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Assignments 

•  Remember:  
Problem Set #1: Java warm up  

 Out last Wednesday,  
 Due this Wednesday, September 15th 

•  Reading:  
–  Today: Solving problems through search [AIMA] Ch. 3.1-4 
–  Wednesday: Asymptotic Analysis Lecture 2 Notes of 6.046J;   

                     Recurrences, Lecture 12 Notes of 6.042J. 
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Recap - Course Objectives 
1.  Understand the major types of agents and 

architectures: 
–  goal-directed vs utility-based 
–  deliberative vs reactive 
–  model-based vs model-free 

2.   Learn the modeling and algorithmic building 
blocks for creating agents: 

–  Model problem in an appropriate  
formal representation. 

–  Specify, analyze, apply and implement reasoning 
algorithms to solve the problem formulations. 
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Plan

ExecuteMonitor &
Diagnosis

Locate in
World

Plan Routes

Map

Maneuver and Track

Mission Goals

Recap – Agent Architectures 

Functions: Robust, coordinated operation + mobility 

It Begins with State Space Search! 
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Problem Solving as  
State Space Search 

•  Problem Formulation (Modeling) 
– Problem solving as state space search 

•  Formal Representation 
– Graphs and search trees 

•  Reasoning Algorithms 
– Depth and breadth-first search 
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Most Agent Building Block 
Implementations Use Search 

Robust Operations: 
•  Activity Planning 
•  Diagnosis 
•  Repair 
•  Scheduling 
•  Resource Allocation 

Mobility: 
•  Path Planning 
•  Localization 
•  Map Building 
•  Control Trajectory 

Design 
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Example: Outpost 

Logistics Planning 
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Early AI: What are the universal problem solving methods? 

Astronaut

Goose

Grain

Fox

Rover

Can the astronaut get its supplies

safely across a Lunar crevasse?

•� Astronaut + 1 item  

  allowed in the rover. 

•� Goose alone eats Grain 

•� Fox alone eats Goose 

Simple Trivial 

Image produced for NASA by John Frassanito and Associates.
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Problem Solving as  
State Space Search 

•  Formulate Goal 
–  State 

•  Astronaut, Fox, Goose & Grain below crevasse. 

•  Formulate Problem 
–  States 

•  Astronaut, Fox, Goose & Grain  
above or below the crevasse. 

–  Operators 
•  Move: Astronaut drives rover and 1 or 0 items 

to other side of crevasse. 
–  Initial State 

•  Astronaut, Fox, Goose & Grain above crevasse. 

•  Generate Solution 
–  Sequence of Operators (or States) 

•  Move(goose,astronaut), Move(astronaut), . . . 
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Astronaut 
Goose 
Grain 
Fox 

Astronaut 
Goose 
Grain 
Fox 

Grain 
Fox 

Astronaut 
Goose 

Goose 
Grain 

Astronaut 
Fox 

Goose 
Fox 

Astronaut 
Grain 

Goose 
Grain 
Fox 

Astronaut 
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•  Swaggert & Lovell assemble 
emergency rig for Apollo 13 
lithium hydroxide unit.  

Languages for Expressing  
States and Operators for Complex Tasks 

Image source: NASA.

Brian Williams, Fall  10 13 

Formulation Example: 8-Puzzle 

•  States:  
•  Operators:  
•  Initial and  

Goal States: 

5 4 

6 1 

7 3 

8 

2 

1 2 

8 

3 

7 6 

4 

5 

Start Goal 

integer location for each tile AND …?? 
move empty square up, down, left, right 
as shown above 
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Example:  STRIPS Planning Language 

Initial state: 
(and (hose a)  �

   (clamp b)�
   (hydroxide-unit c)  �
   (on-table a) �
   (on-table b)

        (on-table c)  �
   (clear a)  �
   (clear b) �
   (clear c) �
   (empty arm))

goal (partial state): 
(and (connected a b) �

    (connected b c)))

precondition: (and (clear hose) 
  (on-table hose) 

                                (empty arm)) 

effect: (and (not (clear hose)) 
      (not (on-table hose)) 
      (not (empty arm)) 
              (holding arm hose))) 

Operators 

16 

Problem: 
Find a Route from home to MIT 

States? Operators?, Initial and Goal State? 

