
1

Brian Williams, Fall 10 1

Problem Solving
as State Space Search

Brian C. Williams
16.410-13
Sept 13th, 2010

Slides adapted from:
6.034 Tomas Lozano Perez,
Russell and Norvig AIMA

Brian Williams, Fall 10 2

Assignments

•  Remember:
Problem Set #1: Java warm up

 Out last Wednesday,
 Due this Wednesday, September 15th

•  Reading:
–  Today: Solving problems through search [AIMA] Ch. 3.1-4
–  Wednesday: Asymptotic Analysis Lecture 2 Notes of 6.046J;

 Recurrences, Lecture 12 Notes of 6.042J.

2

Brian Williams, Fall 10 3

Recap - Course Objectives
1.  Understand the major types of agents and

architectures:
–  goal-directed vs utility-based
–  deliberative vs reactive
–  model-based vs model-free

2.  Learn the modeling and algorithmic building
blocks for creating agents:

–  Model problem in an appropriate
formal representation.

–  Specify, analyze, apply and implement reasoning
algorithms to solve the problem formulations.

Brian Williams, Fall 10 4

Plan

ExecuteMonitor &
Diagnosis

Locate in
World

Plan Routes

Map

Maneuver and Track

Mission Goals

Recap – Agent Architectures

Functions: Robust, coordinated operation + mobility

It Begins with State Space Search!

3

Brian Williams, Fall 10 5

Problem Solving as
State Space Search

•  Problem Formulation (Modeling)
– Problem solving as state space search

•  Formal Representation
– Graphs and search trees

•  Reasoning Algorithms
– Depth and breadth-first search

Brian Williams, Fall 10 6

Most Agent Building Block
Implementations Use Search

Robust Operations:
•  Activity Planning
•  Diagnosis
•  Repair
•  Scheduling
•  Resource Allocation

Mobility:
•  Path Planning
•  Localization
•  Map Building
•  Control Trajectory

Design

4

Brian Williams, Fall 10 7

Example: Outpost

Logistics Planning

Brian Williams, Fall 10 8

Early AI: What are the universal problem solving methods?

Astronaut

Goose

Grain

Fox

Rover

Can the astronaut get its supplies

safely across a Lunar crevasse?

•� Astronaut + 1 item

 allowed in the rover.

•� Goose alone eats Grain

•� Fox alone eats Goose

Simple Trivial

Image produced for NASA by John Frassanito and Associates.

5

Brian Williams, Fall 10 9

Problem Solving as
State Space Search

•  Formulate Goal
–  State

•  Astronaut, Fox, Goose & Grain below crevasse.

•  Formulate Problem
–  States

•  Astronaut, Fox, Goose & Grain
above or below the crevasse.

–  Operators
•  Move: Astronaut drives rover and 1 or 0 items

to other side of crevasse.
–  Initial State

•  Astronaut, Fox, Goose & Grain above crevasse.

•  Generate Solution
–  Sequence of Operators (or States)

•  Move(goose,astronaut), Move(astronaut), . . .

