MIT OpenCourseWare
http://ocw.mit.edu

16.36 Communication Systems Engineering

Spring 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

Lectures 7: Modulation with 2-D signal

Eytan Modiano

Two-dimensional signals

- $\mathbf{S}_{\mathrm{i}}=\left(\mathbf{S}_{\mathrm{i} 1}, \mathrm{~S}_{\mathrm{i} 2}\right)$
- Set of signal points is called a constellation

- 2-D constellations are commonly used
- Large constellations can be used to transmit many bits per symbol
- More bandwidth efficient
- More error prone
- The "shape" of the constellation can be used to minimize error probability by keeping symbols as far apart as possible
- Common constellations
- QAM: Quadrature Amplitude Modulation

PAM in two dimensions

- PSK: Phase Shift Keying

Special constellation where all symbols have equal power

Symmetric M-QAM

$S_{m}=\left(A_{m}^{x}, A_{m}^{y}\right), A_{m}^{x}, A_{m}^{y} \in\{+/-1,+/-3, \ldots,+/-(\sqrt{M}-1)\}$
M is the total number of signal points (symbols)
\sqrt{M} signal levels on each axis

Constellation is symmetric

$$
\Rightarrow \mathrm{M}=\mathrm{K}^{2}, \text { for some } \mathrm{K}
$$

Signal levels on each axis are the same as for PAM

$$
\begin{aligned}
& E . g ., 4-Q A M \Rightarrow A_{m}^{x}, A_{m}^{y} \in\{+/-1\} \\
& 16-Q A M \Rightarrow A_{m}^{x}, A_{m}^{y} \in\{+/-1,+/-3\}
\end{aligned}
$$

Bandwidth occupancy of QAM

- When using a rectangular pulse, the Fourier transform is a Sinc

- First null BW is still 2/T
- $\quad \log _{2}(\mathbf{M})$ bits per symbol
- $\quad \mathbf{R b}=\log _{2}(\mathbf{M}) / \mathbf{T}$
- \quad Bandwidth Efficiency $=\mathbf{R b} / \mathbf{B W}=\log _{2}(\mathbf{M}) / 2$
\Rightarrow "Same as for PAM"
But as we will see next, QAM is more energy efficient than PAM

Energy efficiency

$$
\begin{aligned}
& E_{S m}=\left[\left(A_{m}^{x}\right)^{2}+\left(A_{m}^{y}\right)^{2}\right] E_{g} \\
& E\left[\left(A_{m}^{x}\right)^{2}\right]=E\left[\left(A_{m}^{y}\right)^{2}\right]=\frac{K^{2}-1}{3}=\frac{M-1}{3}, \quad K=\sqrt{M} \\
& \bar{E}_{s}=\frac{2(M-1)}{3} E_{g} \\
& \text { Transmitted energy }=\frac{\bar{E}_{s}}{2}=\frac{(M-1)}{3} E_{g} \\
& E_{b}(Q A M)=\text { Energy } / \text { bit }=\frac{(M-1)}{3 \log _{2}(M)} E_{g}
\end{aligned}
$$

- Compare to PAM: E_{b} increases with M , but not nearly as fast as PAM

$$
E_{b}(P A M)=\frac{\left(M^{2}-1\right)}{6 \log _{2}(M)} E_{g}
$$

Bandpass QAM

- Modulate the two dimensional signal by multiplication by orthogonal carriers (sinusoids): Sine and Cosine
- This is accomplished by multiplying the $A^{\mathbf{x}}$ component by Cosine and the A^{y} component by sine
- Typically, people do not refer to these components as x, y but rather A^{c} or A^{s} for cosine and sine or sometimes as A^{Q}, and A^{I} for quadrature or in-phase components
- The transmitted signal, corresponding to the $\mathbf{m}^{\text {th }}$ symbol is:

$$
U_{m}(t)=A_{m}^{x} g(t) \operatorname{Cos}\left(2 \pi f_{c} t\right)+A_{m}^{y} g(t) \operatorname{Sin}\left(2 \pi f_{c} t\right), m=1 . . M
$$