© MapQuest, Navigation Technologies. All rights reserved. This content is excluded from our Creative 
Commons license. For more information, see http://ocw.mit.edu/fairuse.

pickup hose 

http://ocw.mit.edu/fairuse
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Problem: Compensating for Error Online 

1 2 3 

8 4 

7 6 5 

•  Policy, π(v) → e, dictates how to act in all states. 
•  Policy π corresponds to a shortest path tree from all vertices to the destination. 

18 

How do we Map Path Planning to 
State Space Search? 

Start 
position 

Goal 
position 

Vehicle translates, 
but no rotation 
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1. Create Configuration Space 

Idea: Transform to equivalent  
problem of navigating a point. 

Start 
position 

Goal 
position 

Vehicle translates, 
but no rotation 

20 

2. Map From Continuous Problem to 
Graph Search: Create Visibility Graph 
Start 

position 

Goal 
position 
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21 

Start 
position 

Goal 
position 

2. Map From Continuous Problem to 
Graph Search: Create Visibility Graph 

22 

3. Find Shortest Path (e.g., A*) 
Start 

position 

Goal 
position 
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Start 
position 

Goal 
position 

Resulting Solution 

24 

A Visibility Graph is a Kind of Roadmap 

Start 
position 

Goal 
position 

What are the strengths / weaknesses of roadmaps? 
What are some other types of roadmaps? 



13 

25 

Voronoi Diagrams 
Lines equidistant from CSpace obstacles 
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Roadmaps: Approximate Fixed Cell 
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Roadmaps: Approximate Fixed Cell  
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Roadmaps: Approximate Variable Cell 
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Roadmaps: Exact Cell Decomposition 
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How do we handle large state spaces? 

Start 
position 

Goal 
position 

RRT, 
Ta 

RRT, 
Tb 

Rapid exploring Random Trees 
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Problem Solving as  
State Space Search 

•  Problem Formulation (Modeling) 
– Problem solving as state space search 

•  Formal Representation 
– Graphs and search trees 

•  Reasoning Algorithms 
– Depth and breadth-first search 
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Problem Formulation: A Graph 
Operator 

Edge 

State 

Vertex 

Directed 
Graph 
(one-way streets) 

Undirected 
Graph 
(two-way streets) 

neighbors 
(adjacent) 

Tail Vertex  
of Edge 

Head Vertex  
of Edge 

h 
t 
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Problem Formulation: A Graph 

In Degree (2) 

Out Degree (1) 

Directed 
Graph 
(one-way streets) 

b 

Undirected 
Graph 
(two-way streets) 

b 
Degree (3) 
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Problem Formulation: A Graph 

Directed 
Graph 
(one-way streets) 

a 
c 

d 
e 

b 

Undirected 
Graph 
(two-way streets) 

a 
c 

e 
d 

b 

Connected graph 
   Path between all vertices. 

Complete graph 
   All vertices are adjacent. 

Sub graph 
   Subset of vertices 
   edges between vertices in Subset 

Clique 
   A complete subgraph 
   (All vertices are adjacent). 

Strongly connected graph 
   Directed path between all vertices. 
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Specifying a Graph: G = <V, E> 

a 
c 

d 
e 

b Vertices V = {a, b, c, d, e} 

Edges E = {<a, b>, <a, c>,  
                    <b, e>, 
                    <c, b>, <c,d>, 
                    <e, d>} 

 Notation: 
 <a, b, … n>   an ordered list of elements a, b … 
 {a, b, … n}    an unordered set of distinguished elements. 
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Examples of Graphs 

 San Fran 

Boston 

LA  Dallas 

 Wash DC 

Roadmap 

A B C 

A B 

C 

A B 

C 

A 

B 

C 

Put C on B 

Put C on A 

Put B on C 

Put C on A 

A 

B 

C Put A on C 

Planning Actions 

(graph of possible 
states of the world) 
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Formalizing State Space Search 

C 

S 

B 

G 
A 

D 

Input: A search problem S =  <g, S, G> where 
•  graph g = <V, E>,  
•  start vertex S in V, and 
•  goal vertex G in V.  