Brian Williams, Fall 10 10

Astronaut
Goose
Grain
Fox

Astronaut
Goose
Grain
Fox

Grain
Fox

Astronaut
Goose

Goose
Grain

Astronaut
Fox

Goose
Fox

Astronaut
Grain

Goose
Grain
Fox

Astronaut

6

Brian Williams, Fall 10 11

Astronaut
Goose
Grain
Fox

Grain
Fox

Astronaut
Goose

Astronaut
Goose
Grain
Fox

Goose
Fox

Astronaut
Grain

Astronaut
Grain
Fox

Goose

Astronaut
Goose

Grain
Fox

Goose
Grain

Astronaut
Fox

Astronaut
Goose
Fox

Grain

Grain

Astronaut
Goose
Fox

Fox

Astronaut
Goose
Grain

Goose

Astronaut
Fox

Grain

Goose
Grain
Fox

Astronaut

Astronaut
Grain

Goose
Fox

Astronaut
Fox

Goose
Grain

Astronaut

Goose
Grain
Fox

Astronaut
Goose
Grain

Fox

Brian Williams, Fall 10 12

Astronaut
Goose
Grain
Fox

Grain
Fox

Astronaut
Goose

Astronaut
Grain
Fox

Goose

Goose

Astronaut
Fox

Grain

Astronaut
Goose

Grain
Fox

Astronaut
Goose
Grain
Fox

Grain

Astronaut
Goose
Fox

Fox

Astronaut
Goose
Grain

Goose
Fox

Astronaut
Grain

Goose
Grain

Astronaut
Fox

Astronaut
Goose
Fox

Grain

Astronaut
Grain

Goose
Fox

Astronaut
Fox

Goose
Grain

Goose
Grain
Fox

Astronaut

Astronaut

Goose
Grain
Fox

Astronaut
Goose
Grain

Fox

7

Brian Williams, Fall 10 14

•  Swaggert & Lovell assemble
emergency rig for Apollo 13
lithium hydroxide unit.

Languages for Expressing
States and Operators for Complex Tasks

Image source: NASA.

Brian Williams, Fall 10 13

Formulation Example: 8-Puzzle

•  States:
•  Operators:
•  Initial and

Goal States:

5 4

6 1

7 3

8

2

1 2

8

3

7 6

4

5

Start Goal

integer location for each tile AND …??
move empty square up, down, left, right
as shown above

8

Brian Williams, Fall 10 15

Example: STRIPS Planning Language

Initial state:
(and (hose a) �

 (clamp b)�
 (hydroxide-unit c) �
 (on-table a) �
 (on-table b)

 (on-table c) �
 (clear a) �
 (clear b) �
 (clear c) �
 (empty arm))

goal (partial state):
(and (connected a b) �

 (connected b c)))

precondition: (and (clear hose)
 (on-table hose)

 (empty arm))

effect: (and (not (clear hose))
 (not (on-table hose))
 (not (empty arm))
 (holding arm hose)))

Operators

16

Problem:
Find a Route from home to MIT

States? Operators?, Initial and Goal State?

© MapQuest, Navigation Technologies. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/fairuse.

pickup hose

http://ocw.mit.edu/fairuse

9

Brian Williams, Fall 09 17

Problem: Compensating for Error Online

1 2 3

8 4

7 6 5

•  Policy, π(v) → e, dictates how to act in all states.
•  Policy π corresponds to a shortest path tree from all vertices to the destination.

18

How do we Map Path Planning to
State Space Search?

Start
position

Goal
position

Vehicle translates,
but no rotation

10

19

1. Create Configuration Space

Idea: Transform to equivalent
problem of navigating a point.

Start
position

Goal
position

Vehicle translates,
but no rotation

20

2. Map From Continuous Problem to
Graph Search: Create Visibility Graph
Start

position

Goal
position

11

21

Start
position

Goal
position

2. Map From Continuous Problem to
Graph Search: Create Visibility Graph

22

3. Find Shortest Path (e.g., A*)
Start

position

Goal
position

12

23

Start
position

Goal
position

Resulting Solution

24

A Visibility Graph is a Kind of Roadmap

Start
position

Goal
position

What are the strengths / weaknesses of roadmaps?
What are some other types of roadmaps?

13

25

Voronoi Diagrams
Lines equidistant from CSpace obstacles

Brian Williams, Fall 03 26

Roadmaps: Approximate Fixed Cell

14

Brian Williams, Fall 03 27

Roadmaps: Approximate Fixed Cell

Brian Williams, Fall 03 28

Roadmaps: Approximate Variable Cell

15

Brian Williams, Fall 03 29

Roadmaps: Exact Cell Decomposition

Brian Williams, Fall 03 30

How do we handle large state spaces?

