mathbf{Q}	Visited
1	(S)	S
2	(A S) (B S)	A,B,S
3	(B S) (C A S) (D A S)	C,D,B,A,S
4	(CA S) (D A S) (G B S)*	G,C,D,B,A,S
5	(DA S) (G B S)	G,C,D,B,A,S
6		

Breadth-First with Visited List

Pick first element of Q; Add path extensions to end of Q

	\mathbf{Q}	Visited
1	(S)	S
2	(A S) (B S)	A,B,S
3	(B S) (C A S) (D A S)	C,D,B,A,S
4	(CA S) (D A S) (G B S)*	G,C,D,B,A,S
5	(DA S) (G B S)	G,C,D,B,A,S
6	(G B S)	G,C,D,B,A,S

Breadth-First with Visited List

Pick first element of Q; Add path extensions to end of Q

	\mathbf{Q}	Visited
1	(S)	S
2	(A S) (B S)	A, B, S
3	(B S) (C A S) (D A S)	C, D, B, A, S
4	(C A S) (D A S) (G B S)*	G, C, D, B, A, S
5	(D A S) (G B S)	G, C, D, B, A, S
6	(G B S)	G,C,D,B,A,S

Depth-first with Visited List

Pick first element of Q ; Add path extensions to front of Q

	Q	Visited
1	(S)	S
2	(A S) (B S)	A, B, S
3	(C A S) (D A S) (B S)	C,D,B,A,S
4	(D A S) (B S)	C, D, B, A, S
5	(G D A S) (B S)	G,C,D,B,A,S

For each search type, where do we place the children on the queue?
Depth First Search (DFS)

Depth-first:
Add path extensions to front of Q
Pick first element of Q
Breadth First Search (BFS)

Breadth-first:
Add path extensions to back of Q
Pick first element of Q

What You Should Know

- Most problem solving tasks may be formulated as state space search.
- State space search is formalized using graphs, simple paths, search trees, and pseudo code.
- Depth-first and breadth-first search are framed, among others, as instances of a generic search strategy.
- Cycle detection is required to achieve efficiency and completeness.

Appendix

Breadth-First (without Visited list)

Pick first element of Q; Add path extensions to end of Q

Breadth-First (without Visited list)

Pick first element of Q; Add path extensions to end of Q

Added paths in blue

Breadth-First (without Visited list)

Pick first element of Q; Add path extensions to end of Q

Breadth-First (without Visited list)

Pick first element of Q; Add path extensions to end of Q

	\mathbf{Q}
1	(S)
2	(A S) (B S)
3	(B S) (C A S) (D A S)
4	(C A S) (D A S) (D B S) (G B S)*
5	
6	
7	

Added paths in blue
Revisited nodes in pink

* We could have stopped here, when the first path to the goal was generated.

Brian Williams, Fall 10

Breadth-First (without Visited list)

Pick first element of Q; Add path extensions to end of Q

	Q
1	(S)
2	(A S) (B S)
3	(B S) (C A S) (D A S)
4	(C A S) (D A S) (D B S) (G B S)*
5	(D A S) (D B S) (G B S)
6	
7	

Breadth-First (without Visited list)

Pick first element of Q; Add path extensions to end of Q

	\mathbf{Q}
1	(S)
2	(A S) (B S)
3	(B S) (C A S) (D A S)
4	(C A S) (D A S) (D B S) (G B S)*
5	(D A S) (D B S) (G B S)
6	(D B S) (G B S) (C D A S) (G D A S)
7	

Breadth-First (without Visited list)

Pick first element of Q; Add path extensions to end of Q

	\mathbf{Q}
1	(S)
2	(A S) (B S)
3	(B S) (C A S) (D A S)
4	(C A S) (D A S) (D B S) (G B S)*
5	(D A S) (D B S) (G B S)
6	(D B S) (G B S) (C D A S) (G D A S)
7	(G B S) (C D A S) (G D A S)(C D B S)(G D B S)

MIT OpenCourseWare
http://ocw.mit.edu

16.410 / 16.413 Principles of Autonomy and Decision Making

Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