Output: A simple path P = <S, v2, … G> in g from S to G. 
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Simple Paths of Graph g = <V, E> 
C 

S 

B 

G 
A 

D 

A simple path is a path that has no cycles. 
A cycle is a subpath where start = end (i.e., repeated vertices). 

A (directed) path P of graph g is  
   a sequence of vertices <v1, … vn> in V    
   such that each successive pair <vi,vi+1> is a (directed) edge in E 

start end 

<S, A, D, C> 
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A Problem Solver Searches  
through all Simple Paths 

C 

S 

B 

G 
A 

D 

S 

D 

A 

C G 
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A Search Tree Denotes All Simple Paths 

C 

S 

B 

G 
A 

D 

S 

D 

B A 

C G 

C G 

D 

C G 

Enumeration is: 
•  Complete 
•  Systematic 
•  Sound 
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Search Trees 

A tree T is a directed graph, such that  
•  there exists exactly one undirected path between any 
pair of vertices. 
• In degree of each vertex is 1 

think of a tree as a “family” tree 
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Search Trees 

Root 

Branch 
(Edge) 

Node 
(Vertex) 

Leaf 

think of a tree as a “family” tree 
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Search Trees 

Parent 

Child 

Siblings 

think of a tree as a “family” tree 
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Search Trees 

Ancestors 

think of a tree as a “family” tree 
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Search Trees 

Descendants 

think of a tree as a “family” tree 
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Problem Solving as  
State Space Search 

•  Problem Formulation (Modeling) 
– Problem solving as state space search 

•  Formal Representation 
– Graphs and search trees 

•  Reasoning Algorithms 
– Depth and breadth-first search 
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Classes of Search 
Blind   Depth-First      Systematic exploration of whole tree 

(uninformed)  Breadth-First      until the goal is found. 

  Iterative-Deepening 

Heuristic  Hill-Climbing      Use heuristic measure of goodness 

(informed)  Best-First      of a node. 

  Beam    

Optimal    A*           Use path “length” measure.  Find 

(informed)   Branch&Bound    “shortest” path. 
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Depth First Search (DFS) 

S 

D 

B A 

C G 

C G 

D 

C G 

Local Rule: After visiting node… 
•  Visit its children before its siblings 
•  Visit its children left to right 

1 

2 

3 

4 5 

6 

7 

8 

9 10 

11 

S 

A 

D 

C G 

C 

B 

D 

C G 

G 
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Breadth First Search (BFS) 

S 

D 

B A 

C G 

C G 

D 

C G 

Local Rule: After visiting node… 
•  Visit its siblings, before its children 
•  Visit its children left to right 

1 

2 

4 

8 9 

5 

3 

6 

10 11 

7 

S 

A 

D 

C G 

C 

B 

D 

C G 

G 
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Elements of Algorithm Design 
Algorithm Description: (Today) 

–  stylized pseudo code, sufficient to analyze and implement the algorithm 
(implementation next Wednesday). 

Algorithm Analysis: (Wednesday & Monday) 
•  Time complexity:  

–  how long does it take to find a solution? 
•  Space complexity:  

–  how much memory does it need to perform search? 

•  Soundness:  
–  when a solution is returned, is it guaranteed to be correct? 