Start
position

Goal
position

RRT,
Ta

RRT,
Tb

Rapid exploring Random Trees

16

Brian Williams, Fall 10 31

Problem Solving as
State Space Search

•  Problem Formulation (Modeling)
– Problem solving as state space search

•  Formal Representation
– Graphs and search trees

•  Reasoning Algorithms
– Depth and breadth-first search

Brian Williams, Fall 10 32

Problem Formulation: A Graph
Operator

Edge

State

Vertex

Directed
Graph
(one-way streets)

Undirected
Graph
(two-way streets)

neighbors
(adjacent)

Tail Vertex
of Edge

Head Vertex
of Edge

h
t

17

Brian Williams, Fall 10 33

Problem Formulation: A Graph

In Degree (2)

Out Degree (1)

Directed
Graph
(one-way streets)

b

Undirected
Graph
(two-way streets)

b
Degree (3)

Brian Williams, Fall 10 34

Problem Formulation: A Graph

Directed
Graph
(one-way streets)

a
c

d
e

b

Undirected
Graph
(two-way streets)

a
c

e
d

b

Connected graph
 Path between all vertices.

Complete graph
 All vertices are adjacent.

Sub graph
 Subset of vertices
 edges between vertices in Subset

Clique
 A complete subgraph
 (All vertices are adjacent).

Strongly connected graph
 Directed path between all vertices.

18

Brian Williams, Fall 10 35

Specifying a Graph: G = <V, E>

a
c

d
e

b Vertices V = {a, b, c, d, e}

Edges E = {<a, b>, <a, c>,
 <b, e>,
 <c, b>, <c,d>,
 <e, d>}

 Notation:
 <a, b, … n> an ordered list of elements a, b …
 {a, b, … n} an unordered set of distinguished elements.

Brian Williams, Fall 10 36

Examples of Graphs

 San Fran

Boston

LA Dallas

 Wash DC

Roadmap

A B C

A B

C

A B

C

A

B

C

Put C on B

Put C on A

Put B on C

Put C on A

A

B

C Put A on C

Planning Actions

(graph of possible
states of the world)

19

Brian Williams, Fall 10 37

Formalizing State Space Search

C

S

B

G
A

D

Input: A search problem S = <g, S, G> where
•  graph g = <V, E>,
•  start vertex S in V, and
•  goal vertex G in V.

Output: A simple path P = <S, v2, … G> in g from S to G.

Brian Williams, Fall 10 38

Simple Paths of Graph g = <V, E>
C

S

B

G
A

D

A simple path is a path that has no cycles.
A cycle is a subpath where start = end (i.e., repeated vertices).

A (directed) path P of graph g is
 a sequence of vertices <v1, … vn> in V
 such that each successive pair <vi,vi+1> is a (directed) edge in E

start end

<S, A, D, C>

20

Brian Williams, Fall 10 39

A Problem Solver Searches
through all Simple Paths

C

S

B

G
A

D

S

D

A

C G

Brian Williams, Fall 10 40

A Search Tree Denotes All Simple Paths

C

S

B

G
A

D

S

D

B A

C G

C G

D

C G

Enumeration is:
•  Complete
•  Systematic
•  Sound

21

Brian Williams, Fall 10 41

Search Trees

A tree T is a directed graph, such that
•  there exists exactly one undirected path between any
pair of vertices.
• In degree of each vertex is 1

think of a tree as a “family” tree

Brian Williams, Fall 10 42

Search Trees

Root

Branch
(Edge)

Node
(Vertex)

Leaf

think of a tree as a “family” tree

22

Brian Williams, Fall 10 43

Search Trees

Parent

Child

Siblings

think of a tree as a “family” tree

Brian Williams, Fall 10 44

Search Trees

Ancestors

think of a tree as a “family” tree

23

Brian Williams, Fall 10 45

Search Trees

Descendants

think of a tree as a “family” tree

Brian Williams, Fall 10 46

Problem Solving as
State Space Search

•  Problem Formulation (Modeling)
– Problem solving as state space search

•  Formal Representation
– Graphs and search trees

•  Reasoning Algorithms
– Depth and breadth-first search

24

Brian Williams, Fall 10 47

Classes of Search
Blind Depth-First Systematic exploration of whole tree

(uninformed) Breadth-First until the goal is found.

 Iterative-Deepening

Heuristic Hill-Climbing Use heuristic measure of goodness

(informed) Best-First of a node.

 Beam

Optimal A* Use path “length” measure. Find

(informed) Branch&Bound “shortest” path.

