

- Problem Formulation (Modeling)
 Problem solving as state space search
- Formal Representation
 - Graphs and search trees
- Reasoning Algorithms
 Depth and breadth-first search

Brian Williams, Fall 10

© MapQuest, Navigation Technologies. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse.

- Problem Formulation (Modeling)
 Problem solving as state space search
- Formal Representation
 - Graphs and search trees
- Reasoning Algorithms
 Depth and breadth-first search

Brian Williams, Fall 10

Blind	Depth-First	Systematic exploration of whole tree
(uninformed)	Breadth-First	until the goal is found.
	Iterative-Deepening	9
Optimal	A *	Use path "length" measure. Find
(informed)	Branch&Bound	"shortest" path.
Heuristic	Hill-Climbing	Use heuristic measure of goodness
(informed)	Best-First	of a node.
	Beam	

Elements of Algorithm Design Algorithm Description: (Today) - stylized pseudo code, sufficient to analyze and implement the algorithm (implementation next Wednesday). Algorithm Analysis: (Wednesday & Monday) • Time complexity: - how long does it take to find a solution? • Space complexity: - how much memory does it need to perform search? Soundness: • - when a solution is returned, is it guaranteed to be correct? • Completeness: - is the algorithm guaranteed to find a solution when there is one? Brian Williams, Fall 10 50

- Problem Formulation (Modeling)
- Formal Representation
- Reasoning Algorithms
 - A generic search algorithm description

Brian Williams, Fall 10

51

- Depth-first search example
- Handling cycles
- Breadth-first search example

<section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><text>

- Problem Formulation (Modeling)
- Formal Representation
- Reasoning Algorithms
 - A generic search algorithm description

Brian Williams, Fall 10

- Depth-first search example
- Handling cycles
- Breadth-first search example

Testing for the Goal

• This algorithm stops (in step 3) when head(N) = G.

• We could have performed this test in step 6 as each extended path is added to Q. This would catch termination earlier and be perfectly correct for all the searches we have covered so far.

• However, performing the test in step 6 will be incorrect for the optimal search algorithms that we look at later. We have chosen to leave the test in step 3 to maintain uniformity with these future searches.

Brian Williams, Fall 10

Problem Solving as State Space Search

- Problem Formulation (modeling)
- Formal Representation
- Reasoning Algorithms
 - A generic search algorithm description

Brian Williams, Fall 10

- Depth-first search example
- Handling cycles
- Breadth-first search example

82

MIT OpenCourseWare http://ocw.mit.edu

16.410 / 16.413 Principles of Autonomy and Decision Making $\ensuremath{\mathsf{Fall}}\xspace_{2010}$

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.