•  Completeness:  
–  is the algorithm guaranteed to find a solution when there is one? 
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Problem Solving as  
State Space Search 

•  Problem Formulation (Modeling) 
•  Formal Representation 
•  Reasoning Algorithms 

– A generic search algorithm description 
– Depth-first search example 
– Handling cycles 
– Breadth-first search example 
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Solve <g = <V, E>, S, G>  
using State Space Search 

Search States: 
•  All simple paths <S, …v>  in g starting at S 
Initial State: 
•  <S> 
Operator: 
•  Extend a path <S, … v> to <S, … v, u>  

for each <v, u> in E 
–  call u a child of v 

Goal: 
•  A simple path <S, …, G> in g 
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Solve <g = <V, E>, S, G>  
using State Space Search 

How do we maintain the search state? 
•   An ordering on partial paths yet to be expanded  

  (called a queue Q). 

How do we perform search?  
•   Repeatedly: 

1.   Select next partial path from Q.  
2.   Expand it. 
3.   Add expansions to Q. 

•   Terminate when goal G is found. 

S 

D 

B A 

C G 

C G 

D 

C G 

Brian Williams, Fall  10 54 

Simple Search Algorithm: Preliminaries 

•  A partial path from S to D is listed in reverse order,  
•  e.g., <D, A, S>    

•  The head of a partial path is its most recent visited node,  
•  e.g., D. 

•  The Q is a list of partial paths,  
•  e.g. (<D, A, S>, <C, A, S> …>. 

S 

D 

B A 

C G 

C G 

D 

C G 
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Simple Search Algorithm 
Let Q be a list of partial paths,  
      S be the Start node and  
      G be the Goal node. 

1.   Initialize Q with partial path <S> 
2.   If Q is empty, fail.  Else, pick a partial path N from Q 
3.   If head(N) = G, return N    (goal reached!) 
4.   Else:  

a)   Remove N from Q 
b)  Find all children of head(N) and  

create a one-step extension of N to each child 
c)   Add all extended paths to Q 
d)  Go to step 2 
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Problem Solving as  
State Space Search 

•  Problem Formulation (Modeling) 
•  Formal Representation 
•  Reasoning Algorithms 

– A generic search algorithm description 
– Depth-first search example 
– Handling cycles 
– Breadth-first search example 
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Depth First Search (DFS) 

S 

D 

B A 

C G 

C G 

D 

C G 

1 

2 

3 

4 5 

6 

7 

8 

9 10 

11 

S 

A 

D 

C G 

C 

B 

D 

C G 

G 

Assume we remove the first element of Q, 

Where to Q do we add the path extensions? 

Idea: After visiting node 
•  Visit its children left to right  (or top to bottom) 
•  Visit its children before its siblings 
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Simple Search Algorithm 
Let Q be a list of partial paths,  
      S be the start node and  
      G be the Goal node. 

1.   Initialize Q with partial path <S> 
2.   If Q is empty, fail.  Else, pick a partial path N from Q 
3.   If head(N) = G, return N    (goal reached!) 
4.   Else:  

a)   Remove N from Q 
b)  Find all children of head(N) and  

create a one-step extension of N to each child 
c)   Add all extended paths to Q 
d)  Go to step 2 
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Depth-First 
Pick first element of Q;  Add path extensions to front of Q 

C 

S 

B 

G 
A 

D 

Q 

1 (S) 
2 
3 
4 
5 

1 
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Simple Search Algorithm 
Let Q be a list of partial paths,  
      S be the Start node and  
      G be the Goal node. 

1.   Initialize Q with partial path <S> 
2.   If Q is empty, fail.  Else, pick a partial path N from Q 
3.   If head(N) = G, return N    (goal reached!) 
4.   Else:  

a)   Remove N from Q 
b)  Find all children of head(N) and  

create a one-step extension of N to each child 
c)   Add all extended paths to Q 
d)  Go to step 2 
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C 

S 

B 

G 
A 

D 

Q 

1 (S) 
2 
3 
4 
5 

1 

Depth-First 
Pick first element of Q;  Add path extensions to front of Q 
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C 

S 

B 

G 
A 

D 

Q 

1 (S) 
2 (A S) 
3 
4 
5 

1 

Added paths in blue 

Depth-First 
Pick first element of Q;  Add path extensions to front of Q 
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C 

S 

B 

G 
A 

D 

Q 

1 (S) 
2 (A S) (B S) 
3 
4 
5 

1 

Added paths in blue 

Depth-First 
Pick first element of Q;  Add path extensions to front of Q 
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Simple Search Algorithm 
Let Q be a list of partial paths,  
Let S be the start node and  
Let G be the Goal node. 