Brian Williams, Fall 10 48

Depth First Search (DFS)

S

D

B A

C G

C G

D

C G

Local Rule: After visiting node…
•  Visit its children before its siblings
•  Visit its children left to right

1

2

3

4 5

6

7

8

9 10

11

S

A

D

C G

C

B

D

C G

G

25

Brian Williams, Fall 10 49

Breadth First Search (BFS)

S

D

B A

C G

C G

D

C G

Local Rule: After visiting node…
•  Visit its siblings, before its children
•  Visit its children left to right

1

2

4

8 9

5

3

6

10 11

7

S

A

D

C G

C

B

D

C G

G

Brian Williams, Fall 10 50

Elements of Algorithm Design
Algorithm Description: (Today)

–  stylized pseudo code, sufficient to analyze and implement the algorithm
(implementation next Wednesday).

Algorithm Analysis: (Wednesday & Monday)
•  Time complexity:

–  how long does it take to find a solution?
•  Space complexity:

–  how much memory does it need to perform search?

•  Soundness:
–  when a solution is returned, is it guaranteed to be correct?

•  Completeness:
–  is the algorithm guaranteed to find a solution when there is one?

26

Brian Williams, Fall 10 51

Problem Solving as
State Space Search

•  Problem Formulation (Modeling)
•  Formal Representation
•  Reasoning Algorithms

– A generic search algorithm description
– Depth-first search example
– Handling cycles
– Breadth-first search example

Brian Williams, Fall 10 52

Solve <g = <V, E>, S, G>
using State Space Search

Search States:
•  All simple paths <S, …v> in g starting at S
Initial State:
•  <S>
Operator:
•  Extend a path <S, … v> to <S, … v, u>

for each <v, u> in E
–  call u a child of v

Goal:
•  A simple path <S, …, G> in g

27

Brian Williams, Fall 10 53

Solve <g = <V, E>, S, G>
using State Space Search

How do we maintain the search state?
•  An ordering on partial paths yet to be expanded

 (called a queue Q).

How do we perform search?
•  Repeatedly:

1.  Select next partial path from Q.
2.  Expand it.
3.  Add expansions to Q.

•  Terminate when goal G is found.

S

D

B A

C G

C G

D

C G

Brian Williams, Fall 10 54

Simple Search Algorithm: Preliminaries

•  A partial path from S to D is listed in reverse order,
•  e.g., <D, A, S>

•  The head of a partial path is its most recent visited node,
•  e.g., D.

•  The Q is a list of partial paths,
•  e.g. (<D, A, S>, <C, A, S> …>.

S

D

B A

C G

C G

D

C G

28

Brian Williams, Fall 10 55

Simple Search Algorithm
Let Q be a list of partial paths,
 S be the Start node and
 G be the Goal node.

1.   Initialize Q with partial path <S>
2.   If Q is empty, fail. Else, pick a partial path N from Q
3.   If head(N) = G, return N (goal reached!)
4.   Else:

a)   Remove N from Q
b)  Find all children of head(N) and

create a one-step extension of N to each child
c)   Add all extended paths to Q
d)  Go to step 2

Brian Williams, Fall 10 56

Problem Solving as
State Space Search

•  Problem Formulation (Modeling)
•  Formal Representation
•  Reasoning Algorithms

– A generic search algorithm description
– Depth-first search example
– Handling cycles
– Breadth-first search example

29

Brian Williams, Fall 10 57

Depth First Search (DFS)

S

D

B A

C G

C G

D

C G

1

2

3

4 5

6

7

8

9 10

11

S

A

D

C G

C

B

D

C G

G

Assume we remove the first element of Q,

Where to Q do we add the path extensions?

Idea: After visiting node
•  Visit its children left to right (or top to bottom)
•  Visit its children before its siblings

Brian Williams, Fall 10 58

Simple Search Algorithm
Let Q be a list of partial paths,
 S be the start node and
 G be the Goal node.