Modulator

Demodulation: Recovering the baseband signals

- Over a symbol duration, $\operatorname{Sin}\left(2 \pi f_{c} t\right)$ and $\operatorname{Cos}\left(2 \pi f_{c} t\right)$ are orthogonal
- As long as the symbol duration is an integer number of cycles of the carrier wave ($f_{c}=n / T$) for some n
- When multiplied by a sine, the cosine component of $U(t)$ disappears and similarly the sine component disappears when multiplied by cosine

Demodulation, cont.

$$
\begin{aligned}
& U(t) 2 \operatorname{Cos}\left(2 \pi f_{c} t\right)=2 A^{x} g(t) \operatorname{Cos}^{2}\left(2 \pi f_{c} t\right)+2 A^{y} g(t) \cos \left(2 \pi f_{c} t\right) \sin \left(2 \pi f_{c} t\right) \\
& \operatorname{Cos}^{2}(\alpha)=\frac{1+\cos (2 \alpha)}{2} \\
& \Rightarrow U(t) 2 \operatorname{Cos}\left(2 \pi f_{c} t\right)=S^{x}(t)+S^{x}(t) \cos \left(4 \pi f_{c} t\right) \rightarrow L P F \Rightarrow S^{x}(t)=A^{x} g(t)
\end{aligned}
$$

Similarly,
$U(t) 2 \operatorname{Sin}\left(2 \pi f_{c} t\right)=2 A^{x} g(t) \operatorname{Cos}\left(2 \pi f_{c} t\right) \operatorname{Sin}\left(2 \pi f_{c} t\right)+2 A^{y} g(t) \sin ^{2}\left(2 \pi f_{c} t\right)$
$\operatorname{Sin}^{2}(\alpha)=\frac{1-\cos (2 \alpha)}{2}$
$\Rightarrow U(t) 2 \operatorname{Sin}\left(2 \pi f_{c} t\right)=S^{y}(t)-S^{y}(t) \cos \left(4 \pi f_{c} t\right) \rightarrow L P F \Rightarrow S^{y}(t)=A^{y} g(t)$

Phase Shift Keying (PSK)

- Two Dimensional signals where all symbols have equal energy levels
- I.e., they lie on a circle or radius $\sqrt{E_{s}}$
- Symbols are equally spaced to minimize likelihood of errors
- E.g., Binary PSK

- 4-PSK (above) same as 4-QAM

M-PSK

$$
\begin{aligned}
& A_{i}^{x}=\operatorname{Cos}(2 \pi i / M), A_{i}^{y}=\operatorname{Sin}(2 \pi i / M), i=0, \ldots, M-1 \\
& U_{m}(t)=g(t) A_{m}^{x} \operatorname{Cos}\left(2 \pi f_{c} t\right)-g(t) A_{m}^{y} \operatorname{Sin}\left(2 \pi f_{c} t\right)
\end{aligned}
$$

Notice : $\operatorname{Cos}(\alpha) \operatorname{Cos}(\beta)=\frac{\operatorname{Cos}(\alpha-\beta)+\operatorname{Cos}(\alpha+\beta)}{2}$
$\operatorname{Sin}(\alpha) \operatorname{Sin}(\beta)=\frac{\operatorname{Cos}(\alpha-\beta)-\operatorname{Cos}(\alpha+\beta)}{2}$
Hence, $\quad U_{m}(t)=g(t) \operatorname{Cos}\left(2 \pi f_{c} t+2 \pi m / M\right)$
$\phi_{m}=2 \pi m / M=$ phases shiftof $m^{\text {th }}$ symbol
$U_{m}(t)=g(t) \operatorname{Cos}\left(2 \pi f_{c} t+\phi_{m}\right), m=0 . . M-1$

M-PSK Summary

- Constellation of M Phase shifted symbols
- All have equal energy levels
- $\quad \log _{2}(M)$ bits per symbol
- Modulation:

- Notice that for PSK we subtract the sine component from the cosine component
- For convenience of notation only. If we added, the phase shift would have been negative but the end result is the same
- Demodulation is the same as for QAM