1.   Initialize Q with partial path <S> 
2.   If Q is empty, fail.  Else, pick a partial path N from Q 
3.   If head(N) = G, return N    (goal reached!) 
4.   Else:  

a)   Remove N from Q 
b)  Find all children of head(N) and  

create a one-step extension of N to each child 
c)   Add all extended paths to Q 
d)  Go to step 2 
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C 

S 

B 

G 
A 

D 

Q 

1 (S) 
2 (A S) (B S) 
3 
4 
5 

1 

Added paths in blue 

2 

Depth-First 
Pick first element of Q;  Add path extensions to front of Q 
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C 

S 

B 

G 
A 

D 

Q 

1 (S) 
2 (A S) (B S) 
3 (C A S) (D A S) (B S) 
4 
5 

1 

2 

Depth-First 
Pick first element of Q;  Add path extensions to front of Q 

Added paths in blue 
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C 

S 

B 

G 
A 

D 

Q 

1 (S) 
2 (A S) (B S) 
3 (C A S) (D A S) (B S) 
4 
5 

1 

2 

3 

Depth-First 
Pick first element of Q;  Add path extensions to front of Q 

Added paths in blue 

Brian Williams, Fall  10 68 

C 

S 

B 

G 
A 

D 

Q 

1 (S) 
2 (A S) (B S) 
3 (C A S) (D A S) (B S) 
4 (D A S) (B S) 
5 

1 

2 

3 

Depth-First 
Pick first element of Q;  Add path extensions to front of Q 

Added paths in blue 
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C 

S 

B 

G 
A 

D 

Q 

1 (S) 
2 (A S) (B S) 
3 (C A S) (D A S) (B S) 
4 (D A S) (B S) 
5 

1 

2 

3 

4 

Depth-First 
Pick first element of Q;  Add path extensions to front of Q 

Added paths in blue 
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C 

S 

B 

G 
A 

D 

Q 

1 (S) 
2 (A S) (B S) 
3 (C A S) (D A S) (B S) 
4 (D A S) (B S) 

5 
(C D A S)(G D A S)  
(B S) 

1 

2 

3 

4 

Depth-First 
Pick first element of Q;  Add path extensions to front of Q 
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C 

S 

B 

G 
A 

D 

Q 

1 (S) 
2 (A S) (B S) 
3 (C A S) (D A S) (B S) 
4 (D A S) (B S) 

5 
(C D A S)(G D A S)  
(B S) 

1 

2 

3 

4 

Depth-First 
Pick first element of Q;  Add path extensions to front of Q 
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C 

S 

B 

G 
A 

D 

Q 

1 (S) 
2 (A S) (B S) 
3 (C A S) (D A S) (B S) 
4 (D A S) (B S) 

5 
(C D A S)(G D A S)  
(B S) 

6 (G D A S)(B S) 

1 

2 

3 

4 

Depth-First 
Pick first element of Q;  Add path extensions to front of Q 
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C 

S 

B 

G 
A 

D 

Q 

1 (S) 
2 (A S) (B S) 
3 (C A S) (D A S) (B S) 
4 (D A S) (B S) 

5 
(C D A S)(G D A S)  
(B S) 

6 (G D A S)(B S) 

1 

2 

3 

4 

Depth-First 
Pick first element of Q;  Add path extensions to front of Q 
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Simple Search Algorithm 
Let Q be a list of partial paths,  
Let S be the start node and  
Let G be the Goal node. 