1.   Initialize Q with partial path <S>
2.   If Q is empty, fail. Else, pick a partial path N from Q
3.   If head(N) = G, return N (goal reached!)
4.   Else:

a)   Remove N from Q
b)  Find all children of head(N) and

create a one-step extension of N to each child
c)   Add all extended paths to Q
d)  Go to step 2

30

Brian Williams, Fall 10 59

Depth-First
Pick first element of Q; Add path extensions to front of Q

C

S

B

G
A

D

Q

1 (S)
2
3
4
5

1

Brian Williams, Fall 10 60

Simple Search Algorithm
Let Q be a list of partial paths,
 S be the Start node and
 G be the Goal node.

1.   Initialize Q with partial path <S>
2.   If Q is empty, fail. Else, pick a partial path N from Q
3.   If head(N) = G, return N (goal reached!)
4.   Else:

a)   Remove N from Q
b)  Find all children of head(N) and

create a one-step extension of N to each child
c)   Add all extended paths to Q
d)  Go to step 2

31

Brian Williams, Fall 10 61

C

S

B

G
A

D

Q

1 (S)
2
3
4
5

1

Depth-First
Pick first element of Q; Add path extensions to front of Q

Brian Williams, Fall 10 62

C

S

B

G
A

D

Q

1 (S)
2 (A S)
3
4
5

1

Added paths in blue

Depth-First
Pick first element of Q; Add path extensions to front of Q

32

Brian Williams, Fall 10 63

C

S

B

G
A

D

Q

1 (S)
2 (A S) (B S)
3
4
5

1

Added paths in blue

Depth-First
Pick first element of Q; Add path extensions to front of Q

Brian Williams, Fall 10 64

Simple Search Algorithm
Let Q be a list of partial paths,
Let S be the start node and
Let G be the Goal node.

1.   Initialize Q with partial path <S>
2.   If Q is empty, fail. Else, pick a partial path N from Q
3.   If head(N) = G, return N (goal reached!)
4.   Else:

a)   Remove N from Q
b)  Find all children of head(N) and

create a one-step extension of N to each child
c)   Add all extended paths to Q
d)  Go to step 2

33

Brian Williams, Fall 10 65

C

S

B

G
A

D

Q

1 (S)
2 (A S) (B S)
3
4
5

1

Added paths in blue

2

Depth-First
Pick first element of Q; Add path extensions to front of Q

Brian Williams, Fall 10 66

C

S

B

G
A

D

Q

1 (S)
2 (A S) (B S)
3 (C A S) (D A S) (B S)
4
5

1

2

Depth-First
Pick first element of Q; Add path extensions to front of Q

Added paths in blue

34

Brian Williams, Fall 10 67

C

S

B

G
A

D

Q

1 (S)
2 (A S) (B S)
3 (C A S) (D A S) (B S)
4
5

1

2

3

Depth-First
Pick first element of Q; Add path extensions to front of Q

Added paths in blue

Brian Williams, Fall 10 68

C

S

B

G
A

D

Q

1 (S)
2 (A S) (B S)
3 (C A S) (D A S) (B S)
4 (D A S) (B S)
5

1

2

3

Depth-First
Pick first element of Q; Add path extensions to front of Q

Added paths in blue

35

Brian Williams, Fall 10 69

C

S

B

G
A

D

Q

1 (S)
2 (A S) (B S)
3 (C A S) (D A S) (B S)
4 (D A S) (B S)
5

1

2

3

4

Depth-First
Pick first element of Q; Add path extensions to front of Q

Added paths in blue

Brian Williams, Fall 10 70

C

S

B

G
A

D

Q

1 (S)
2 (A S) (B S)
3 (C A S) (D A S) (B S)
4 (D A S) (B S)

5
(C D A S)(G D A S)
(B S)

1

2

3

4

Depth-First
Pick first element of Q; Add path extensions to front of Q

36

Brian Williams, Fall 10 71

C

S

B

G
A

D

Q

1 (S)
2 (A S) (B S)
3 (C A S) (D A S) (B S)
4 (D A S) (B S)

5
(C D A S)(G D A S)
(B S)

1

2

3

4

Depth-First
Pick first element of Q; Add path extensions to front of Q

Brian Williams, Fall 10 72

C

S

B

G
A

D

Q

1 (S)
2 (A S) (B S)
3 (C A S) (D A S) (B S)
4 (D A S) (B S)

5
(C D A S)(G D A S)
(B S)

6 (G D A S)(B S)