1.   Initialize Q with partial path <S> 
2.   If Q is empty, fail.  Else, pick a partial path N from Q 
3.   If head(N) = G, return N    (goal reached!) 
4.   Else:  

a)   Remove N from Q 
b)  Find all children of head(N) and  

create a one-step extension of N to each child 
c)   Add all extended paths to Q 
d)  Go to step 2 
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Problem Solving as  
State Space Search 

•  Problem Formulation (Modeling) 
•  Formal Representation 
•  Reasoning Algorithms 

– A generic search algorithm description 
– Depth-first search example 
– Handling cycles 
– Breadth-first search example 
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C 

S 

B 

G 
A 

D 

Issue: Starting at S and moving top to bottom,  
will depth-first search ever reach G? 
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C 

S 

B 

G 
A 

D 

Q 

1 (S) 
2 (A S) (B S) 
3 (C A S) (D A S) (B S) 
4 (D A S) (B S) 

5 
(C D A S)(G D A S)  
(B S) 

6 (G D A S)(B S) 

1 

2 

3 

4 

Depth-First 

•  C visited multiple times 
•  Multiple paths to C, D & G 

 How much wasted effort can be incurred in the worst case? 

Effort can be wasted in more mild cases 
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How Do We Avoid Repeat Visits? 
 Idea: 

•  Keep track of nodes already visited. 

•  Do not place expanded path on Q if head is a visited node. 

Does this maintain correctness? 

•  Any goal reachable from a node that was visited a second 
time would be reachable from that node the first time. 

Does this always improve efficiency?   

•  Visits only a subset of the original paths, such that 
  each node appears at most once at the head of a visited path. 
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How Do We Modify The 
Simple Search Algorithm? 

Let Q be a list of partial paths,  
Let S be the Start node and  
Let G be the Goal node. 

1.   Initialize Q with partial path <S> as only entry;  
2.   If Q is empty, fail.  Else, pick some partial path N from Q 
3.   If head(N) = G, return N    (goal reached!) 
4.   Else  

a)   Remove N from Q 
b)  Find all children of head(N) and  

create a one-step extension of N to each child 
c)   Add to Q all the extended paths 
d)  Go to step 2 
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Simple Search Algorithm 
Let Q be a list of partial paths,  
Let S be the start node and  
Let G be the Goal node. 

1.   Initialize Q with partial path <S> as only entry; set Visited = {} 
2.   If Q is empty, fail.  Else, pick some partial path N from Q 
3.   If head(N) = G, return N    (goal reached!) 
4.   Else  

a)   Remove N from Q 
b)  Find all children of head(N) not in Visited and  

create a one-step extension of N to each child 
c)   Add to Q all the extended paths 
d)  Add children of head(N) to Visited 
e)   Go to step 2 
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Testing for the Goal 
•  This algorithm stops (in step 3) when head(N) = G. 

•  We could have performed this test in step 6 as each 
extended path is added to Q.  This would catch 
termination earlier and be perfectly correct for all the 
searches we have covered so far. 

•  However, performing the test in step 6 will be 
incorrect for the optimal search algorithms that we 
look at later.  We have chosen to leave the test in step 3 
to maintain uniformity with these future searches. 
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Problem Solving as  
State Space Search 

•  Problem Formulation (modeling) 
•  Formal Representation 
•  Reasoning Algorithms 

– A generic search algorithm description 
– Depth-first search example 
– Handling cycles 
– Breadth-first search example 
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Breadth First Search (BFS) 

S 

D 

B A 

C G 

C G 

D 

C G 
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B 

D 

C G 

G 

Idea: After visiting node 
•  Visit its children left to right 
•  Visit its siblings, before its children 

Assume we remove the first element of Q, 

Where to Q do we add the path extensions? 
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Breadth-First with Visited List 
Pick first element of Q;  Add path extensions to end of Q 

C 

S 

B 

G 
A 

D 

Q Visited 

1 (S) S 
2 
3 
4 
5 
6 

1 
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Breadth-First with Visited List 
Pick first element of Q;  Add path extensions to end of Q 