1

2

3

4

Depth-First
Pick first element of Q; Add path extensions to front of Q

37

Brian Williams, Fall 10 73

C

S

B

G
A

D

Q

1 (S)
2 (A S) (B S)
3 (C A S) (D A S) (B S)
4 (D A S) (B S)

5
(C D A S)(G D A S)
(B S)

6 (G D A S)(B S)

1

2

3

4

Depth-First
Pick first element of Q; Add path extensions to front of Q

Brian Williams, Fall 10 74

Simple Search Algorithm
Let Q be a list of partial paths,
Let S be the start node and
Let G be the Goal node.

1.   Initialize Q with partial path <S>
2.   If Q is empty, fail. Else, pick a partial path N from Q
3.   If head(N) = G, return N (goal reached!)
4.   Else:

a)   Remove N from Q
b)  Find all children of head(N) and

create a one-step extension of N to each child
c)   Add all extended paths to Q
d)  Go to step 2

38

Brian Williams, Fall 10 75

Problem Solving as
State Space Search

•  Problem Formulation (Modeling)
•  Formal Representation
•  Reasoning Algorithms

– A generic search algorithm description
– Depth-first search example
– Handling cycles
– Breadth-first search example

Brian Williams, Fall 10 76

C

S

B

G
A

D

Issue: Starting at S and moving top to bottom,
will depth-first search ever reach G?

39

Brian Williams, Fall 10 77

C

S

B

G
A

D

Q

1 (S)
2 (A S) (B S)
3 (C A S) (D A S) (B S)
4 (D A S) (B S)

5
(C D A S)(G D A S)
(B S)

6 (G D A S)(B S)

1

2

3

4

Depth-First

•  C visited multiple times
•  Multiple paths to C, D & G

 How much wasted effort can be incurred in the worst case?

Effort can be wasted in more mild cases

Brian Williams, Fall 10 78

How Do We Avoid Repeat Visits?
 Idea:

•  Keep track of nodes already visited.

•  Do not place expanded path on Q if head is a visited node.

Does this maintain correctness?

•  Any goal reachable from a node that was visited a second
time would be reachable from that node the first time.

Does this always improve efficiency?

•  Visits only a subset of the original paths, such that
 each node appears at most once at the head of a visited path.

40

Brian Williams, Fall 10 79

How Do We Modify The
Simple Search Algorithm?

Let Q be a list of partial paths,
Let S be the Start node and
Let G be the Goal node.

1.   Initialize Q with partial path <S> as only entry;
2.   If Q is empty, fail. Else, pick some partial path N from Q
3.   If head(N) = G, return N (goal reached!)
4.   Else

a)   Remove N from Q
b)  Find all children of head(N) and

create a one-step extension of N to each child
c)   Add to Q all the extended paths
d)  Go to step 2

Brian Williams, Fall 10 80

Simple Search Algorithm
Let Q be a list of partial paths,
Let S be the start node and
Let G be the Goal node.

1.   Initialize Q with partial path <S> as only entry; set Visited = {}
2.   If Q is empty, fail. Else, pick some partial path N from Q
3.   If head(N) = G, return N (goal reached!)
4.   Else

a)   Remove N from Q
b)  Find all children of head(N) not in Visited and

create a one-step extension of N to each child
c)   Add to Q all the extended paths
d)  Add children of head(N) to Visited
e)   Go to step 2

41

Brian Williams, Fall 10 81

Testing for the Goal
•  This algorithm stops (in step 3) when head(N) = G.

•  We could have performed this test in step 6 as each
extended path is added to Q. This would catch
termination earlier and be perfectly correct for all the
searches we have covered so far.

•  However, performing the test in step 6 will be
incorrect for the optimal search algorithms that we
look at later. We have chosen to leave the test in step 3
to maintain uniformity with these future searches.

Brian Williams, Fall 10 82

Problem Solving as
State Space Search

•  Problem Formulation (modeling)
•  Formal Representation
•  Reasoning Algorithms

– A generic search algorithm description
– Depth-first search example
– Handling cycles
– Breadth-first search example

42

Brian Williams, Fall 10 83

Breadth First Search (BFS)

S

D

B A

C G

C G

D

C G

1

2

4

8 9

5

3

6

10 11

7

S

A

D

C G

C

B

D

C G

G

Idea: After visiting node
•  Visit its children left to right
•  Visit its siblings, before its children

Assume we remove the first element of Q,

Where to Q do we add the path extensions?

Brian Williams, Fall 10 84

Breadth-First with Visited List
Pick first element of Q; Add path extensions to end of Q

C

S

B

G
A

D

Q Visited

1 (S) S
2
3
4
5
6

1

43

Brian Williams, Fall 10 85

Breadth-First with Visited List
Pick first element of Q; Add path extensions to end of Q

C

S

B

G
A

D

Q Visited

1 (S) S
2
3
4
5
6

1

Brian Williams, Fall 10 86

Breadth-First with Visited List
Pick first element of Q; Add path extensions to end of Q

C

S

B

G
A

D

Q Visited

1 (S) S
2 (A S) (B S) A,B,S
3
4
5
6

1

44

Brian Williams, Fall 10 87

Breadth-First with Visited List
Pick first element of Q; Add path extensions to end of Q

C

S

B

G
A

D

Q Visited

1 (S) S
2 (A S) (B S) A,B,S
3
4
5
6

1

2

Brian Williams, Fall 10 88

Breadth-First with Visited List
Pick first element of Q; Add path extensions to end of Q

C

S

B

G
A

D

Q Visited

1 (S) S
2 (A S) (B S) A,B,S
3 (B S) (C A S) (D A S) C,D,B,A,S
4
5
6

1

2

45

Brian Williams, Fall 10 89

Breadth-First with Visited List
Pick first element of Q; Add path extensions to end of Q

C

S

B

G
A

D

Q Visited

1 (S) S
2 (A S) (B S) A,B,S
3 (B S) (C A S) (D A S) C,D,B,A,S
4
5
6

1

2

3

Brian Williams, Fall 10 90

Breadth-First with Visited List
Pick first element of Q; Add path extensions to end of Q

C

S

B

G
A

D

Q Visited

1 (S) S
2 (A S) (B S) A,B,S
3 (B S) (C A S) (D A S) C,D,B,A,S
4 (C A S) (D A S) (G B S)* G,C,D,B,A,S
5
6

1

2

3

* We could stop here, when the first path to the goal is generated.

46

Brian Williams, Fall 10 91

Breadth-First with Visited List
Pick first element of Q; Add path extensions to end of Q

C

S

B

G
A

D

Q Visited

1 (S) S
2 (A S) (B S) A,B,S
3 (B S) (C A S) (D A S) C,D,B,A,S
4 (C A S) (D A S) (G B S)* G,C,D,B,A,S
5
6

1

2

3

4

* We could stop here, when the first path to the goal is generated.

Brian Williams, Fall 10 92

Breadth-First with Visited List
Pick first element of Q; Add path extensions to end of Q

C

S

B

G
A

D

Q Visited

1 (S) S
2 (A S) (B S) A,B,S
3 (B S) (C A S) (D A S) C,D,B,A,S
4 (C A S) (D A S) (G B S)* G,C,D,B,A,S
5 (D A S) (G B S) G,C,D,B,A,S
6

1

2

3

4

5

47

Brian Williams, Fall 10 93

Breadth-First with Visited List
Pick first element of Q; Add path extensions to end of Q

C

S

B

G
A

D

Q Visited

1 (S) S
2 (A S) (B S) A,B,S
3 (B S) (C A S) (D A S) C,D,B,A,S
4 (C A S) (D A S) (G B S)* G,C,D,B,A,S
5 (D A S) (G B S) G,C,D,B,A,S
6 (G B S) G,C,D,B,A,S

1

2

3

4

5

6

Brian Williams, Fall 10 94

Breadth-First with Visited List
Pick first element of Q; Add path extensions to end of Q

C

S

B

G
A

D

Q Visited

1 (S) S
2 (A S) (B S) A,B,S
3 (B S) (C A S) (D A S) C,D,B,A,S
4 (C A S) (D A S) (G B S)* G,C,D,B,A,S
5 (D A S) (G B S) G,C,D,B,A,S
6 (G B S) G,C,D,B,A,S