C 

S 

B 

G 
A 

D 

Q Visited 

1 (S) S 
2 
3 
4 
5 
6 

1 
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Breadth-First with Visited List 
Pick first element of Q;  Add path extensions to end of Q 

C 

S 

B 

G 
A 

D 

Q Visited 

1 (S) S 
2 (A S) (B S) A,B,S 
3 
4 
5 
6 

1 
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Breadth-First with Visited List 
Pick first element of Q;  Add path extensions to end of Q 

C 

S 

B 

G 
A 

D 

Q Visited 

1 (S) S 
2 (A S) (B S) A,B,S 
3 
4 
5 
6 

1 

2 
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Breadth-First with Visited List 
Pick first element of Q;  Add path extensions to end of Q 

C 

S 

B 

G 
A 

D 

Q Visited 

1 (S) S 
2 (A S) (B S) A,B,S 
3 (B S) (C A S) (D A S) C,D,B,A,S 
4 
5 
6 

1 

2 
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Breadth-First with Visited List 
Pick first element of Q;  Add path extensions to end of Q 

C 

S 

B 

G 
A 

D 

Q Visited 

1 (S) S 
2 (A S) (B S) A,B,S 
3 (B S) (C A S) (D A S) C,D,B,A,S 
4 
5 
6 

1 

2 

3 
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Breadth-First with Visited List 
Pick first element of Q;  Add path extensions to end of Q 

C 

S 

B 

G 
A 

D 

Q Visited 

1 (S) S 
2 (A S) (B S) A,B,S 
3 (B S) (C A S) (D A S) C,D,B,A,S 
4 (C A S) (D A S) (G B S)* G,C,D,B,A,S 
5 
6 

1 

2 

3 

* We could stop here, when the first path to the goal is generated. 



46 

Brian Williams, Fall  10 91 

Breadth-First with Visited List 
Pick first element of Q;  Add path extensions to end of Q 

C 

S 

B 

G 
A 

D 

Q Visited 

1 (S) S 
2 (A S) (B S) A,B,S 
3 (B S) (C A S) (D A S) C,D,B,A,S 
4 (C A S) (D A S) (G B S)* G,C,D,B,A,S 
5 
6 

1 

2 

3 

4 

* We could stop here, when the first path to the goal is generated. 
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Breadth-First with Visited List 
Pick first element of Q;  Add path extensions to end of Q 

C 

S 

B 

G 
A 

D 

Q Visited 

1 (S) S 
2 (A S) (B S) A,B,S 
3 (B S) (C A S) (D A S) C,D,B,A,S 
4 (C A S) (D A S) (G B S)* G,C,D,B,A,S 
5 (D A S) (G B S) G,C,D,B,A,S 
6 

1 

2 

3 

4 

5 



47 

Brian Williams, Fall  10 93 

Breadth-First with Visited List 
Pick first element of Q;  Add path extensions to end of Q 

C 

S 

B 

G 
A 

D 

Q Visited 

1 (S) S 
2 (A S) (B S) A,B,S 
3 (B S) (C A S) (D A S) C,D,B,A,S 
4 (C A S) (D A S) (G B S)* G,C,D,B,A,S 
5 (D A S) (G B S) G,C,D,B,A,S 
6 (G B S) G,C,D,B,A,S 

1 

2 

3 

4 

5 

6 
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Breadth-First with Visited List 
Pick first element of Q;  Add path extensions to end of Q 

C 

S 

B 

G 
A 

D 

Q Visited 

1 (S) S 
2 (A S) (B S) A,B,S 
3 (B S) (C A S) (D A S) C,D,B,A,S 
4 (C A S) (D A S) (G B S)* G,C,D,B,A,S 
5 (D A S) (G B S) G,C,D,B,A,S 
6 (G B S) G,C,D,B,A,S 