1

2

3

4

5

6

48

Brian Williams, Fall 10 95

Depth-first with Visited List
Pick first element of Q; Add path extensions to front of Q

C

S

B

G
A

D

Q Visited

1 (S) S
2 (A S) (B S) A, B, S
3 (C A S) (D A S) (B S) C,D,B,A,S
4 (D A S) (B S) C,D,B,A,S
5 (G D A S) (B S) G,C,D,B,A,S

1

2

3

4

5

Brian Williams, Fall 10 96

Depth First Search (DFS)
S

D

B A

C G

C G

D

C G

S

D

B A

C G

C G

D

C G

Breadth First Search (BFS)

For each search type, where do we place the children on the queue?

Depth-first:

 Add path extensions to front of Q

 Pick first element of Q

Breadth-first:

 Add path extensions to back of Q

 Pick first element of Q

49

Brian Williams, Fall 10 97

What You Should Know
•  Most problem solving tasks may be

formulated as state space search.
•  State space search is formalized using

graphs, simple paths, search trees, and
pseudo code.

•  Depth-first and breadth-first search are
framed, among others, as instances of a
generic search strategy.

•  Cycle detection is required to achieve
efficiency and completeness.

Brian Williams, Fall 10 98

Appendix

50

Brian Williams, Fall 10 99

Breadth-First (without Visited list)
Pick first element of Q; Add path extensions to end of Q

C

S

B

G
A

D

Q

1 (S)
2
3
4
5
6
7

1

Brian Williams, Fall 10 100

Breadth-First (without Visited list)
Pick first element of Q; Add path extensions to end of Q

C

S

B

G
A

D

Q

1 (S)
2 (A S) (B S)
3
4
5
6
7

1

2

Added paths in blue

51

Brian Williams, Fall 10 101

Breadth-First (without Visited list)
Pick first element of Q; Add path extensions to end of Q

C

S

B

G
A

D

Q

1 (S)
2 (A S) (B S)
3 (B S) (C A S) (D A S)
4
5
6
7

1

2

3

Added paths in blue

Brian Williams, Fall 10 102

Breadth-First (without Visited list)
Pick first element of Q; Add path extensions to end of Q

C

S

B

G
A

D

Q

1 (S)
2 (A S) (B S)
3 (B S) (C A S) (D A S)
4 (C A S) (D A S) (D B S) (G B S)*
5
6
7

1

2

3

4

Added paths in blue
Revisited nodes in pink
* We could have stopped here, when the first path to the goal was generated.

52

Brian Williams, Fall 10 103

Breadth-First (without Visited list)
Pick first element of Q; Add path extensions to end of Q

C

S

B

G
A

D

Q

1 (S)
2 (A S) (B S)
3 (B S) (C A S) (D A S)
4 (C A S) (D A S) (D B S) (G B S)*
5 (D A S) (D B S) (G B S)
6
7

1

2

3

4

5

Brian Williams, Fall 10 104

Breadth-First (without Visited list)
Pick first element of Q; Add path extensions to end of Q

C

S

B

G
A

D

Q

1 (S)
2 (A S) (B S)
3 (B S) (C A S) (D A S)
4 (C A S) (D A S) (D B S) (G B S)*
5 (D A S) (D B S) (G B S)
6 (D B S) (G B S) (C D A S) (G D A S)
7

1

2

3

4

5
6

53

Brian Williams, Fall 10 105

Breadth-First (without Visited list)
Pick first element of Q; Add path extensions to end of Q

C

S

B

G
A

D

Q

1 (S)
2 (A S) (B S)
3 (B S) (C A S) (D A S)
4 (C A S) (D A S) (D B S) (G B S)*
5 (D A S) (D B S) (G B S)
6 (D B S) (G B S) (C D A S) (G D A S)
7 (G B S) (C D A S) (G D A S)(C D B S)(G D B S)

1

2

3

4

5
6

7

MIT OpenCourseWare
http://ocw.mit.edu

16.410 / 16.413 Principles of Autonomy and Decision Making
Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