1 

2 

3 

4 

5 

6 
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Depth-first with Visited List 
Pick first element of Q;  Add path extensions to front of Q 

C 

S 

B 

G 
A 

D 

Q Visited 

1 (S) S 
2 (A S) (B S) A, B, S 
3 (C A S) (D A S) (B S) C,D,B,A,S 
4 (D A S) (B S) C,D,B,A,S 
5 (G D A S) (B S) G,C,D,B,A,S 

1 

2 

3 

4 

5 
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Depth First Search (DFS) 
S 

D 

B A 

C G 

C G 

D 

C G 

S 

D 

B A 

C G 

C G 

D 

C G 

Breadth First Search (BFS) 

For each search type, where do we place the children on the queue? 

Depth-first: 

   Add path extensions to front of Q 

   Pick first element of Q 

Breadth-first: 

   Add path extensions to back of Q 

   Pick first element of Q 
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What You Should Know 
•  Most problem solving tasks may be 

formulated as state space search. 
•  State space search is formalized using 

graphs, simple paths, search trees, and 
pseudo code. 

•  Depth-first and breadth-first search are 
framed, among others, as instances of a 
generic search strategy. 

•  Cycle detection is required to achieve 
efficiency and completeness. 
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Appendix 
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Breadth-First (without Visited list) 
Pick first element of Q;  Add path extensions to end of Q 

C 

S 

B 

G 
A 

D 

Q 

1 (S) 
2 
3 
4 
5 
6 
7 

1 
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Breadth-First (without Visited list) 
Pick first element of Q;  Add path extensions to end of Q 

C 

S 

B 

G 
A 

D 

Q 

1 (S) 
2 (A S) (B S) 
3 
4 
5 
6 
7 

1 

2 

Added paths in blue 
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Breadth-First (without Visited list) 
Pick first element of Q;  Add path extensions to end of Q 

C 

S 

B 

G 
A 

D 

Q 

1 (S) 
2 (A S) (B S) 
3 (B S) (C A S) (D A S) 
4 
5 
6 
7 

1 

2 

3 

Added paths in blue 
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Breadth-First (without Visited list) 
Pick first element of Q;  Add path extensions to end of Q 

C 

S 

B 

G 
A 

D 

Q 

1 (S) 
2 (A S) (B S) 
3 (B S) (C A S) (D A S) 
4 (C A S) (D A S) (D B S) (G B S)* 
5 
6 
7 

1 

2 

3 

4 

Added paths in blue 
Revisited nodes in pink 
* We could have stopped here, when the first path to the goal was generated. 
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Breadth-First (without Visited list) 
Pick first element of Q;  Add path extensions to end of Q 

C 

S 

B 

G 
A 

D 

Q 

1 (S) 
2 (A S) (B S) 
3 (B S) (C A S) (D A S) 
4 (C A S) (D A S) (D B S) (G B S)* 
5 (D A S) (D B S) (G B S) 
6 
7 

1 

2 

3 

4 

5 
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Breadth-First (without Visited list) 
Pick first element of Q;  Add path extensions to end of Q 

C 

S 

B 

G 
A 

D 

Q 

1 (S) 
2 (A S) (B S) 
3 (B S) (C A S) (D A S) 
4 (C A S) (D A S) (D B S) (G B S)* 
5 (D A S) (D B S) (G B S) 
6 (D B S) (G B S) (C D A S) (G D A S) 
7 

1 

2 

3 

4 

5 
6 
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Breadth-First (without Visited list) 
Pick first element of Q;  Add path extensions to end of Q 

C 

S 

B 

G 
A 

D 

Q 

1 (S) 
2 (A S) (B S) 
3 (B S) (C A S) (D A S) 
4 (C A S) (D A S) (D B S) (G B S)* 
5 (D A S) (D B S) (G B S) 
6 (D B S) (G B S) (C D A S) (G D A S) 
7 (G B S) (C D A S) (G D A S)(C D B S)(G D B S) 

1 

2 

3 

4 

5 
6 

7 
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